JPWO2003073115A1 - 測定装置、及び測定方法 - Google Patents
測定装置、及び測定方法 Download PDFInfo
- Publication number
- JPWO2003073115A1 JPWO2003073115A1 JP2003571750A JP2003571750A JPWO2003073115A1 JP WO2003073115 A1 JPWO2003073115 A1 JP WO2003073115A1 JP 2003571750 A JP2003571750 A JP 2003571750A JP 2003571750 A JP2003571750 A JP 2003571750A JP WO2003073115 A1 JPWO2003073115 A1 JP WO2003073115A1
- Authority
- JP
- Japan
- Prior art keywords
- jitter
- signal
- timing
- tolerance
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 50
- 230000005540 biological transmission Effects 0.000 claims abstract description 93
- 230000015556 catabolic process Effects 0.000 claims abstract description 26
- 238000006731 degradation reaction Methods 0.000 claims abstract description 26
- 238000012546 transfer Methods 0.000 claims description 176
- 238000005259 measurement Methods 0.000 claims description 99
- 238000001228 spectrum Methods 0.000 claims description 83
- 230000006866 deterioration Effects 0.000 claims description 30
- 230000000737 periodic effect Effects 0.000 claims description 24
- 238000012952 Resampling Methods 0.000 claims description 21
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 257
- 238000006243 chemical reaction Methods 0.000 description 76
- 238000010586 diagram Methods 0.000 description 63
- 238000012360 testing method Methods 0.000 description 51
- 238000005070 sampling Methods 0.000 description 34
- 230000000875 corresponding effect Effects 0.000 description 19
- 238000011084 recovery Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 238000012790 confirmation Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 238000012937 correction Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 238000000691 measurement method Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005316 response function Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31708—Analysis of signal quality
- G01R31/31709—Jitter measurements; Jitter generators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/02—Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/02—Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
- G01R29/027—Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values
- G01R29/0273—Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values the pulse characteristic being duration, i.e. width (indicating that frequency of pulses is above or below a certain limit)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/26—Measuring noise figure; Measuring signal-to-noise ratio
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31917—Stimuli generation or application of test patterns to the device under test [DUT]
- G01R31/31922—Timing generation or clock distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/3193—Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
- G01R31/31937—Timing aspects, e.g. measuring propagation delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/203—Details of error rate determination, e.g. BER, FER or WER
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/205—Arrangements for detecting or preventing errors in the information received using signal quality detector jitter monitoring
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Dc Digital Transmission (AREA)
- Tests Of Electronic Circuits (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
本発明は、電子デバイスを測定する測定装置及び測定方法に関する。特に、本発明は電子デバイスのジッタ伝達関数、ビット誤り率、及びジッタ耐力を測定する測定装置及び測定方法に関する。また本出願は、下記の米国特許出願に関連する。文献の参照による組み込みが認められる指定国については、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
PCT/US02/05901 出願日 2002年2月26日
US 10/265,349 出願日 2002年10月4日
背景技術
従来、ジッタ試験は、シリアル・デシリアル通信デバイスにとって重要な試験項目である。たとえば、International Telecommunication UnionやBellcoreなどの勧告((1)ITU−T、RecommendationG.958:Digital Line Systems Based on the Synchronous Digital Hierarchy for Use on Optical Fibre Cables、November1994.、(2)ITU−T、Recommendation O.172:Jitter and Wander Measuring Equipment for Digital Systems Which are Based on the Synchronous Digital Hierarchy(SDH)、March1999.、(3)Bellcore、Generic Requirements GR−1377−Core:SONETOC−192 Transport System Genetic Criteria、December 1998).は、ジッタ耐力(jitter tolerance)、ジッタ生成(jitter generation)、ジッタ伝達関数(jitter transfer function)の測定を規定している。
したがって、シリアル通信用VLSIはこれらの規格値を満足する必要がある。とくにデシリアライザのジッタ耐力測定は、(a)入力ビット列のゼロ交叉に揺らぎ(サイン波ジッタ)をあたえる。(b)デシリアライザは、最適標本化時点近傍でサンプリングし、シリアルビット列を、パラレルデータとして出力する。(c)−のポートをビット誤り率測定器に接続し、ビット誤り率を算出する。(d)この最適標本化時点は、ゼロ交叉が揺らいでいる再生クロックまたはデータ列から抽出したクロックからもとめなければならない。したがって、ジッタ耐力測定は最も困難な測定のひとつであることがわかる。
まず、被試験デバイスのジッタ伝達関数を測定する従来の装置について説明する。図74は、ネットワークアナライザを用いてジッタ伝達関数を測定する場合を説明する。ネットワークアナライザは、被試験デバイスであるデシリアライザのジッタ伝達関数を測定する。信号発生器は、デシリアライザに供給する周波数faのサイン波(基準搬送波)を発生する。ネットワークアナライザは、周波数fbのサイン波に基づいて、基準搬送波を位相変調する。位相変調された基準搬送波は、パルスパターン発生器に供給される。パルスパターン発生器は、受け取った基準搬送波に基づくデジタル信号をデシリアライザに供給する。
デシリアライザは入力シリアルビット列をシリアル・パラレル変換し、複数ビットの再生データとして出力する。このとき、パターンのデータクロックは、ネットワークアナライザが供給するサイン波により位相変調される。
デシリアライザが出力する再生データにおける再生クロックは、基準クロックと混合することにより、基準クロックと位相比較される。
ネットワークアナライザは、デシリアライザに入力されるデジタル信号における位相雑音スペクトルと、再生データにおける位相雑音スペクトルとに基づいて、デシリアライザのジッタ伝達関数を測定する。しかし、位相雑音スペクトルの比に基づいてジッタ伝達関数を測定した場合、波形のエッジ以外の領域における位相雑音が含まれるため、ジッタ伝達関数を精度よく測定することができない。
図75は、ジッタアナライザを用いてデシリアライザのジッタ伝達関数を測定する場合について説明する。ジッタアナライザは、所望の周波数のクロックを生成する。シンセサイザは、当該クロックを変調する。クロックソースは、シンセサイザが生成したサイン波で位相変調されたクロックをパターンジェネレータに供給する。パターンジェネレータは、受け取ったクロックに応じてデータとクロックをデシリアライザに供給する。デシリアライザは、受けとったデータに応じて、出力データと再生クロックを出力する。ジッタアナライザは、デシリアライザの入力クロックと、デシリアライザの出力再生クロックとを受け取り、入力クロック及び出力再生クロックをサンプリングする。ここで、入力クロック及び再生クロックの高周波ジッタ成分は、フィルタによって除去される。(勧告G.825参照)
次に、周期的なサンプリングにおける問題点について説明する。ジッタアナライザは、入力データのM周期毎にデータをサンプリングする。また、ジッタアナラザは、1サンプリング毎に、微少な位相だけずらしたタイミングでサンプリングする。つまり、入力データの周期をTとした場合、ジッタアナライザは、MT+TESのサンプリング周期でサンプリングを行う。入力データ及び出力データは、Tの逓倍の周期を有する周期波形であるため、サンプリング結果は、サンプリング周期TESでサンプリングした場合とほぼ等価な結果が得られる。
ジッタアナライザは、サンプリング結果に基づいて、入力データの瞬時位相スペクトルと、出力データの瞬時位相スペクトルとの比を算出し、当該スペクトル比に基づいて、デシリアライザのジッタ伝達関数を測定する。しかし、ジッタアナライザは、MT+TESのサンプリング周期でサンプリングし、等価的にデータの1周期のデータを抽出している。このため、ジッタ伝達関数の測定に時間がかかるものであった。
また、ジッタアナライザは、略MT/TES個の標本数により、等価的な1周期分の波形を生成しているため、入力データ又は出力データの波形において、隣接するエッジ間の周期変動を測定することが困難である。サンプリングにより生成した波形における周期変動は、入力データ又は出力データのM周期において、隣接するエッジ間の周期変動の平均値となる。このため、ジッタアナライザは、入力データ及び出力データの瞬時位相を精度よく測定することができず、またジッタ伝達関数を精度よく測定することが困難であった。
次に、従来のビット誤り率の測定方法及び従来のジッタ耐力測定方法について説明する。アイダイアグラム(eye−diagram)測定をもちいると、通信デバイスの性能を簡単にテストできる。図76は、アイダイアグラムを示す。水平のアイ開口度(horizontal eye opening)は、タイミングジッタのピークツゥピーク値をあたえる。一方、垂直のアイ開口度(vertical eye opening)は、耐ノイズ性(noise immunity)または信号対雑音比(signal−to−noise ratio)をあたえる(Edward A.Lee and David G.Messerschmitt、Digital Communication、2nd ed.、pp.192、Kluwer Academic Publishers、1994)。しかし、ジッタ耐力測定のとき、入力データビット列のゼロ交叉は1UI(Unit Interval単位時間間隔、1UIはビット周期Tbに等しい)以上のピークツゥピーク値をもつタイミングジッタで揺らぎをあたえられる(たとえば、勧告(1)は1.5UIPPと規定している)。この結果、アイダイアグラム測定では、閉じたアイパターン(eyepattern)しか測定できないことになる。したがって、アイダイアグラムをジッタ耐力測定に適用できないことがわかる。
ジッタ耐力測定は、ビット誤り率試験の拡張である。図77は、デシリアライザのジッタ耐力測定構成を示す。デシリアライザは、入力シリアルビット列をシリアル・パラレル変換し、たとえば16ビットの再生データとして出力する。被試験デシリアライザへの入力ビット列の瞬時位相[nT]はサイン波ジッタにより変動させられる。ここで、Tはデータレートである。誤り率試験器は、出力再生クロックに時間遅延をあたえ最適タイミングとし、出力再生データをサンプリングする。再生データのサンプリング値とその期待値を比較することによりパラレルデータのビット誤り率を試験する。しかし、出力再生クロックはエッジが揺らいでいるシリアルビット列から抽出されるため、印加ジッタ量が大きくなると最適標本化時点で出力再生データをサンプリングするのは困難になる。一方、再生データ列からクロックを抽出する方式では、誤り率試験器は高性能のクロック再生器を備える必要がある。というのは、被試験デシリアライザのジッタ耐力を測定するには、被試験デシリアライザが内蔵しているクロック再生器よりもジッタ耐力のあるクロック再生器が必要であるからである。つまり、誤り率試験器をもちいたジッタ耐力測定では、ジッタ耐力を過小評価する可能性がある。このため、再現ある測定をおこなうには、高度な測定スキルやノウハウを必要とする。
さらにジッタ耐力測定では、ジッタ周波数fJを固定し印加ジッタ量を増加させ、ビット誤り率が発生する最小印加ジッタ量を算出する。たとえば、パターン長223−1の疑似ランダム2値系列をもちいて、2.5Gbpsのシリアル通信デバイスのビット誤り率試験をおこなうには、1secのテスト時間を要する。印加ジッタ量を20回変更して、ジッタ耐力を測定するには、20secのテスト時間を要することになる。
入力ビット列のタイミング劣化(timing degradation)は、振幅劣化(amplitude degradation)と同様にビット誤り率を増加させる。ところで、タイミング劣化はアイダイアグラム測定における水平のアイ開口度に対応し、振幅劣化は垂直のアイ開口度に対応する。したがって、タイミング劣化度や振幅劣化度を測定することにより、ビット誤り率を算出できる。なお、ジッタ耐力測定は、アイダイアグラム測定における水平のアイ開口度に対応する。たとえば、受信信号の振幅が劣化しA=10%小さくなると、信号対雑音比が20log10(100−10)/100=0.9dB小さくなったことに対応する。したがって、ビット誤り率は0.9dB大きくなる。タイミング劣化Tについても同様に計算できる。ただし、割合%値やdB値は相対値であり、絶対値をあたえない。ビット誤り率の精確な値をえるには、校正を必要とすることになる。ここで、J.E.Gersbachによる定義ΔAとΔT(John E.Gersbach、IlyaI.Novof、Joseph K.Lee、“Fast Communication Link Bit Error Rate Estimator、”U.S.Patent# 5、418、789、May 23、1995)をもちいた。上記公報に開示された装置には、次式
をもちいて、ΔT、ΔA、ローカルクロック周期Tと最適標本化時点におけるサンプルの最大値Aから瞬時ビット誤り率(instantaneous bit error rate)を算出する。しかし、上述した装置はガウス雑音ジッタによるタイミング劣化度を測定することにより、ビット誤り率を測定する方法しかあたえていない。上述した装置はデータエッジのヒストグラムをもとめ、しきい値処理をおこない、ΔTをもとめている。この処理は、単峯性の分布を示すガウス雑音ジッタにのみ有効である。ジッタ耐力試験でもちいられるサイン波ジッタは、分布の両端に2つのピークをもつ。したがって、単純なしきい値処理をおこなってもΔTを算出することはできない。また、ジッタ耐力測定のとき、ゼロ交叉は1UIPP以上のタイミングジッタで揺らぎをあたえられる。この結果、ヒストグラムは隣り合うエッジの確率密度関数がお互いに重なり合った分布を示す。このようなヒストグラムから、ΔTを算出することは困難である。このヒストグラム処理は、10000程度又はそれ以上のデータをサンプリングしないと十分な測定精度を確保できないことが知られている(T.J.Yamaguchi、M.Soma、D.Halter、J.Nissen、R.Raina、M.Ishida、and T.Watanabe、“Jitter Measurements of a PowerPCTM Microprocessor Using an Analytic Signal Method、”Proc.IEEE International Test Conference、Atlantic City、NJ、October3−5、2000)。このため、測定時間の短縮は困難である。さらに、上式のKは理論値をもたない。このため、瞬時ビット誤り率を実際のビット誤り率で校正することにより、Kの初期値をあたえなければならない。同時に、瞬時ビット誤り率の長時間平均値と実際のビット誤り率の差から、補正値ΔKを算出しなければならない。このため、従来の装置は効率が悪く、長時間の試験時間を必要としていた。
そこで本発明は、上記の課題を解決することのできる測定装置及び測定方法を提供することを目的とする。この目的は、請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
発明の開示
上記課題を解決するために、本発明の第1の形態においては、電子デバイスの対ジッタ信頼性を測定する測定装置であって、所定の伝送線路を介して入力される入力信号に応じて、電子デバイスが出力する出力信号に基づいて、伝送線路と電子デバイスとを含む系のジッタ耐力を算出するジッタ耐力推定部と、入力信号に基づいて、伝送線路を介した伝送により入力信号に生じる確定ジッタによって劣化するジッタ耐力劣化量を算出するジッタ耐力劣化量推定部と、ジッタ耐力推定部が算出した系のジッタ耐力を、ジッタ耐力劣化量推定部が算出したジッタ耐力劣化量に基づいて補正することにより、電子デバイスのジッタ耐力を算出するデバイスジッタ耐力推定部とを備えることを特徴とする測定装置を提供する。
ジッタ耐力劣化量推定部は、入力信号のスペクトルを算出する入力信号スペクトル推定部と、伝送線路における、周波数帯域毎の通過特性を算出する伝送線路特性推定部と、入力信号のスペクトルと、伝送線路の通過特性とに基づいて、確定ジッタにより劣化するジッタ耐力劣化量を算出する確定ジッタ推定部とを有してよい。
また、伝送線路特性推定部は、伝送線路の種類毎に単位長さ当たりの通過特性を予め記憶し、与えられる伝送線路の種類及び長さに基づいて、伝送線路における通過特性を算出してよい。
また、入力信号を生成し、伝送線路を介して電子デバイスに入力信号を供給する入力信号生成部を更に備え、ジッタ耐力劣化量推定部は、入力信号生成部から伝送線路に入力される入力信号と、伝送線路から電子デバイスに入力される入力信号とを比較し、当該比較結果に基づいて確定ジッタによるジッタ耐力劣化量を算出してよい。
測定装置は、出力信号に基づいて、出力信号の出力タイミングジッタ系列を算出するタイミングジッタ推定部と、出力タイミングジッタ系列に基づいて、電子デバイスにおけるジッタ伝達関数を算出するジッタ伝達関数推定部とを更に備え、ジッタ耐力推定部は、ジッタ伝達関数のゲインに基づいて、系のジッタ耐力を算出してよい。
ジッタ耐力推定部は、ジッタ伝達関数の位相に更に基づいて、系のジッタ耐力を算出してよい。
また、測定装置は、出力信号に基づいて、出力信号の出力タイミングジッタ系列を算出するタイミングジッタ推定部と、出力タイミングジッタ系列に基づいて、出力信号のタイミングジッタのジッタ歪みを算出するジッタ歪み推定部とを更に備え、ジッタ耐力推定部は、ジッタ歪みに基づいて、系のジッタ耐力を算出してよい。
ジッタ歪み推定部は、出力信号のタイミングジッタのスペクトルに基づいてジッタ歪みを算出してよい。
タイミングジッタ推定部は、出力信号に基づいて、出力信号の瞬時位相雑音を算出する瞬時位相雑音推定部と、瞬時位相雑音を、所定のタイミングでリサンプリングした出力タイミングジッタ系列を生成するリサンプリング部とを有してよい。
瞬時位相雑音推定部は、出力信号を複素数の解析信号に変換する解析信号変換部と、解析信号に基づいて、解析信号の瞬時位相を測定する瞬時位相推定部と、解析信号の瞬時位相に基づいて、出力信号のリニア瞬時位相を測定するリニア瞬時位相推定部と、瞬時位相及びリニア瞬時位相に基づいて、瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出するリニア位相除去部とを有してよい。
タイミングジッタ推定部は、出力信号の周期ジッタ系列を測定する周期ジッタ系列推定部と、周期ジッタ系列の平均周期を算出する理想エッジタイミング推定部と、周期ジッタ系列の平均周期と、周期ジッタ系列とに基づいて、出力タイミングジッタ系列を算出するエッジ誤差推定部とを有してよい。
測定装置は、周波数の異なる複数のタイミングジッタを重畳した入力信号を生成する入力信号生成部を更に備えてよい。
電子デバイスの出力信号に基づいて、出力信号のビット誤り率を検出するビット誤り率推定部を更に備え、入力信号生成部は、振幅の異なるタイミングジッタを重畳した複数の入力信号を順次電子デバイスに入力し、ジッタ耐力推定部は、ビット誤り率推定部が出力信号のビット誤りを検出しないタイミングジッタの最大振幅を、ジッタ耐力として算出してよい。
ジッタ耐力推定部は、電子デバイスが入力信号に応じて出力する再生クロック信号を出力信号として受け取り、再生クロック信号に基づいて系のジッタ耐力を算出してよい。
本発明の第2の形態においては、電子デバイスの対ジッタ信頼性を測定する測定装置であって、伝送長が所定の長さより短く、確定ジッタを生じない伝送線路を介して入力される入力信号に応じて、電子デバイスが出力する出力信号に基づいて、電子デバイスのジッタ耐力を算出するジッタ耐力推定部と、電子デバイスに伝送線路より長く、確定ジッタが生じる長伝送線路を介して入力信号を入力した場合に、長伝送線路を介した伝送により入力信号に生じる確定ジッタによって劣化するジッタ耐力の劣化量を算出するジッタ耐力劣化量推定部と、電子デバイスのジッタ耐力と、ジッタ耐力の劣化量とに基づいて、長伝送線路と電子デバイスとを含む系のジッタ耐力を算出する系ジッタ耐力推定部とを備える測定装置を提供する。
尚、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又、発明となりうる。
発明の実施例の説明
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本発明に係る測定装置100の構成の一例を示す。測定装置100は、被試験回路/被試験電子デバイス/被試験システム(以下DUT)のビット誤り率を算出する。測定装置100は、DUTのジッタ伝達関数を測定するジッタ伝達関数測定装置101と、ジッタ伝達関数測定装置101が測定したジッタ伝達関数に基づいて、DUTにおけるビット誤り率を測定するビット誤り率推定部102とを備える。ビット誤り率推定部102は、例えば、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を測定する。また、ビット誤り率推定部102は、ジッタ伝達関数の位相に更に基づいて、DUTのビット誤り率を推定してよく、また、DUTの内部雑音に更に基づいて、DUTのビット誤り率を推定してよい。
図2は、本発明に係る測定方法の一例を示すフローチャートである。まず、ジッタ伝達関数推定段階S201で、DUTのジッタ伝達関数を測定する。S201は、図1において説明したジッタ伝達関数測定装置101と同一又は同様の機能を有する。S201は、ジッタ伝達関数測定装置101を用いて行ってよい。次に、ビット誤り率推定段階S202で、DUTのジッタ伝達関数に基づいて、DUTのビット誤り率を測定する。S202は、図1において説明したビット誤り率推定部102と同一又は同様の機能を有する。S202は、ビット誤り率推定部102を用いて行ってよい。
図3は、ジッタ伝達関数測定装置101の構成の一例を示す。ジッタ伝達関数測定装置101は、DUTに入力される入力信号に応じて、DUTが出力する出力信号に基づいて、出力信号の出力タイミングジッタを示す出力タイミングジッタ系列を算出するタイミングジッタ推定部501と、出力タイミングジッタ系列に基づいて、DUTにおけるジッタ伝達関数を算出するジッタ伝達関数推定部103とを有する。タイミングジッタ推定部501は、DUTの出力信号として、DUTの出力信号に対応する再生クロック信号を受け取ってよい。タイミングジッタ推定部501の詳細については後述する。また、タイミングジッタ推定部501は、出力信号に基づいて、出力信号の出力瞬時位相雑音を算出してもよい。この場合であっても、ジッタ伝達関数測定装置101は、出力タイミングジッタ系列に代えて出力瞬時位相雑音を用いて、ジッタ伝達関数を算出することができる。
また、ジッタ伝達関数推定部103は、出力タイミングジッタ系列に基づいてジッタ伝達関数のゲインを測定するジッタゲイン推定部502を有する。本例において、ビット誤り率推定部102は、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を算出する。ジッタ伝達関数のゲインの算出方法については後述する。
ジッタゲイン推定部502は、入力信号におけるタイミングジッタと、出力信号におけるタイミングジッタとに基づいて、DUTにおけるジッタ伝達関数のゲインを測定する。例えば、ジッタゲイン推定部502は入力信号における入力タイミングジッタを示す情報と、タイミングジッタ推定部501が算出した出力タイミングジッタ系列とを受け取る。
ジッタゲイン推定部502は、受け取った入力タイミングジッタを示す情報と、出力タイミングジッタ系列とに基づいてDUTのジッタ伝達関数のゲインを測定する。この場合、ジッタゲイン推定部502は、出力タイミングジッタ系列に基づいて、出力タイミングジッタ値を算出する。例えば、ジッタゲイン推定部502は、出力タイミングジッタ系列に基づいて、出力タイミングジッタのピーク値又は実効値を、出力タイミングジッタ値として算出する。また、他の例においては、ジッタゲイン推定部502は、入力信号の入力タイミングジッタ系列と、出力信号の出力タイミングジッタ系列とを受け取り、ジッタ伝達関数のゲインを推定してよい。この場合、ジッタゲイン推定部502は、入力タイミングジッタ系列から入力タイミングジッタ値を算出し、出力タイミングジッタ系列から出力タイミングジッタ値を算出してよい。
図4は、ジッタ伝達関数推定段階S201の一例のフローチャートを示す。S201は、タイミングジッタ推定段階S221で、出力信号の出力タイミングジッタ系列を算出する。S221は、図3に関連して説明したタイミングジッタ推定部501と同一又は同様の機能を有する。また、S221は、タイミングジッタ推定部501を用いておこなってよい。また、S221は、入力信号の入力タイミングジッタ系列を算出してもよい。
次に、タイミングジッタ値算出段階S222で、タイミングジッタ系列に基づいて、タイミングジッタ値を算出する。S222は、出力タイミングジッタ系列に基づいて、出力タイミングジッタ値を算出してよく、また、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、入力タイミングジッタ値及び出力タイミングジッタ値を算出してもよい。例えば、S222は、タイミングジッタ系列の実効値、又はピークツゥピーク値を、タイミングジッタ値として算出してよい。
次に、ジッタ伝達関数推定段階S223で、ジッタ伝達関数を算出する。S223は、図3に関連して説明したジッタ伝達関数推定部103と同一又は同様の機能を有する。S223は、ジッタ伝達関数推定部103を用いて行ってよい。
図5は、ジッタ伝達関数測定装置101の構成の他の例を示す。本例におけるジッタ伝達関数測定装置101のジッタ伝達関数推定部103は、図3に関連して説明したジッタ伝達関数推定部103の構成に加え、ジッタ位相差推定部503を更に有する。また、ジッタ伝達関数測定装置101は、複数のタイミングジッタ推定部501を有する。一のタイミングジッタ推定部501は、入力信号の入力タイミングジッタ系列を算出し、他のタイミングジッタ推定部501は、出力信号の出力タイミングジッタ系列を算出する。
ジッタ位相差推定部503は、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、入力タイミングジッタと出力タイミングジッタとの位相差を算出する。つまり、ジッタ位相差推定部503は、ジッタ伝達関数の位相を算出する。例えばジッタ位相差推定部503は、下式に基づいてジッタ伝達関数の位相を算出する。
ビット誤り率推定部102は、ジッタ伝達関数の位相に更に基づいて、DUTのビット誤り率を算出する。ジッタ伝達関数の位相に更に基づいてビット誤り率を算出する方法については後述する。
本例のジッタ伝達関数測定装置101を用いた測定装置100において、ビット誤り率推定部102は、ジッタ伝達関数のゲイン及びジッタ伝達関数の位相に基づいて、DUTのビット誤り率を算出する。
図6は、ジッタ伝達関数推定段階S201の他の例を示すフローチャートである。S201は、まず入力タイミングジッタ系列推定段階S241で、入力タイミングジッタ系列を算出する。次に入力タイミングジッタ値算出段階S242で、入力タイミングジッタ値を算出する。次に、出力タイミングジッタ系列推定段階S243で、出力タイミングジッタ系列を算出する。次に、出力タイミングジッタ値算出段階S244で、出力タイミングジッタ値を算出する。次に、ジッタ伝達関数推定段階S245で、ジッタ伝達関数を測定する。S241及びS243は、図4に関連して説明したタイミングジッタ推定段階S221と同様の方法で、タイミングジッタ系列を算出する。また、S242及びS244は、図4に関連して説明したタイミングジッタ値算出段階S222と同様の方法で、タイミングジッタ値を算出する。また、S245は、図4に関連して説明したジッタ伝達関数推定段階S223と同様の方法で、ジッタ伝達関数を算出する。
図7は、ジッタ伝達関数推定段階S223の一例を示すフローチャートである。ジッタゲイン推定段階S261で、入力タイミングジッタ系列と出力タイミングジッタ系列に基づいて、ジッタ伝達関数のゲインを算出する。S261は、図5に関連して説明したジッタゲイン推定部502と同一又は同様の方法で、ジッタ伝達関数のゲインを算出する。S261は、ジッタゲイン推定部502を用いて行ってよい。
また、位相差推定段階S2301で、入力タイミングジッタ系列と出力タイミングジッタ系列に基づいて、ジッタ伝達関数の位相を算出する。S2301は、図5に関連して説明したジッタ位相差推定部503と同一又は同様の方法で、ジッタ伝達関数の位相を算出する。S2301は、ジッタ位相差推定部503を用いて行ってよい。
また、ジッタ伝達関数推定段階S223において、ジッタゲイン推定段階S261と、位相差推定段階S2301は、いずれを先に行ってもよく、また、同時に行ってもよい。
図8は、入力タイミングジッタ値と出力タイミングジッタ値との関係の一例を示す。ジッタゲイン推定部502は、ジッタ量の異なる複数の入力信号の、入力タイミングジッタ系列と、それぞれの入力タイミングジッタ系列に対応する出力信号における出力タイミングジッタ系列とに基づいて、複数の入力タイミング値と出力タイミングジッタ値を算出する。例えば、ジッタゲイン推定部502は、タイミングジッタ系列の実効値又はピークツゥピーク値をタイミングジッタ値として算出する。
ジッタゲイン推定部502は、ジッタ伝達関数のゲインを測定する。つまり、DUTには入力タイミングジッタが異なる入力信号が順次与えられ、ジッタゲイン推定部502は、それぞれの入力タイミングジッタ系列と、それぞれの入力信号に対応する出力タイミングジッタ系列とに基づいて、ジッタ伝達関数のゲインを測定する。
ジッタゲイン推定部502は、図8に示すように、複数の入力タイミングジッタ値と出力タイミングジッタ値との関係を直線適合し、当該直線の傾きをDUTのジッタ伝達関数のゲインとして算出する。以下、DUTのジッタ伝達関数について説明する。
Fourier変換によって入力信号の入力瞬時位相雑音Δθ(nTS)と出力信号の出力瞬時位相雑音Δφ(nTS)を周波数領域へ変換すれば、位相雑音スペクトル
をえる。ただし、fJはジッタ周波数(クロック周波数からのオフセット周波数)、TSはサンプリング周期である。
サンプリング周期TSをDUTのクロック再生器のクロック周期Tに等しくし、ゼロ交叉(立ち上がりエッジまたは立下りエッジ)付近の瞬時位相雑音をサンプリングすると、入力タイミングジッタΔθ[nT]と出力タイミングジッタΔφ[nT]をえる。Fourier変換によってΔφ[nT]とΔφ[nT]を周波数領域へ変換すれば、タイミングジッタスペクトル
をえる。タイミングジッタは周期Tの弱義周期定常(wide−sense cyclostationary)であるから、タイミングジッタスペクトルは、位相雑音スペクトルより変調ノイズ源の解析に有効である。ただし、狭帯域のフィルタを通過させ、弱義周期定常信号を定常信号に変換すると
がなりたつ。すなわち、狭帯域のフィルタをもちいると、ジッタを有する信号のゼロ交叉におけるサンプリング(弱義周期定常信号にともなう時間依存処理)を避けることができる。
DUTのジッタ伝達関数は
と定義される。ジッタ伝達関数は定係数線形系(constant−parameter linear system)の周波数応答関数としてあたえられる。ジッタ伝達関数をもちいて、DUTのクロック再生器の出力タイミングジッタスペクトルをあらわすと
のようになる。
線形性の仮定から、入力タイミングジッタのピークツゥピーク値はジッタ伝達関数のゲインだけ増幅され、出力信号のタイミングジッタのピークツゥピーク値をあたえる。以下、周波数領域と時間領域でジッタ伝達関数のゲインを測定する方法を説明する。
|ΔΘ(fJ)|がゼロでないとき、ピークジッタまたはRMSジッタに対応するジッタ伝達関数のゲインは、それぞれ
により周波数領域で推定できることがわかる。ジッタ伝達関数は定係数線形系の周波数応答関数としてあたえられるから、ジッタ伝達関数は系への入力の関数ではない。この性質に基づいて、時間領域でジッタ伝達関数を測定する手順を説明する。DUTが線形動作を示す範囲で入力タイミングジッタのピークツゥピーク値を設定し、Δθ[nT]とΔφ[nT]間の入出力関係を複数回測定する。つぎに、図8に示すΔθ[nT]とΔφ[nT]間の入出力関係にたいし直線適合すると、その傾きがジッタ伝達関数のゲイン
をえる。ただし、ある観測時間内の最悪値はピークツゥピーク値(周波数領域ではピーク値)に対応する。
線形性の仮定から、入力ジッタのピークツゥピーク値はジッタ伝達関数のゲイン|HJ(fJ)|だけ増幅され、再生クロックのタイミングジッタのピークツゥピーク値をあたえる。ジッタ伝達関数は、入出力ジッタのピーク値または平均値の比から測定される。次に、周波数領域と時間領域でジッタ伝達関数のゲインを測定する方法を説明する。
|ΔΘ(fJ)|がゼロでないとき、ジッタ伝達関数のゲインはタイミングジッタスペクトル(位相雑音スペクトル)のピーク値または平均値から
または、
により周波数領域で推定できる。
ジッタ伝達関数は定係数線形系の周波数応答関数としてあたえられるから、ジッタ伝達関数は系への入力の関数ではない。この性質に基づき、時間領域でジッタ伝達関数を測定する手順を説明する。被試験クロック再生器が線形動作を示す範囲で入力タイミングジッタのピークツゥピーク値を設定し、Δθ[nT]とΔφ[nT]間の入出力関係を複数回測定する。つぎに、図8に示すように、Δθ[nT]とΔφ[nT]間のピークツゥピークジッタの入出力関係またはRMSジッタの入出力関係にたいし直線適合すると、その傾きからジッタ伝達関数のゲイン
をえる。例えば、直線適合によりジッタ伝達関数のゲインを求めるために、測定装置100は、入力タイミングジッタ系列Δθ[nT]と出力タイミングジッタ系列Δφ[nT]との入出力関係を4回程度測定してよい。
図9は、タイミングジッタ推定部501の構成の一例を示す。タイミングジッタ推定部501は、瞬時位相雑音推定部700と、リサンプリング部901とを有する。瞬時位相雑音推定部700は、受け取った信号を複素数の解析信号に変換する解析信号変換部701と、解析信号に基づいて、解析信号の瞬時位相を測定する瞬時位相推定部702と、解析信号の瞬時位相に基づいて、解析信号701が受け取った信号のリニア瞬時位相を測定するリニア瞬時位相推定部703と、瞬時位相及びリニア瞬時位相に基づいて、瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出するリニア位相除去部704とを有する。瞬時位相雑音推定部700は、DUTの出力信号の瞬時位相雑音を算出してよく、また、DUTの出力信号の瞬時位相雑音及びDUTへの入力信号の瞬時位相雑音を算出してもよい。また、タイミングジッタ推定部501は、DUTの出力信号の出力タイミングジッタを算出してよく、また、DUTの出力信号の出力タイミングジッタ系列及びDUTへの入力信号の入力タイミングジッタ系列を算出してもよい。また、解析信号変換部701は、受け取った信号の所定の周波数成分に基づいて、解析信号を生成してよい。
リサンプリング部901は、図16、及び図17において後述するように、リニア位相除去部704が生成した瞬時位相雑音をゼロクロスタイミングでサンプリングしたタイミングジッタ系列を出力する。瞬時位相雑音をゼロクロスタイミングでサンプリングすることにより、信号のエッジにおける位相雑音を検出することができる。このため、ジッタ伝達関数のゲインを精度よく算出することができる。
図10は、タイミングジッタ推定段階S221の一例を示す。本例においてタイミングジッタ推定段階S221は、解析信号変換段階S801で、受け取った信号を解析信号に変換する。S801は、図9に関連して説明した解析信号変換部701と同様の方法で、受け取った信号を解析信号に変換する。S801は、解析信号変換部701を用いて行ってよい。
次に、瞬時位相推定段階S802で、解析信号の瞬時位相を測定する。S802は、図9に関連して説明した瞬時位相推定部702と同様の方法で、解析信号の瞬時位相を測定する。S802は、瞬時位相推定部702を用いて行ってよい。
次に、リニア瞬時位相推定段階S803で、S801で受け取った信号のリニア瞬時位相を測定する。S803は、図9に関連して説明したリニア瞬時位相推定部703と同様の方法で、受け取った信号のリニア瞬時位相を測定する。S803は、リニア瞬時位相推定部703を用いて行ってよい。
次に、リニア位相除去段階S804で、瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出する。S804は、図9に関連して説明したリニア位相除去部704と同様の方法で瞬時位相雑音を算出する。S804は、リニア位相除去部704を用いて行ってよい。
次に、リサンプリング段階S1001で、瞬時位相雑音をサンプリングしたタイミングジッタ系列を生成する。S1001は、図9において説明したリサンプリング部901と同様の方法でタイミングジッタ系列を生成する。また、S1001は、リサンプリング部901を用いて行ってよい。
図11は、DUTが出力する出力信号x(t)の一例を示す。本例において、タイミングジッタ推定部501は、出力信号の出力タイミングジッタ系列を測定する。出力信号は、ジッタを有する。解析信号変換部701は、出力信号を複素数の解析信号に変換する。本例において、解析信号変換部701は、ヒルベルト変換を用いて出力信号を解析信号に変換する。ヒルベルト変換については後述する。
図12は、解析信号変換部701が生成する解析信号z(t)の一例を示す。解析信号変換部701は、ヒルベルト変換を用いて実部と虚部を有する解析信号を生成する。図12において、解析信号の実部を実線で示し、解析信号の虚部を破線で示す。瞬時位相推定部702は、解析信号の瞬時位相を算出する。瞬時位相の算出についての詳細は後述する。
図13は、瞬時位相推定部702が算出する解析信号の瞬時位相φ(t)の一例を示す。また、瞬時位相推定部702は、位相が不連続な瞬時位相をアンラップし、位相が連続した瞬時位相を算出する。
図14は、アンラップされた瞬時位相φ(t)の一例を示す。リニア瞬時位相推定部703は、アンラップされた瞬時位相に基づいて、タイミングジッタ推定部501が受けとった信号のリニア瞬時位相を算出する。リニア瞬時位相推定部703は、アンラップされた瞬時位相を直線近似し、リニア瞬時位相を算出する。リニア瞬時位相推定部703は、最小二乗法を用いて、リニア瞬時位相を算出してよい。
図15は、リニア瞬時位相φ(t)の一例を示す。リニア位相除去部704は、アンラップされた瞬時位相からリニア瞬時位相を除去した瞬時位相雑音を算出する。つまり、リニア位相除去部704は、図14に示したアンラップされた瞬時位相の波形と、図15に示したリニア瞬時位相の波形との差分を、瞬時位相雑音として算出する。
図16は、瞬時位相雑音Δφ(t)の一例を示す。リサンプリング部901は、瞬時位相雑音に基づいて、タイミングジッタ推定部501が受け取った信号のタイミングジッタ系列を算出する。リサンプリング部901は、瞬時位相雑音を、解析信号z(t)の実数部x(t)の各ゼロクロス点にもっとも近いタイミング(近似ゼロクロス点)で瞬時位相雑音波形Δφ(t)をサンプリングし、ゼロクロスタイミングnT0における瞬時位相雑音、すなわちタイミングジッタ系列Δφ[n](=Δφ(nT0))を算出する。ゼロクロスタイミングにおける瞬時位相雑音に基づいて、ジッタ伝達関数のゲインを算出することにより、精度よくジッタ伝達関数のゲインを算出することができる。
図17は、タイミングジッタ系列Δφ[n]の一例を示す。ジッタゲイン推定部502は、タイミングジッタ系列に基づいて、タイミングジッタのRMS値とピークツゥピーク値を算出する。RMSタイミングジッタΔφRMSは、タイミングジッタ系列Δφ[n]の二乗平均値であり、ジッタゲイン推定部502は下式に基づいてRMSタイミングジッタを算出する。
ここで、Nは測定されたタイミングジッタデータの標本数である。また、ピークツゥピークタイミングジッタΔφPPは、Δφ[n]の最大値と最小値の差であり、ジッタゲイン推定部502は下式に基づいてピークツゥピークタイミングジッタを算出する。
次に、ゼロクロス点の検出について説明する。
図18は、解析信号z(t)の実数部の一例を示す。はじめに、入力された被測定信号の解析信号の実数部の最大値を100%レベル、最小値を0%レベルとし、ゼロクロスのレベルとして50%レベルの信号値V50%を算出する。つぎに、解析信号の実数部の各隣り合うサンプル値と50%レベルV50%との差(x(j−1)−V50%)、(x(j)−V50%)をもとめ、さらにこれらの積(x(j−1)−V50%)×(x(j)−V50%)を計算する。x(t)が50%レベル、つまりゼロクロスレベルを横切るときは、これらサンプル値(x(j−1)−V50%)、(x(j)−V50%)の符号が負から正、または正から負となるから、前記積が負となったときは、x(t)がゼロクロスレベルを横切ったことになり、その時点におけるサンプル値(x(j−1)−V50%)、(x(j)−V50%)の絶対値の小さいほうの時刻j−1またはjが近似ゼロクロス点としてもとめられる。図18において、○印は検出された立ち上がりゼロクロス点にもっとも近い点(近似ゼロクロス点)を示す。
図3に関連して説明したジッタゲイン推定部502は、以上説明した入力タイミングジッタ及び出力タイミングジッタのRMS値又はピークツゥピーク値に基づいて、上述したDUTのジッタ伝達関数のゲインを算出する。また、図5に関連して説明したジッタ位相差推定部503は、入力タイミングジッタ系列及び出力タイミングジッタ系列に基づいて、上述したDUTのジッタ伝達特性の位相を算出する。以下、図1に関連して説明したビット誤り率推定部102が、ジッタ伝達関数のゲインに基づいて、DUTのビット誤り率を算出する場合における、ビット誤り率の算出について説明する。
図19は、ビット誤り率推定部102が算出したビット誤り率の一例を示す。図19において、横軸は入力タイミングジッタのピークツゥピーク値を示し、縦軸はビット誤り率を示す。本例において、DUTに対する入力信号は、サイン波ジッタが印加されているものとする。
ビットクロックの瞬時位相Δθ[nT]をサイン波cos(2πfPMt)により変化させる。このとき、DUTへの入力信号のデータ列は、つぎのタイミングジッタ
をもつ。ただし、2Kiは入力ジッタのピークツゥピーク値、fPMはサイン波による位相変調周波数である。DUTへ、DUTが発生する内部ジッタより十分大きいサイン波ジッタを入力すると
となる。ただし、HJ(fPM)はDUTのジッタ伝達関数である。例えば、DUTはクロック再生部を有し、ジッタ伝達関数は、クロック再生部のジッタ伝達関数を示す。式(21)と式(22)よりサイン波ジッタのピークツゥピーク値は下式のように有界であることがわかる。
また、ジッタ周波数fJは位相変調周波数fPMによりあたえられる。
したがって、ジッタ周波数fJにおけるピークジッタの最悪値と平均値は
ともとめられる。また、時間領域のピークツゥピークジッタ値とRMS値は、それぞれ
からえられる。ここで、|X|2や(|X|2)0.5は、|X|として計算してもよい。以上により、入力信号にサイン波ジッタを印加した場合、サイン波ジッタは確定的なジッタをDUTに与える。さらに、サイン波ジッタの確率密度分布は最悪ケースに対応する。サイン波ジッタの詳細については後述する。
印加ジッタの影響で入力信号のデータ列の立ち上がりエッジがゆれているときについて考える。隣り合う立ち上がりエッジのタイミングtzero−crossingがtdecisionをそれぞれクロスすると、先行するビットやつぎのビットをtdecisionにおいて識別することになる。すなわち、ビット誤りが生じる。先行するビットもつぎのビットも誤って判定される確率は等しいから、ビット誤り率は
であたえられる。簡単のためtdecisionを最適な標本化時点とみなし、標本化時点のタイミングゆらぎΔφ[nT]を入力データ列のゆらぎΔθ[nT]に組み込む。この結果、アラインメントジッタによるビット誤り率のみを理論計算すればよいことになる。ところで、サイン波分布は平均値を中心として対称であるから、第1項と第2項は等しい。したがって、
となる。
ここで、アラインメントジッタについて説明する。アラインメントジッタは、P.R.Trischittaにより定義され、入力信号のタイミングジッタと出力信号(再生クロック)のタイミングジッタ間のアラインメント誤差をあらわし、下式で定義される。
ただし、Δθ[nT]とΔφ[nT]は、それぞれDUTへの入力信号のタイミングジッタと出力信号のタイミングジッタである。
式(31)より、アラインメントジッタの確率密度関数は、式(21)と式(22)を式(31)に代入し、
をえる。位相変調周波数fPMをあたえると、
は定数となる。したがってサイン波ジッタ入力のとき、アラインメントジッタの確率密度関数はサイン波分布を示すことがわかる。
ここで、X=Ki{|HJ(fPM)|−1}である。簡単のため、このサイン波分布をつぎの一様分布
で近似する。ここで、X=ΔψP=ΔθP{|HJ(fPM)|−1}である。
図20は、最悪ケースのアラインメントジッタの一例を示す。最小の入力ジッタ0.5UIPPにより再生ビットの境界が0UIから0.5UIの間をスイングする。一様分布を示す確率変数が、tdecisioneをこえる部分の確率を算出すると、式(30)から
をえる。さらに、tdecisionは、ビット間隔の中心値、又は0.5UIであることに注意すると、BERは、
である。ビット誤り率推定部102は、式(36)に基づいて、DUTのビット誤り率を算出してよい。つまり、DUTのジッタ伝達関数のゲインHJ(fPM)に基づいて、図19に示すような入力タイミングジッタとビット誤り率との関係を算出することができる。
また、測定装置100は、DUTのジッタ耐力を算出してよい。ここで、ジッタ耐力とはビット誤り率が所定の値以上を示す入力タイミングジッタ量を指す。例えば、ジッタ耐力は、ビット誤り率が零より大きくなる最小の入力タイミングジッタ量であってよい。
DUTのビット誤り率は、上述した式(36)に基づいて算出できる。ジッタ耐力の下限値は、式(36)より、
であたえられる。ここで、一般に|HJ(fPM)|<1であるため、式(36)及び式(37)において、||HJ(fPM)|−1|=1−|HJ(fPM)|として、ビット誤り率及びジッタ耐力を算出してよい。
また、本例における測定装置100は、式(36)及び式(37)に関連して説明したように、ジッタ伝達関数のゲインに基づく、入力信号及び出力信号のアラインメント誤差に基づいて、ビット誤り率及びジッタ耐力を算出する。式(36)及び式(37)は、DUTにおける内部雑音を零として算出しているため、式(36)及び式(37)に示したビット誤り率及びジッタ耐力は、DUTのビット誤り率及びジッタ耐力の最良値を示す。測定装置100は、式(36)及び式(37)に示したビット誤り率及びジッタ耐力を、DUTのビット誤り率及びジッタ耐力の最良値として算出してよく、DUTのビット誤り率及びジッタ耐力として近似的に算出してもよい。
また、測定装置100は、図5に関連して説明したように、ジッタ伝達関数の位相に更に基づいて、ビット誤り率及びジッタ耐力を算出してよい。式(36)及び式(37)であたえられるビット誤り率とジッタ耐力へ、ジッタ伝達関数の位相を組み込むと、
となる。測定装置100は、式(38)及び式(39)に基づいて、ビット誤り率及びジッタ耐力を算出してよい。式(38)及び式(39)においても、式(36)及び式(37)と同様に、DUTにおける内部雑音を零として算出しているため、式(38)及び式(39)に示したビット誤り率及びジッタ耐力は、DUTのビット誤り率及びジッタ耐力の最良値を示す。測定装置100は、式(38)及び式(39)に示したビット誤り率及びジッタ耐力を、DUTのビット誤り率及びジッタ耐力の最良値として算出してよく、DUTのビット誤り率及びジッタ耐力として近似的に算出してもよい。また、一般に、
であるため、式(38)及び式(39)において、
として、ビット誤り率及びジッタ耐力を算出してよい。
また、測定装置100は、下式に基づいてDUTのビット誤り率及びジッタ耐力を算出してもよい。
ここで、βはDUTの性能劣化を示す補正係数であり、測定等により予め与えられている。
また、測定装置100は、DUTの内部雑音に更に基づいて、ビット誤り率及びジッタ耐力を算出してよい。例えば、DUTが再生クロックを生成するためのPLLを有し、当該再生クロックをDUTの出力信号として受け取る場合、測定装置100は、当該PLLにおける内部雑音に更に基づいて、DUTのビット誤り率及びジッタ耐力を算出してよい。
PLL内部雑音により発生する位相雑音は
であたえられる。ただしfbはDUTの出力信号の帯域の上限周波数である。例えば、DUTが再生クロックを出力信号として出力する場合、fb当該再生クロックを生成するPLLループの通過帯域の上限周波数である。fbはクロック周波数fOから式(41)でもとめられる。あるいは、fbは、ジッタ伝達関数の位相要素の極大値から算出することもできる。
式(38)であたえられるビット誤り率に、式(40)の位相雑音の項を加えると
となる。したがって、ビット誤り率とジッタ耐力の下限値は、それぞれ
すると、ジッタ耐力下限値はfPM>fbにおけるジッタ耐力下限値の1/2程度に劣化することがわかる。また、一般に、
であるため、式(43)及び式(44)において、
として、ビット誤り率及びジッタ耐力を算出してよい。
測定装置100は、式(43)及び式(44)に基づいて、DUTのビット誤り率及びジッタ耐力を算出してよい。DUTの内部雑音に更に基づいているため、更に精度よくDUTのビット誤り率及びジッタ耐力を算出することができる。
以上説明したように、ジッタ耐力の下限値はジッタ伝達関数のみから算出することができる。fPM<fbにおいては、ジッタ耐力測定は位相雑音の影響を試験していることに対応する。ジッタ伝達関数は計算機をもちいて簡単に算出できるため、ビット誤り率及びジッタ耐力の下限値は、式(36)、式(37)、式(38)、式(39)、式(43)、及び式(44)から計算可能である。つまり、ビット誤り率推定部102は、式(36)、式(38)、又は(43)のいずれかに基づいて、DUTのビット誤り率を算出してよい。
図21は、入力タイミングジッタの周波数と、ジッタ耐力との関係の一例を示す。図21において、縦軸はジッタ耐力を示し、横軸は入力タイミングジッタの周波数を示す。図21において、実線はDUTのスペックの一例を示し、丸印は実測値の一例を示す。図21に示したジッタ耐力は、式(44)と対応する。また、入力タイミングジッタの周波数が高周波数で有る場合、式(39)及び式(44)によって算出されるジッタ耐力は同一である。また、入力タイミングジッタが、更に高周波数である場合、式(44)は、式(37)に近似する。つまり、式(44)における(fPM<fb)の周波数領域は、図21における低周波数側のスロープ領域に対応する。
図22は、位相雑音スペクトルの一例を示す。図22に示した位相雑音スペクトルのスロープと、図21に示したジッタ耐力のスロープが対応する。図21及び図22より、位相雑音スペクトルとジッタ耐力とが、低いジッタ周波数において、ほぼ同一のスロープ領域を有していることがわかる。
図23は、タイミングジッタ推定部501の構成の他の例を示す。図23において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、波形クリップ部1701を更に有する。
波形クリップ部1701は、タイミングジッタ推定部501が受け取った信号の振幅変調成分を除去する。波形クリップ部1701は、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換えて、信号の振幅変調成分を除去する。また、他の例において説明したタイミングジッタ推定部501においても、本例におけるタイミングジッタ推定部501と同様に、波形クリップ部1701を有してよい。波形クリップ部1701が、信号の振幅変調成分を除去することにより、ジッタ伝達関数を精度よく算出することができる。
図24は、タイミングジッタ推定段階S221の他の例を示す。図24において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、波形クリップ段階S1801を更に有する。
波形クリップ段階S1801は、信号の振幅変調成分を除去する。解析信号変換段階S801は、振幅変調成分が除去された信号の解析信号を生成する。S1801は、図23において説明した波形クリップ部1701と同様の方法で振幅変調成分を除去する。また、S1801は、波形クリップ部1701を用いて行ってよい。
図25及び図26は、波形クリップ部1701における振幅変調成分の除去を説明する図である。図25は、タイミングジッタ推定部501が受け取る信号の一例を示す。波形クリップ部1701は、アナログあるいはデジタルの入力信号に対し、信号の値を定数倍し、予め決めた第1の閾値より大きい信号値は第1の閾値と置きかえ、予め決めた第2の閾値より小さい信号値は第2の閾値と置きかえることにより行われる。ここで、第1の閾値は第2の閾値より大きいと仮定する。図26は、振幅変調成分が除去された信号の一例を示す。
図27は、タイミングジッタ推定部501の他の構成の一例を示す。図27において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、低周波成分除去部1901を更に有する。低周波位相雑音除去部1901は、瞬時位相雑音から、所望の帯域の周波数成分を抽出して出力する。低周波位相雑音除去部1901は、瞬時位相雑音の低周波成分を除去して出力してよい。瞬時位相雑音の低周波成分を除去することにより、更に精度よくジッタ伝達関数のゲインを算出することができる。
図28は、タイミングジッタ推定段階S221の他の例を示す。図28において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、低周波位相雑音除去段階S2001を更に有する。
低周波位相雑音除去段階S2001は、信号の低周波成分を除去する。S2001は、図27において説明した低周波成分除去部1901と同様の方法で振幅変調成分を除去する。また、S1801は、低周波成分除去部1901を用いて行ってよい。
図29は、タイミングジッタ推定部501の構成の他の例を示す。図29において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。本例におけるタイミングジッタ推定部501は、図9において説明したタイミングジッタ推定部501の構成に加え、AD変換部9901を更に有する。
AD変換部9901は、タイミングジッタ推定部501が受け取ったアナログ信号をデジタル信号に変換する。AD変換部9901は、当該デジタル信号を解析信号変換部701に供給し、解析信号変換部701は、当該デジタル信号に基づいて、解析信号を生成する。AD変換部9901は、高速なAD変換器、デジタイザ、デジタル・オシロスコープを用いてよい。また、他の例において説明したタイミングジッタ推定部501においても、本例におけるタイミングジッタ推定部501と同様に、AD変換部9901を有してよい。
図30は、タイミング推定段階S221の他の例を示すフローチャートである。図30において、図10と同一の符号を附した段階は、図10に関連して説明した段階と同一又は同様の機能を有する。本例におけるタイミングジッタ推定段階S221は、図10において説明したタイミングジッタ推定段階S221に加え、AD変換段階S9801を更に有する。
AD変換段階S9801は、アナログ信号をデジタル信号に変換する。解析信号変換段階S801は、AD変換されたデジタル信号の解析信号を生成する。S9801は、図29に関連して説明したAD変換部9901と同様の方法で、アナログ信号をデジタル信号に変換する。また、S9801は、AD変換部9901を用いて行ってよい。
図31は、解析信号変換部701の構成の一例を示す。解析信号変換部701は、タイミングジッタ推定部501が受け取った信号から、信号の基本周波数近傍の周波数成分を抽出した帯域制限信号を生成する帯域制限部1101と、帯域制限信号をヒルベルト変換し、信号のヒルベルト変換対を生成するヒルベルト変換部1102とを有する。
帯域制限部1101は、アナログフィルタでもデジタルフィルタでもよいし、FFTなどのデジタル信号処理をもちいて実装してもよい。また、帯域制限部1101は、信号の通過帯域を自由に変更できるように構成してもよい。本例における解析信号変換部701によれば、受け取った信号の基本周波数に基づく解析信号を生成できるため、精度よくジッタ伝達関数のゲインを算出できる。以下、ヒルベルト変換を用いた解析信号の生成について説明する。
実信号x(t)の解析信号z(t)は、次式の複素信号で定義される。
ヒルベルト変換(Hilbert transform)である。
一方、時間波形x(t)のHilbert変換は、次式で定義される。
ト変換は、x(t)を全帯域通過フィルタを通過させたときの出力と等価である。
相はπ/2だけシフトする。
解析信号およびヒルベルト変換については、たとえば、A.Papoulis、Probability、Random Variables、and Stochastic Processes、2nd edition、McGraw−Hill Book Company、1984.に記載されている。
実信号x(t)の瞬時位相波形φ(t)は、解析信号z(t)から次式をもちいてもとめられる。
つぎに、ヒルベルト変換をもちいて瞬時位相を測定するアルゴリズムについて説明する。はじめに、図11に示した被測定信号
にヒルベルト変換を適用して複素信号の虚数部に対応する信号
を求めることにより、被測定信号x(t)を図12に示した解析信号
に変換する。
ここで、えられた解析信号には帯域制限部1101により帯域通過フィルタ処理が施されている。このため、被測定信号の基本周波数の揺らぎに対応するジッタを精度よく算出できる。
また、瞬時位相推定部702が、解析信号z(t)から式(47)をもちいて図13に示した位相関数φ(t)を測定する。
ここで、φ(t)は、−πから+πの範囲の位相の主値(principal value、−πから+πの範囲で定義される)をもちいて表され、+πから−πに変化する付近で不連続点をもつ。最後に、不連続な位相関数φ(t)をアンラップする(unwrapping)(すなわち、主値φ(t)に2πの整数倍を適切に加える)ことにより、不連続を取り除き連続な図14に示した瞬時位相φ(t)をえることができる。
また、解析信号変換部701は、次式に示すように、実数部をτ遅れさせたものを、解析信号として生成してよい。
式(53)に示したように、解析信号変換部701が解析信号を生成することにより、ヒルベルト変換処理において、フィルタ遅延に対応する遅延時間τが生じた場合であっても、精度のよい解析信号を生成することができる。また、タイミングジッタ推定部501は、次式に基づいて、線形位相項を除去した瞬時位相φ(t)を算出してよい。
また、タイミングジッタ推定部501は、次式に基づいて、Hirbert変換における遅延時間τを補正した瞬時位相φ(t)を算出してよい。
ただし、fJは、信号x(t)におけるジッタ周波数を示す。線形位相項を除去することにより、図16に示したような、信号x(t)の瞬時位相雑音を検出することができる。
図32は、解析信号変換段階S801の一例を示すフローチャートである。解析信号変換段階S801は、帯域制限段階S1201で、タイミングジッタ推定部501が受け取った信号の基本周波数近傍の周波数成分を抽出した帯域制限信号を生成する。S1201は、図31に関連して説明した帯域制限部1101と同様の方法で、帯域制限信号を生成する。S1201は、帯域制限部1101を用いて行ってよい。
次に、ヒルベルト変換段階S1202で、帯域制限信号をヒルベルト変換し、ヒルベルト変換対を生成する。S1202は、図31に関連して説明したヒルベルト変換部1102と同様の方法で、ヒルベルト変換対を生成する。S1202は、ヒルベルト変換部1102を用いて行ってよい。
次に、出力段階S1203で、解析信号の実数部として帯域制限信号を出力し、解析信号の虚数部としてヒルベルト変換した帯域制限信号を出力する。
図33は、解析信号変換部701の構成の他の例を示す。解析信号変換部701は、タイミングジッタ推定部501が受け取った信号を周波数領域の両側スペクトルに変換する周波数領域変換部1301と、周波数領域の両側スペクトルにおける正の基本周波数近傍の周波数成分を抽出する帯域制限部1302と、帯域制限部1302の出力を時間領域の信号に変換する時間領域変換部1303とを有する。周波数領域変換部1301および時間領域変換部1303は、それぞれFFTおよび逆FFTを用いて実装してもよい。また、帯域制限処理部1302は、図31に関連して説明した帯域制限部1101と同一又は同様の機能及び構成を有してよい。帯域制限部1302における通過帯域は任意に変更可能である。本例における解析信号変換部701の動作の詳細は後述する。
図34は、解析信号変換段階S801の他の例を示すフローチャートである。解析信号変換段階S801は、周波数領域変換段階S1401で、タイミングジッタ推定部501が受け取った信号を周波数領域の信号に変換する。S1401は、図33に関連して説明した周波数領域変換部1301と同様の方法で、周波数領域の信号を生成する。S1401は、周波数領域変換部1301を用いて行ってよい。
次に、負成分除去段階S1402で、周波数領域の信号の両側スペクトルにおける負の周波数成分を除去する。S1402は、図33に関連して説明した帯域制限部1302と同様の機能を有してよい。S1403は、帯域制限部1302を用いて行ってよい。
次に、帯域制限段階S1403で、周波数領域の信号に変換された信号における正の基本周波数近傍の周波数成分を抽出する。S1403は、図33に関連して説明した帯域制限部1302と同様の機能を有してよい。S1403は、帯域制限部1302を用いて行ってよい。
次に、時間領域変換段階S1404で、周波数領域の信号を時間領域の信号に変換する。S1404は、図33に関連して説明した時間領域変換部1303と同様の方法で、時間領域の信号を生成してよい。S1404は、時間領域変換部1303を用いて行ってよい。以下、高速フーリエ変換を用いて解析信号を生成する解析信号変換部701の動作の詳細を説明する。
図35は、解析信号変換部701が受け取る信号の一例を示す。解析信号変換部701は、図35の丸印に示されるような離散化された信号x(t)を受け取る。周波数領域変換部1301は、信号x(t)に対してFFT演算を行い、信号x(t)を周波数領域の信号X(f)に変換する。
図36に周波数領域の信号X(f)の一例を示す。帯域制限部1302は、スペクトルX(f)の正の周波数成分における基本周波数付近のデータのみを残して残りのデータをゼロとし、さらに、正の周波数成分を2倍する。周波数領域におけるこれらの処理が、時間領域において被測定信号を帯域制限し解析信号に変換することに対応する。
図37は、帯域制限された周波数領域の信号Z(f)を示す。時間領域変換部1303は、信号Z(f)に対して逆フーリエ変換演算を行い、帯域制限された解析信号z(t)を生成する。
図38は、帯域制限された解析信号z(t)を示す。また、瞬時位相推定が目的であるとき、正の周波数成分を2倍する処理は省略してもよい。
図33に関連して説明した解析信号変換部701において、信号x(t)の周期と、高速フーリエ変換のポイント数と対応していない場合がある。この場合、離散化された信号x(t)に対して、窓関数を乗算する必要がある。以下、窓関数を乗算する場合についての、解析信号変換部701について説明する。
図39は、解析信号変換部701の構成の他の例を示す。解析信号変換部701は、受け取った信号を蓄積するバッファメモリ1501と、バッファメモリ1501が蓄積した信号を順次選択する信号選択部1502と、信号選択部1502が選択した信号成分に、予め定められた窓関数を乗算する窓関数乗算部1503と、窓関数が乗算された信号成分を、周波数領域のスペクトルに変換する周波数領域変換部1504と、スペクトルのうち、与えられた信号の正の基本周波数近傍の周波数成分を抽出する帯域制限部1505と、帯域制限部1505が抽出した周波数成分を、時間領域の信号に変換する時間領域変換部1506と、時間領域の信号に、窓関数の逆数を乗算し、解析信号を生成する振幅補正部1507とを有する。また、信号選択部1502は、直前に選択した信号成分と、一部が重複する信号成分を選択する。
信号x(t)の信号成分に、窓関数を乗算した場合、信号x(t)は振幅変調される。しかし、本例における解析信号変換部701によれば、振幅補正部1507において窓関数の逆数を乗算することにより、信号x(t)の振幅変調を補正することができる。
窓関数乗算部1303は、信号x(t)に窓関数w(t)を乗算した信号x(t)・w(t)を、周波数領域変換部1304に出力する。周波数領域変換部1304は、受け取った信号を周波数領域の信号に変換し、帯域制限部1305は、当該周波数領域の信号の負の周波数成分を零としたスペクトルZ(f)を出力する。
時間領域変換部1506は、スペクトルZ(f)を時間領域の信号に変換した信号IFFT[Z(f)]を出力する。本例において、解析信号変換部701は、時間領域変換部1506が出力する信号の実数部及び虚数部を、解析信号の実数部及び虚数部として出力してよい。解析信号の実数部をxreal(t)及び虚数部をXimag(t)と、時間領域変換部1506の出力信号の実数部Re{IFFT[Z(f)]}及び虚数部Im{IFFT[Z(f)]}とは、次式の関係を有する。
ここで、w’(t)は、スペクトルZ(f)における、窓関数w(t)の成分を示す。解析信号の実数部xreal(t)及び虚数部ximag(t)は、窓関数w(t)による振幅変調の影響を略等しく受けている。このため、式(54)に示した瞬時位相は、次式で表される。
式(57)に示すように、本例においては、信号x(t)の瞬時位相を算出する場合、窓関数による振幅変調による位相推定誤差は、実数部と虚数部において互いにキャンセルすることができる。窓関数による振幅変調が生じた場合、式(54)から、下式のように、振幅変調によって位相推定誤差が生じる。
本例においては、xreal(t)とximag(t)とによる位相推定誤差を、互いにキャンセルできるため、窓関数による振幅変調による位相推定誤差を除去した瞬時位相を算出することができる。つまり、式(56)及び式(57)から明らかなように、時間領域変換部1506の出力信号の実数部Re{IFFT[Z(f)]及び虚数部Im{IFFT[Z(f)]を、解析信号の実数部及び虚数部として出力しても、瞬時位相推定部702は、信号x(t)の瞬時位相を精度よく算出することができる。
また、図39に示したように、振幅補正部1507において、窓関数による振幅変調成分を除去した信号の実数部及び虚数部を、解析信号の実数部及び虚数部として出力した場合、例えば、DUTの他の解析、試験等を行う場合に、当該解析信号を用いて効率よく行うことができる。
周波数領域変換部1504、帯域制限部1505、及び時間領域変換部1506は、図33に関連して説明した周波数領域変換部1301、帯域制限部1302、及び時間領域変換部1303と同一又は同様の機能及び構成を有する。
つぎに、本発明の解析信号変換部701の動作を説明する。はじめに、バッファメモリ1501は、被測定信号を蓄積する。つぎに、信号選択部1502は、バッファメモリ1501が蓄積した信号の一部を取り出す。つぎに、窓関数乗算部1503は、信号選択部1502が選択した部分信号に窓関数を乗算する。つぎに、周波数領域変換部1504は、窓関数を乗算された部分信号にFFTを施し、時間領域の信号を周波数領域の両側スペクトルに変換する。つぎに、帯域制限処理部1505は、変換された周波数領域の両側スペクトルにたいし、負の周波数成分をゼロに置き換える。つぎに、帯域制限処理部1505は、負の周波数成分をゼロに置き換えられた片側スペクトルにたいし、被測定信号の基本周波数付近の成分のみを残しその他の周波数成分をゼロに置き換え、周波数領域の信号を帯域制限する。つぎに、時間領域変換部1506は、帯域制限された周波数領域の片側スペクトルに逆FFTを施し、周波数領域の信号を時間領域の信号に変換する。つぎに、逆窓関数乗算部1507は、逆変換された時間領域の信号に窓関数の逆数を乗算し、帯域制限された解析信号を生成する。解析信号変換部701は、バッファメモリ1501に処理されていないデータが存在するか否かを確認し、処理されていないデータが存在する場合、信号選択部1502は、次の信号を選択する。信号選択部1502が、前回取り出した分と一部重複させながら信号を順次取り出した後、解析信号変換部701は、上述した処理を繰り返す。
図40は、解析信号変換段階S801の他の例を示すフローチャートである。S801は、まずバッファメモリ段階S1601で、被測定信号を格納する。S1601は、図39において説明したバッファメモリ1501と同一又は同様の機能を有する。S1601は、バッファメモリ1501を用いて行ってよい。
次に、信号選択段階S1602で、S1601において格納した被測定信号の一部を選択して取り出す。S1602は、図39において説明した信号選択部1502と同一又は同様の機能を有する。S1602は、信号選択部1502を用いて行ってよい。
次に、窓関数乗算段階S1603で、S1602において選択された信号部分に所定の窓関数を乗算する。S1603は、窓関数として、例えばハニング関数を信号部分に乗算してよい。S1603は、図39において説明した窓関数乗算部1503と同一又は同様の機能を有する。S1603は、窓関数乗算部1503を用いて行ってよい。
次に、周波数領域変換段階S1604で、窓関数が乗算された信号を周波数領域の信号に変換する。S1604は、図39において説明した周波数領域変換部1504と同一又は同様の機能を有する。
次に、負成分除去段階S1605で、周波数領域に変換された信号の負周波数成分を除去する。S1605は、図39において説明した帯域制限部1505と同一又は同様の機能を有する。S1605は、帯域制限部1505を用いて行ってよい。
次に、帯域制限段階S1606で、周波数領域に変換された信号の基本周波数近傍の周波数成分を抽出する。S1606は、図39において説明した帯域制限部1505と同一又は同様の機能を有する。S1606は、帯域制限部1505を用いて行ってよい。
次に、時間領域変換段階S1607で、帯域制限された信号を時間領域の信号に変換する。S1607は、図39において説明した時間領域変換部1506と同一又は同様の機能を有する。S1607は、時間領域変換部1506を用いて行ってよい。
次に、振幅補正段階S1608で、時間領域に変換された信号の振幅変調成分を除去する。S1608は、図39において説明した振幅補正部1507と同一又は同様の機能を有する。S1608は、振幅補正部1507を用いて行ってよい。
次に、判定段階S1609で、S1601において格納した被測定信号のデータのうち、まだ処理していないデータが存在するかを判定する。まだ処理していないデータが存在する場合、信号選択段階S1610で、次の信号部分を、前回の信号部分と一部を重複して取り出す。S1610は、S1602と同様の機能を有する。S1609において、全てのデータを処理したと判定した場合、処理を終了する。
次に、ジッタ伝達関数の位相を算出する方法について説明する。図41は、図7に関連して説明した位相差推定段階S2301の一例を示すフローチャートである。まず、入力タイミングジッタスペクトル推定段階S2604において、図6に関連して説明した入力タイミングジッタ系列推定段階S241において算出した、入力タイミングジッタ系列をフーリエ変換し、入力信号の入力タイミングジッタスペクトルを算出する。つぎに、出力タイミングジッタスペクトル推定段階S2605において、図6に関連して説明した出力タイミングジッタ系列推定段階S243において算出した、出力タイミングジッタ系列をフーリエ変換し、出力信号の出力タイミングジッタスペクトルを算出する。最後に、ジッタ位相差算出段階S2606において、S2604及びS2605において算出したタイミングジッタスペクトルから入出力タイミングジッタ系列間の位相差を算出し、処理を終了する。
入力タイミングジッタからタイミングジッタスペクトルを算出するS2604において、ジッタ位相差推定部503は、式(3)を用いて入力信号のタイミングジッタスペクトルを測定する。また、出力タイミングジッタからタイミングジッタスペクトルを算出するS2605において、ジッタ位相差推定部503は、式(4)を用いて出力信号のタイミングジッタスペクトルを測定する。また、タイミングジッタスペクトルから入出力タイミングジッタ間の位相差を算出するS2606において、ジッタ位相差推定部503は、式(9)を用いて入出力タイミングジッタ系列間の位相差を算出する。また、S2606において、ジッタ位相差推定部503は、ジッタ伝達関数の実数部と虚数部の比Im/Re、及びIm/Reの逆正接を算出することにより、入出力タイミングジッタ間の位相差を算出してもよい。
入出力タイミングジッタ間の位相差は、入力瞬時位相雑音波形のゼロクロスタイミングと出力瞬時位相雑音波形のゼロクロスタイミング間のタイミング差を算出し、印加ジッタの周期(ジッタ周波数の逆数)との比を計算して、2πラジアン(または360度)を乗じることによって算出してもよい。同様に、入力タイミングジッタ系列波形のゼロクロスタイミングと、出力タイミングジッタ系列波形のゼロクロスタイミングとのタイミング差を算出し、印加ジッタの周期(ジッタ周波数の逆数)との比を計算して、2πラジアン(または360度)を乗じることによって算出してもよい。
また、ジッタ伝達関数の位相は、入出力信号の瞬時位相雑音波形から、算出してもよい。図42は、図7に関連して説明した位相差推定段階S2301の他の例を示すフローチャートである。入力瞬時位相雑音推定段階S2502において、DUTへの入力信号の瞬時位相雑音波形を算出する。つぎに、出力瞬時位相雑音推定段階S2503において、DUTからの出力信号の瞬時位相雑音波形を算出する。つぎに、入力位相雑音スペクトル推定段階S2504において、入力信号の瞬時位相雑音波形をフーリエ変換し、入力信号の位相雑音スペクトルを算出する。つぎに、出力位相雑音スペクトル推定段階S2505において、出力信号の瞬時位相雑音波形をフーリエ変換し、出力信号の位相雑音スペクトルを算出する。最後に、ジッタ位相差推定段階S2506において、S2504及びS2506において算出した位相雑音スペクトルから各瞬時位相雑音間の位相差もとめ、処理を終了する。
入力瞬時位相雑音から位相雑音スペクトルを算出するS2504において、ジッタ位相差推定部503は、式(1)を用いて入力信号の位相雑音スペクトルを測定する。また、出力瞬時位相雑音から位相雑音スペクトルを算出するS2505において、ジッタ位相差推定部503は、式(2)を用いて出力信号の位相雑音スペクトルを測定する。また、位相雑音スペクトルから各瞬時位相雑音間の位相差を算出するS2506において、ジッタ位相差推定部503は、式(9)を用いて入出力瞬時位相雑音間の位相差を算出し、ジッタ伝達関数の位相を算出する。
図43は、測定装置100の構成の他の例を示す。図43において、図1と同一の符号を附した要素は、図1に関連して説明した要素と同一又は同様の機能及び構成を有する。本例における測定装置100は、図1において説明した測定装置100の構成に加え、ジッタ重畳部301及びジッタ耐力推定部302を更に備える。
ジッタ重畳部301は、DUTに入力するべき入力信号に所望のジッタを重畳した信号を、DUTに供給する。例えば、ジッタ重畳部301は、入力信号にサイン波ジッタを重畳する。サイン波ジッタを重畳することにより、精度よくDUTのビット誤り率を算出することができる。サイン波ジッタを重畳した場合についての詳細は後述する。
ジッタ耐力推定部302は、DUTのジッタ伝達関数に基づいて、DUTのジッタ耐力を測定する。ジッタ耐力推定部302は、前述したように、ジッタ伝達関数のゲインに基づいてジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、ジッタ伝達関数の位相に更に基づいて、ジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、DUTの内部雑音に更に基づいて、ジッタ耐力を推定してよい。
ジッタ耐力推定部302は、式(37)、式(39)、又は式(44)に基づいて、DUTのジッタ耐力を算出してよい。また、ジッタ耐力推定部302は、前述したように、DUTのジッタ耐力の最良値を算出してよい。
ジッタ伝達関数測定装置101は、ジッタ重畳部301が入力信号に重畳した入力タイミングジッタと、DUTの出力信号における出力タイミングジッタとに基づいて、DUTのジッタ伝達関数を測定する。ジッタ重畳部301は、ジッタ量の異なる入力タイミングジッタを順次入力信号に重畳する。本例において、ジッタ伝達関数測定装置101は、DUTに入力した信号と、DUTが出力した信号とを受け取る。
図44は、本発明に係る測定方法の他の例を示すフローチャートである。図44において、図2と同一の符号を附した段階は、図2に関連して説明した段階と同一又は同様の機能を有する。まず、ジッタ重畳段階S401で、入力信号に所望のジッタを重畳し、DUTに供給する。S401は、図43に関連して説明したジッタ重畳部301と同一又は同様の機能を有する。S401は、ジッタ重畳部301を用いて行ってよい。
次に、S201で、ジッタ伝達関数を算出する。S201は、図2におけるジッタ伝達関数推定段階S201と同様である。次に、S202で、ビット誤り率を算出する。S202は、図2におけるビット誤り率推定段階S202と同様である。
次に、ジッタ耐力推定段階S402で、DUTのジッタ耐力を算出する。S402は、図43に関連して説明したジッタ耐力推定部302と同一又は同様の機能を有する。S402は、ジッタ耐力推定部302を用いて行ってよい。
図45は、測定装置100の構成の他の例を示す。図45において図1と同一の符号を附した要素は、図1に関連して説明した要素と同一又は同様の機能及び構成を有する。本例における測定装置100は、図1に関連して説明した測定装置100の構成に加え、クロック再生部2101を更に備える。
クロック再生部2101は、DUTの出力信号に基づいて、出力信号の再生クロック信号を生成する。ジッタ伝達関数測定装置101は、再生クロック信号をDUTの出力信号として受け取り、再生クロック信号に基づいて、DUTのジッタ伝達関数を算出する。
図46は、本発明に係る測定方法の他の例を示すフローチャートである。まず、クロック再生段階S2201で、DUTの出力信号の再生クロック信号を生成する。S2201は、図45において説明したクロック再生部2101と同一又は同様の機能を有する。S2201は、クロック再生部2101を用いて行ってよい。
次に、ジッタ伝達関数推定段階S201で、DUTのジッタ伝達関数を算出する。S201は、図45に関連して説明したジッタ伝達関数測定装置101と同一又は同様の機能を有してよい。S201は、ジッタ伝達関数測定装置101を用いて行ってよい。
次に、ビット誤り率推定段階S202で、DUTのビット誤り率を算出する。S202は、図45に関連して説明したビット誤り率推定部102と同一又は同様の機能を有する。S202は、ビット誤り率推定部102を用いて行ってよい。
図47は、DUTの構成の一例を示す。DUTは、シリアル入力の入力信号を受け取り、パラレル出力の出力信号を出力する。DUTは、フリップフロップ3001と、クロック再生部3003と、シリアルパラレル変換部3002とを備える。
クロック再生部3003は、入力信号を受け取り、入力信号に基づいて出力信号を出力するための再生クロックを生成する。本例において、クロック再生部3003は、フェーズロックループ(PLL)を有する。
フリップフロップ3001は、入力信号をシリアルパラレル変換部3002に供給する。シリアルパラレル変換部3002は、再生クロックを受け取り、再生クロックのタイミングに基づいて、シリアルの入力信号をパラレルの出力信号に変換する。
測定装置100は、クロック再生部3003が生成した再生クロックを、DUTの出力として受け取り、再生クロックに基づいて、DUTのビット誤り率及び/又はジッタ耐力を算出する。
図48は、測定装置100の構成の他の例を示す。図48において図1と同一の符号を附した要素は図1に関連して説明した要素と同一又は同様の機能及び構成を有する。測定装置100は、タイミング推定部3100と、タイミング差推定部3102と、ビット誤り率推定部102とを備える。
タイミング推定部3100は、DUTを試験するための入力信号の入力タイミング誤差系列、及び入力信号に応じてDUTが出力する出力信号の出力タイミング誤差系列を測定する。タイミング差推定部3102は、入力タイミング誤差系列と、出力タイミング誤差系列とのタイミング差を算出する。タイミング差推定部3102は、入力タイミング誤差系列及び出力タイミング誤差系列の、ピーク値、又は実効値の差に基づいて、タイミング差を算出してよい。ビット誤り率推定部102は、タイミング差に基づいて、DUTにおけるビット誤り率を測定する。ビット誤り率推定部102は、当該タイミング差とビット誤り率の関係を示す式が予め与えられていてよく、また、当該タイミング差とビット誤り率の関係を示すテーブルが予め与えられていてもよい。
図49は、入力信号と出力信号の一例を示す。本例において、DUTは再生クロックを出力信号として出力する。入力信号のタイミングと、出力信号のタイミングとを図49において矢印で示す。入力信号と出力信号とは、図49示すようなタイミング差を有する。ビット誤り率推定部102は、当該タイミング差に基づいてビット誤り率を算出する。
図50は、本発明に係る測定方法の他の例を示すフローチャートである。まず、タイミング推定段階S3201で、入力信号及び出力信号のタイミング誤差系列を算出する。S3201は、図48において説明したタイミング推定部3100と同一又は同様の機能を有する。S3201は、タイミング推定部3100を用いて行ってよい。
次に、タイミング差推定段階S3202で、入力信号と出力信号のタイミング差を算出する。S3202は、図48において説明したタイミング差推定部3102と同一又は同様の機能を有する。S3202は、タイミング差推定部3102を用いて行ってよい。
次に、ビット誤り率推定段階S3203で、DUTのビット誤り率を算出する。S3203は、図48において説明したビット誤り率推定部102と同一又は同様の機能を有する。S3203は、ビット誤り率推定部102を用いて行ってよい。
図51は、タイミング推定部3100の構成の一例を示す。図51において、図9と同一の符号を附した要素は、図9に関連して説明した要素と同一又は同様の機能及び構成を有する。タイミング推定部3100は、入力信号及び出力信号を複素数の解析信号に変換する解析信号変換部701と、解析信号の瞬時位相を算出する瞬時位相推定部702と、瞬時位相の初期位相角及び平均周波数を算出し、入力信号及び出力信号の理想タイミングを測定する理想タイミング推定部3301と、瞬時位相をリサンプリングし、入力信号の入力タイミング系列及び出力信号の出力タイミング系列を生成するリサンプリング部3304と、理想タイミングと、タイミング系列とに基づいて、入力信号の入力タイミング誤差系列及び出力信号の出力タイミング誤差系列を算出するタイミングエラー算出部3305とを有する。
また、リサンプリング部3304は、タイミング誤差系列Δφ[n]における、タイミングnを理想タイミング推定部3301に供給してよい。また、リサンプリング部3304は、解析信号の実数部の波形のゼロクロスタイミングで瞬時位相をサンプリングしてよい。また、リサンプリング部3304は、リサンプリング部3304におけるサンプリングタイミングを、タイミングnとして理想タイミング推定部3301に供給してよい。理想タイミング推定部3301は、与えられたタイミングnに基づいて、入力信号及び出力信号の理想タイミングを算出する。
解析信号変換部701、瞬時位相推定部702、及びリサンプリング部3304は、図11に関連して説明した解析信号変換部701、瞬時位相推定部702、及びリサンプリング部901と同一又は同様の機能及び構成を有する。
理想タイミング推定部3301は、入力信号及び出力信号の、図14に示したようなリニア瞬時位相の波形の初期位相角及び平均周波数を算出し、入力信号及び出力信号の理想タイミングを算出してよい。この場合、理想タイミング推定部3301は、リニア瞬時位相推定部703を有してよい。理想タイミング推定部3301は、タイミングnにおける、リニア瞬時位相の値を、理想タイミングとして出力してよい。タイミングエラー算出部3305は、理想タイミングと、リサンプリング部3304のサンプリング結果に基づいて、入力信号と出力信号のタイミング誤差系列を生成する。本例における測定装置100は、入力信号及び出力信号のジッタによるアラインメント誤差(タイミング差)に基づくビット誤り率を算出する。アラインメント誤差については後述する。
図52は、タイミング推定段階S3201の一例を示すフローチャートである。まず、解析信号変換段階S3400で、入力信号及び出力信号を解析信号に変換する。S3400は、図51に関連して説明した解析信号変換部701と同一又は同様の機能を有する。S3400は、解析信号変換部701を用いて行ってよい。次に、瞬時位相推定段階S3401で、入力信号及び出力信号の瞬時位相を算出する。S3401は、図51に関連して説明した瞬時位相推定部702と同一又は同様の機能を有する。S3401は、瞬時位相推定部702を用いて行ってよい。
次に、リサンプリング段階S3402で、入力信号及び出力信号の瞬時位相をサンプリングした入力タイミング系列及び出力タイミング系列を生成する。S3402は、図51に関連して説明したリサンプリング部3304と同一又は同様の機能を有する。S3402は、リサンプリング部3304を用いて行ってよい。
次に、理想タイミング推定段階S3403で、入力信号及び出力信号の初期位相角及び平均周波数を算出し、入力信号と出力信号の理想タイミングを算出する。S3404は、図51に関連して説明した理想タイミング推定部3301と同一又は同様の機能を有する。S3403は、理想タイミング推定部3301を用いて行ってよい。
次に、タイミングエラー算出段階S3406で、入力信号及び出力信号のタイミング誤差系列を生成する。S3406は、図51に関連して説明したタイミングエラー算出部3305と同一又は同様の機能を有する。S3406は、タイミングエラー算出部3305を用いて行ってよい。
以下、アラインメントジッタについて説明する。アラインメントジッタは、P.R.Trischittaにより定義され、入力信号のタイミングジッタと出力信号(再生クロック)のタイミングジッタ間のアラインメント誤差をあらわし、式(31)で定義される。
Δθ[nT]とΔφ[nT]は、それぞれDUTへの入力信号の入力タイミングジッタ系列と出力信号の出力タイミングジッタ系列である。アラインメントジッタのピークツゥピーク値とRMS値は、それぞれ
であたえられる。ただし、ρは再生クロックのタイミングジッタとDUT入力データのタイミングジッタ間の相関係数(correlation coefficient)である。たとえば、再生クロックのタイミングジッタとDUT入力データのタイミングジッタ間に、強い相関(strongly correlated)が存在すると仮定する。すなわち、ρ=1.0とみなせ
のようになり、入力データと再生クロック間のアラインメント誤差を最小にできる。このとき、クロック再生器は最小のビット誤り率を示す。逆に、再生クロックのタイミングジッタとクロック再生器入力データのタイミングジッタが無相関(completely uncorrelated)のときは、ρ=0.0とみなせ
となる。入力データと再生クロック間のアラインメント誤差のため、このDUTは無視できないビット誤り率を示す。また、再生クロックのタイミングジッタのピークツゥピーク値は
であたえられる。アラインメントジッタのピークツゥピーク値は
となる。
次に、DUTへの入力信号にサイン波ジッタを重畳した場合について説明する。入力タイミングジッタΔθ[nT]により位相変調されたDUTへの入力信号x(t)と、出力タイミングジッタΔφ[nT]により位相変調された再生クロックy(t)を、それぞれ位相変調波形としてあらわすと
のようになる。ただし、fbは、ビットレート(ビットクロック周波数)である。ビットクロックの瞬時位相Δθ[nT]やΔφ[nT]をサイン波cos(2πfPMt)に対応させるとサイン波ジッタとなる。逆に、サイン波ジッタを復調するとサイン波をえる。ところで、このサイン波は周波数領域で線スペクトルに対応するから、ジッタ周波数fJは単一周波数fPMであたえられる。したがって、fPMにおける復調サイン波の比が式(8)のジッタ伝達関数をあたえる。
一方、Δθ[nT]やΔφ[nT]をガウス雑音ng(t)に対応させると、ガウス雑音ジッタをえる。ガウス雑音ジッタを復調するとガウス雑音波形をえる。ガウス雑音は、周波数領域で広帯域スペクトルに対応するから、ジッタ周波数fJは周波数区間(flower、fupper)であたえられる。したがって、この周波数区間における入出力スペクトルの比がジッタ伝達関数をあたえる。
端部(tail)を切り取ったガウス分布とサイン波ジッタを同じピークツゥピーク値で比べると、サイン波ジッタはガウス分布よりも1dB程度大きいペナルティをビット誤り率にあたえることが知られている。すなわち、サイン波ジッタは伝送系にたいし最悪ケースのジッタ分布をあたえることができる。従って測定装置100が、入力信号にサイン波ジッタを重畳した場合、精度よくビット誤り率及びジッタ耐力の試験を行うことができる。
次に、ジッタ耐力について説明する。ジッタ耐力測定は、ビット誤り率試験の拡張である。すなわち、DUTへの入力データのタイミングジッタΔθ[nT]はサイン波ジッタなどにより変動させられ、ビット誤り率を試験する。ジッタ周波数fJを固定し印加ジッタ量を増加させ、ビット誤り率が発生する最小印加ジッタ量を算出する。つぎに、サイン波ジッタとビット誤り率の関係について説明する。まず、標本化時点(decision boundary、sampling instant)について説明する。ビット列がタイミングジッタをもたないと仮定する。
図53は、出力信号の理想信号と実信号の一例を示す。図53に示すように、最適な標本化時点tdecisionは、隣り合うゼロ交叉(すなわち、立ち上がりエッジと立下りエッジ)の中間時点である。この最適標本化時点の周期は、ビット周期Tb=1/fbであたえられる。(a)従来の測定装置は、DUTからの出力ビット列を最適標本化時点tdecisionでサンプリングする。たとえば、DUTがシリアライザで有る場合、シリアライザからの出力ビット列はビット周期であたえられるtdecisionサンプリングされる。一方、DUTがデシリアライザで有る場合、1:Lで多重化されたデータが出力されるから、デシリアライザからの出力ビット列はチャンネル当りデータ周期LTbであたえられるtdecisionサンプリングされる。(b)つぎに、従来の測定装置はサンプル値としきい値を比較し、DUTからの出力ビット列の論理値「1」、「0」を識別する。(c)従来の測定装置は、サンプリング値から判定した論理値と対応する期待値を比較し、誤り率を算出する。
ここで、ビット誤り率試験に必要なテスト時間について説明する。たとえば、2.5Gbpsのシリアル通信デバイスのジッタ耐力試験をおこなうため、ジッタ周波数5MHzで位相変調されているパターン長215−1の疑似ランダム2値系列を印加するには13μsecの時間しか要しない。さらに、パターン長223−1の疑似ランダム2値系列を印加するには、3.4msecの時間を要するのみである。一方、ビット誤り率10−9をテストするには、0.4secを要する。このテスト時間はパターン長に独立である。さらに、ビット誤り率10−12をテストするには400secを要することになる。また、印加ジッタ量を増加させると、DUT内部のPLLが正しく動作しなくなる場合がある。特に、ビットクロック周波数が高くなると、印加ジッタ量をわずかに増加した場合であっても、ビット誤りが生じてしまう。まとめると、ビット誤りの発生を検出する方法では、再現性のよい測定や、テスト時間の短縮が困難なことがわかる。したがって、テスト時間を短縮するには、ビット誤りの発生を直接検出しなくてよい方法を見つける必要がある。
図1から図47に関連して説明した測定装置100は、DUTのジッタ伝達関数を算出し、当該ジッタ伝達関数に基づいてDUTのビット誤り率及び/又はDUTのジッタ耐力を算出しているため、従来の測定装置に比べ、テスト時間を短縮することができる。また、図1から図47に関連して説明した測定装置100は、DUTのジッタ伝達関数を算出していたが、他の例においては、測定装置100は、ジッタ伝達関数が予め与えられ、与えられたジッタ伝達関数に基づいて、DUTのビット誤り率及び/又はジッタ耐力を算出してよい。
つまり、測定装置100は、予め与えられた、DUTにおけるジッタ伝達関数に基づいて、DUTにおけるビット誤り率を測定するビット誤り率推定部を備えてよい。また、測定装置100は、予め与えられた、DUTにおけるジッタ伝達関数のゲインに基づいて、DUTにおけるジッタ耐力を測定するジッタ耐力推定部を備えてよい。この場合、当該ビット誤り率推定部及びジッタ耐力推定部は、上述したビット誤り率推定部102及びジッタ耐力推定部302と同一又は同様の機能及び構成を有してよい。
また、図48から図52に関連して説明した測定装置100は、入力信号と出力信号のタイミング差を算出し、当該タイミング差に基づいてDUTのビット誤り率を算出しているため、従来の測定装置に比べ、テスト時間を短縮することができる。また、図48から図52に関連して説明した測定装置100においても、DUTのジッタ耐力を算出するジッタ耐力推定部を更に備えてよい。当該ジッタ耐力推定部は、入力信号と出力信号のタイミング差に基づいて、DUTのジッタ耐力を算出する。
図54は、測定装置100と従来のビット誤り率測定装置のテスト時間の比較例を示す。また、図55は、測定装置100における、印加ジッタ量の変更回数と、測定されるジッタ耐力との関係の一例を示す。図54に示すように、従来のビット誤り率測定装置は、ジッタ耐力を測定するのに、印加ジッタ量を20回変更して、各印加ジッタ量にたいして1secのビット誤り率試験をおこなうため、20secのテスト時間を要する。一方、上述した測定装置100は、図55に示すように、印加ジッタ量を最小回数(たとえば4回)変更してジッタゲインを算出することにより、ジッタ耐力を精度よく測定することができる。図55に示すように、測定装置100は、例えば4回印加ジッタ量を変更し、それぞれについて測定することにより、精度よくジッタ耐力を算出することができる。測定装置100において、印加ジッタ量のそれぞれに対するジッタ測定に約0.5msecの時間がかかることから、測定装置100は、2sec程度でDUTのジッタゲインを算出することができる。すなわち、従来法の約1/10のテスト時間でジッタ耐力を算出することができる。
図56は、測定装置100の構成の他の例を示す。本例における測定装置100は、図43に関連して説明した測定装置100の構成に加え、セレクタ4020a及びセレクタ4020b(以下4020と総称する)を更に備える。セレクタ4020は、電子デバイスに与えられる入力データ信号、又は入力データ信号を生成するための入力データクロック信号のいずれかを選択し、DUT3000の入力信号としてジッタ伝達関数推定装置101に供給する。また、セレクタ4020は、DUT3000が入力データ信号に応じて出力する出力データ信号、又はDUT3000が入力データ信号に応じて出力する再生クロック信号のいずれかを選択し、DUT3000の出力信号としてジッタ伝達関数推定装置101に供給する。
ジッタ伝達関数推定装置101は、受け取った入力信号と出力信号との間のジッタ伝達関数を測定する。ジッタ伝達関数推定装置101の動作は、図43において説明したジッタ伝達関数推定装置101の動作と同一である。また、ビット誤り率推定部102及びジッタ耐力推定部302の動作は、図43において説明したビット誤り率推定部102及びジッタ耐力推定部302の動作と同一である。
また、ジッタ重畳部301は、DUT3000に供給する入力データ信号を生成し、パターン発生器4012、タイミング発生器4014、及びシリアライザ4010を有する。パターン発生器4012は、入力データ信号を生成するためのパターンデータをシリアライザ4010に供給し、タイミング発生器4014は、入力信号を生成するための入力データクロック信号をシリアライザ4010に供給する。シリアライザ4010は、受け取ったパターンデータ及び入力データクロックに基づいて入力データ信号を生成する。例えば、シリアライザ4010は、受け取ったパターンデータのそれぞれのデータを、受け取った入力データクロック信号のエッジのタイミングに応じて順次出力する。
また、図43において説明したように、ジッタ重畳部301は、入力データ信号に所望のタイミングジッタを重畳する。ジッタ重畳部301は、入力データクロック信号にタイミングジッタを重畳することにより、入力データ信号にタイミングジッタを重畳してよい。
出力信号として、再生クロック信号を選択した場合、ジッタ伝達関数推定装置101は、図47において説明したクロック再生部3003における、ジッタ伝達関数を測定することができる。この場合、入力信号はいずれを選択してもよい。
また、出力信号として、出力データ信号を選択した場合、ジッタ伝達関数推定装置101は、図47において説明したDUT3000の構成の全てにおける、ジッタ伝達関数を測定することができる。この場合も、入力信号はいずれを選択してもよい。つまり、出力信号としていずれを選択するかにより、ジッタ伝達関数を測定するDUT3000の箇所を選択することができる。
また、図44において説明した測定方法においても、S401とS201との間に、入力信号として入力データ信号又は入力データクロック信号のいずれかを選択する段階、及び出力信号として出力データ信号又は再生クロック信号のいずれかを選択する段階を更に備えてよい。これらのステップは、セレクタ4020を用いて行ってよい。
図57は、パターン発生器4012が生成するパターンデータの一例を示す。パターン発生器4012は、例えばデータAに示すような、疑似ランダム2値系列の信号を生成してよい。また、パターン発生器4012は、例えばデータBに示すような、DUT3000の被測定ピンに対応するビットが交互にH論理とL論理とを繰り返すパターンデータを生成してもよい。この場合、被測定ピンに対応するビットだけを考慮すると、DUT3000には入力データクロック信号と同様の入力データ信号が入力される。これにより、ジッタ伝達関数推定装置101は、より精度よくジッタ伝達関数を測定することができる。
また、パターン発生器4012は、例えばデータCに示すような、出力ピン数と同数のビット毎に、H論理とL論理とを繰り返すパターンデータを生成してもよい。この場合においても、データBと同様に、より精度よくジッタ伝達関数を測定することができ、且つパターンデータを容易に生成することができる。
図58は、ジッタ伝達関数推定装置101のタイミングジッタ推定部501の構成の他の例を示す。本例においてタイミングジッタ推定部501は、信号測定部4062、周期ジッタ系列推定部4004、理想エッジタイミング推定部4006、及びエッジ誤差推定部4008を有する。例えば、本例におけるタイミングジッタ推定部501は、従来のオシロスコープである。
信号測定部4062は、DUTの出力信号を取り込む。また、信号測定部4062は、取り込んだ出力信号の周期等の測定を行う。
周期ジッタ系列推定部4004は、信号測定部4062における測定結果に基づいて、出力信号の周期ジッタ系列を測定する。ここで、周期ジッタ系列は、出力信号の各サイクルの長さを示してよく、また出力信号の各エッジのタイミングを示してもよい。
理想エッジタイミング推定部4006は、周期ジッタ系列に基づいて、出力信号の平均周期を算出する。例えば、周期ジッタ系列が出力信号の各サイクルの長さを示している場合、理想エッジタイミング推定部4006は、周期ジッタ系列のそれぞれの値の平均値を、出力信号の平均周期として算出する。
次に、エッジ誤差推定部4008は、周期ジッタ系列の平均周期と、周期ジッタ系列とに基づいて、出力タイミングジッタ系列を算出する。例えば、出力信号の平均周期に基づいて、出力信号の各エッジの理想タイミングを示す理想エッジタイミング系列を算出し、理想エッジタイミング系列と、出力信号の各エッジのタイミングを示す周期ジッタ系列との差を算出することにより、出力タイミングジッタを算出してよい。
本例におけるタイミングジッタ推定部501の構成によっても、他のタイミングジッタ推定部501と同様に、出力信号のタイミングジッタ系列を算出することができる。また、DUTの入力信号のタイミングジッタ系列を算出してもよい。
図59は、タイミングジッタ推定段階S221の一例を示すフローチャートである。本例におけるタイミングジッタ推定段階S221は、図58において説明したタイミングジッタ推定部501を用いて行ってよい。
まず、信号測定段階S8000で、タイミングジッタを測定するべき信号を測定する。S8000は、図58において説明した信号測定部4002を用いて行ってよい。
次に、周期ジッタ系列推定段階S8002で、測定した信号の周期ジッタ系列を算出する。S8002は、図58において説明した周期ジッタ系列推定部4004を用いて行ってよい。
次に、理想エッジタイミング推定段階S8004で、当該信号の平均周期を算出する。S8004は、図58において説明した理想エッジタイミング推定部4006を用いて行ってよい。
次に、エッジ誤差推定段階S8006で、当該信号のタイミングジッタ系列を算出する。S8006は、図58において説明したエッジ誤差推定部4008を用いて行ってよい。
図60は、ビット誤り率曲線の一例を示す。図60において、丸印は従来の測定装置によって測定されたビット測定点を示し、実線は、測定装置100によって測定したビット誤り率曲線を示す。測定装置100によれば、従来法と互換性のあるビット誤り率曲線を得ることができる。また、図56において説明したように、入力信号、及び出力信号としていずれの信号を選択した場合であっても、図60に示すようなビット誤り率曲線を得ることができる。
図61は、ジッタ耐力の測定例を示す。図61において横軸は入力タイミングジッタの周波数を示し、縦軸はジッタ耐力を示す。また、図61において丸印は従来の測定装置によって測定したジッタ耐力を示し、四角印は測定装置100によって測定したジッタ耐力を示す。本例においては、測定装置100は式(39)を用いてジッタ耐力を測定した。図61に示すように、測定装置100は、従来法と互換性のあるジッタ耐力を測定することができる。また、図56において説明したように、入力信号、及び出力信号としていずれの信号を選択した場合であっても、図61に示すようなジッタ耐力を得ることができる。
また、測定装置100は、式(39.2)を用いてジッタ耐力を測定してもよい。この場合は、例えばβ=0.75として測定することにより、より精度のよいジッタ耐力を測定することができる。
図62は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す。測定装置100は、ジッタ重畳部301、タイミングジッタ推定部501、ジッタ歪み推定部4100、及び対ジッタ信頼性推定部4102を備える。ジッタ重畳部301は図56に関連して説明したジッタ重畳部301と同一の機能及び構成を有し、タイミングジッタ推定部501は図3に関連して説明したタイミングジッタ推定部501と同一の機能及び構成を有する。
ジッタ歪み推定部4100は、出力タイミングジッタ系列のジッタ歪みを測定する。ここで、出力タイミングジッタ系列のジッタ歪みは、入力信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、入力信号に応じてDUT3000が実際に出力する出力信号の出力タイミングジッタの歪みである。
対ジッタ信頼性推定部4102は、ジッタ歪みに基づいて、DUT3000の対ジッタ信頼性を測定する。例えば、対ジッタ信頼性推定部4102は、DUT3000のジッタ耐力を測定する。また、対ジッタ信頼性推定部4102は、所定の振幅の入力タイミングジッタに対して、DUT3000が正常に動作するか否かを測定してもよい。つまり、ジッタ重畳部301は入力信号に所望の振幅の入力タイミングジッタを重畳し、DUT3000に供給し、対ジッタ信頼性推定部4102は、入力タイミングジッタの振幅に対するDUT3000の対ジッタ信頼性を測定してもよい。
図63は、DUT3000を測定する測定方法の一例を示すフローチャートである。まず、ジッタ周波数設定段階S4500で、DUT3000に入力する入力信号に重畳する入力タイミングジッタの周波数を設定する。
次に、ジッタ振幅設定段階S4502で、DUT3000に入力する入力信号に重畳する入力タイミングジッタの振幅を設定する。S4500及びS4502は、図62に関連して説明したジッタ重畳部301を用いて行ってよい。
次に、タイミングジッタ推定段階S4504で、DUT3000の出力信号に基づいて、出力タイミングジッタ系列を測定する。S4504は、図62に関連して説明したタイミングジッタ推定部501を用いて行ってよい。
次に、ジッタ歪み推定段階S4506で、入力信号に応じてDUT3000が出力するべき出力信号のタイミングジッタに対する、実際にDUT3000が出力した出力信号のタイミングジッタのジッタ歪みを測定する。S4506は、図62に関連して説明したジッタ歪み推定部4100を用いておこなってよい。
次に、判定段階S4508で、ジッタ歪みが所定の大きさより大きいか否かを判定する。S4508は、図62に関連して説明した対ジッタ信頼性推定部4102を用いて行ってよい。
S4508で、ジッタ歪みが所定の大きさより小さい場合、再度S4502において前回より振幅を大きくした入力タイミングジッタを重畳した入力信号をDUT3000に入力し、S4508でジッタ歪みが所定の大きさより大きくなるまで、S4502〜S4508の処理を繰り返す。
S4508で、ジッタ歪みが所定の大きさより大きい場合、ジッタ耐力推定段階S4510で、DUT3000のジッタ耐力を算出する。S4510では、S4508においてジッタ歪みが所定の大きさより大きいと判定されたときの、入力タイミングジッタの振幅を、当該入力タイミングジッタの周波数における、DUT3000のジッタ耐力として算出してよい。また、S4510は、図62において説明した対ジッタ信頼性推定部4102を用いて行ってよい。
次に、S4512で、更に測定するべき入力タイミングジッタの周波数があるか否かを判定し、測定するべき周波数がある場合は、S4500で当該周波数を設定し、S4500〜S4510の処理を繰り返す。また、測定するべき周波数が無い場合は、ジッタ耐力の測定を終了する。つまり、ジッタ重畳部301は、周波数の異なる例えば複数のサイン波ジッタを重畳した入力信号をDUT3000に供給し、対ジッタ信頼性推定部4102は、サイン波ジッタの周波数毎に、DUTの対ジッタ信頼性を測定する。また、ジッタ重畳部301は、複数の周波数成分を有する入力タイミングジッタを重畳した入力信号をDUT3000に供給してもよい。この場合、それぞれの周波数成分毎にDUT3000の対ジッタ信頼性を測定する。
図64は、ジッタ耐力の測定の一例を示す。図64において、横軸は所定の周波数を有する入力タイミングジッタの振幅を示し、縦軸は出力タイミングジッタの振幅を示す。
図63において説明したように、測定装置100のジッタ重畳部301は、入力タイミングジッタの振幅の異なる複数の入力信号をDUT3000に供給し、対ジッタ信頼性推定部4102は、複数の入力信号に対するそれぞれの出力タイミングジッタのジッタ歪みに基づいて、DUT3000のジッタ耐力を測定する。
つまり、ジッタ歪み推定部4100は図63の丸印に示すように、振幅の異なる複数の入力タイミングジッタに対する、出力タイミングジッタの振幅を算出し、対ジッタ信頼性推定部4102は、入力タイミングジッタの振幅に対する出力タイミングジッタの振幅が、非線形となる入力タイミングジッタの振幅に基づいて、ジッタ耐力を測定する。
図47において説明したように、DUT3000は、クロック再生部3003が入力信号に基づいて再生クロックを生成し、フリップフロップ3001及びシリアルパラレル変換部3002が、受け取った信号を再生クロックに応じて出力する。このため、入力信号における入力タイミングジッタの振幅が小さい場合は、出力タイミングジッタは、入力タイミングジッタの振幅に対して線形の関係を有する。しかし、例えば入力タイミングジッタの振幅が、入力信号のビット幅等より大きくなる場合、フリップフロップ3001及びシリアルパラレル変換部3002は、出力するべきビット値とは異なるビット値を出力する場合がある。このため、出力タイミングジッタの振幅が、入力タイミングジッタの振幅に対して非線形となる。この場合、前述したように出力信号は本来のビット値とは異なるビット値を出力する場合があるため、出力タイミングジッタの振幅が、入力タイミングジッタの振幅に対して非線形となる領域を検出することにより、DUT3000のジッタ耐力を容易に測定することができる。
図65は、ジッタ歪み推定部4100の構成の一例を示す。本例において、ジッタ歪み推定部4100は、出力タイミングジッタ系列のスペクトルに基づいて、出力タイミングジッタのジッタ歪みを測定する。ジッタ歪み推定部4100は、タイミングジッタスペクトル推定部4104、及びジッタ歪み算出部4106を有する。また、本例においてジッタ重畳部301は、例えばサイン波ジッタのように、所定の周波数を有する入力タイミングジッタを入力信号に重畳する。
タイミングジッタスペクトル推定部4104は、出力タイミングジッタ系列を受け取り、出力タイミングジッタ系列のジッタスペクトルを算出する。例えば、タイミングジッタスペクトル推定部4104は、フーリエ変換によりジッタスペクトルを算出する。
ジッタ歪み算出部4106は、ジッタスペクトルに基づいて出力タイミングジッタのジッタ歪みを算出する。例えば、ジッタ歪み算出部4106は、DUT3000が出力するべき出力信号における出力タイミングジッタのジッタスペクトルに対する、DUT3000が出力した出力信号における出力タイミングジッタのジッタスペクトルの歪みを算出する。
図66は、ジッタ耐力の測定の他の例を説明する図である。図66は、サイン波ジッタが入力信号に重畳された場合に、DUT3000が出力するべき出力信号の出力タイミングジッタのジッタスペクトルの一例を示す。図66において、横軸はジッタ周波数を示し、縦軸は当該ジッタ周波数におけるジッタの強度を示す。入力信号に入力タイミングジッタが重畳された場合、出力タイミングジッタは、サイン波ジッタとDUT3000のジッタ伝達関数によって定まる。
例えば、所定の周波数を有するサイン波ジッタが入力信号に重畳された場合、出力タイミングジッタのスペクトルは、サイン波ジッタの周波数に応じた基本周波数に、ジッタ伝達関数に応じたピークを有する。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した線形領域にある場合、出力タイミングジッタのスペクトルは、図66に示すようにサイン波に応じたスペクトルを示す。つまり、基本周波数成分の大きさに対して、高調波成分の大きさが十分に小さいスペクトルを示す。
図67は、サイン波ジッタが入力信号に重畳された場合に、DUT3000が出力するべき出力信号の出力タイミングジッタのジッタスペクトルの他の例を示す。図67において、横軸はジッタ周波数を示し、縦軸は当該ジッタ周波数におけるジッタの強度を示す。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合、出力タイミングジッタのスペクトルは、図67に示すように、図66に示したスペクトルに対して歪みが生じる。つまり、主周波数成分に対する高調波成分が増大する。図65において説明したジッタ歪み推定部4100は、当該歪みを測定する。例えば、サイン波ジッタの周波数と同一のジッタスペクトルの主周波数成分と、ジッタスペクトルにおける主周波数成分の高調波成分との比に基づいて、出力タイミングジッタのジッタ歪みを測定する。本例において、ジッタ歪み推定部4100は、主周波数成分の大きさに対する、一次高調波成分の大きさの比が所定の値より大きい場合に、出力タイミングジッタが歪んでいると判定する。出力タイミングジッタにジッタ歪みが生じている場合、DUT3000の出力信号にビット誤りが生じる場合がある。
本例におけるジッタ歪み推定部4100によれば、重畳された入力タイミングジッタによって、DUT3000の出力信号にビット誤りが生じるか否かを判定することができる。また、振幅の異なる複数の入力タイミングジッタに対して同様の測定を行うことにより、DUT3000のジッタ耐力を測定することができる。
図68及び図69は、ジッタ耐力の測定の更なる他の例を説明する図である。図68及び図69は、入力タイミングジッタとしてサイン波ジッタが重畳された場合の、出力タイミングジッタの振幅のジッタヒストグラムを示す。図68及び図69において、出力タイミングジッタの振幅をユニットインターバル単位で示し、縦軸はそれぞれの振幅の出現頻度を示す。
図68は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す。本例において、DUT3000は、入力されたサイン波ジッタの振幅が線形領域にある場合、図68に示すようにジッタヒストグラムの両端にピークを有する出力タイミングジッタを出力する。
図69は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す。入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合、出力タイミングジッタのジッタヒストグラムは、図69に示すように、図68に示したジッタヒストグラムに対して歪みが生じる。
本例において、ジッタ歪み推定部4100は、出力タイミングジッタ系列のジッタヒストグラムを生成し、ジッタヒストグラムに基づいて出力タイミングジッタのジッタ歪みを測定する。例えば、ジッタ歪み推定部4100は、ジッタヒストグラムの両端にピークがあるか否かに基づいて、入力されたサイン波ジッタに対する出力タイミングジッタの歪みを測定してよい。
図70は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す。本例における測定装置100は、図62において説明した測定装置100の構成に加え、ジッタ伝達関数推定部101、及びジッタ耐力推定部302を更に備える。ここで、ジッタ伝達関数推定部101、及びジッタ耐力推定部302は、図43に関連して説明したジッタ伝達関数推定部101、及びジッタ耐力推定部302同一又は同様の機能及び構成を有する。
本例における測定装置100は、まず、タイミングジッタ推定部501、ジッタ伝達関数推定部101、及びジッタ耐力推定部301によって、図44において説明した方法でジッタ耐力を測定する。次に、ジッタ重畳部301が、ジッタ耐力推定部302が測定したジッタ耐力に応じた振幅のタイミングジッタを重畳した第1確認信号を、DUT3000に供給する。
ジッタ歪み推定部4100は、第1確認信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、第1確認信号に応じてDUT3000が出力する出力信号の出力タイミングジッタのジッタ歪みを測定する。
そして、判定部の一例である対ジッタ信頼性推定部4102は、ジッタ歪み推定部4100が測定したジッタ歪みに基づいて、ジッタ耐力推定部302が測定したジッタ耐力が正しい値であるか否かを判定する。
対ジッタ信頼性推定部4102が、当該ジッタ耐力が正しい値でないと判定した場合、ジッタ重畳部301は、第1確認信号より振幅の小さいタイミングジッタを重畳した第2確認信号をDUT3000に供給し、ジッタ歪み推定部4100は、第2確認信号に応じてDUT3000が出力するべき出力信号の理想タイミングジッタに対する、第2確認信号に応じてDUT3000が出力する出力信号の出力タイミングジッタのジッタ歪みを測定する。そして、対ジッタ信頼性推定部4102は、ジッタ歪み推定部4100が測定した、第2確認信号に対応するジッタ歪みに基づいて、新たにジッタ耐力を算出する。例えば、図63において説明したS4502〜S4508の処理によって、新たにジッタ耐力を算出してよい。
本例における測定装置100によれば、より精度よく且つ高速にDUT3000のジッタ耐力を測定することができる。つまり、図44及び図63において説明したそれぞれの方法でジッタ耐力を測定するため、より精度よくジッタ耐力を測定できる。例えば、図44において説明した方法で測定したジッタ耐力が大きめの値を測定してしまう場合であっても、当該ジッタ耐力を更に精度よく測定することができる。また、最初に図44の方法によってジッタ耐力のおおよその値を算出することにより、図63において説明した方法より高速にジッタ耐力を測定することができる。
また、本例における測定装置100は、図56において説明した測定装置100と同様に、入力信号として入力データ信号又は入力データクロック信号のいずれを選択してもよく、出力信号として出力データ信号又は再生クロック信号のいずれを選択してもよい。
図71は、測定装置100の構成の更なる他の例を示す。本例における測定装置100は、電子デバイス3000の実使用時に入力端子に接続される伝送線路を伝送することにより入力信号に生じる確定ジッタによる影響を含んだ実使用時の系のジッタ耐力、及び確定ジッタによる影響を含まない電子デバイス3000のジッタ耐力を測定する。
ここで、確定ジッタとは、入力信号の信号パターンに応じて変化する入力信号のそれぞれのエッジの遅延のバラツキを指す。つまり、確定ジッタとは、入力信号のそれぞれのエッジ間隔等により生じるエッジの遅延のバラツキを指す。
伝送線路は誘導成分、容量成分等を有するため、入力信号のエッジ間隔により、それぞれのエッジの立ち上がり時間、又は立ち下り時間に差が生じる。このため、入力信号の立ち上がりエッジのタイミング又は立ち下りエッジのタイミングは、理想的なエッジタイミングに対してジッタ(確定ジッタ)が生じる。確定ジッタは、入力信号のパターン、伝送線路の単位長さ当たりの特性、及び伝送線路の長さによって定まる。
従来、電子デバイス3000のジッタ耐力の測定においては、実使用時の伝送線路において生じる確定ジッタを考慮していなかった。このため、測定されたジッタ耐力より、実使用時のジッタ耐力は劣化してしまう。
また、従来においては、例えば試験規格により長い伝送線路を電子デバイス3000に接続する場合がある。この場合、伝送線路を伝送させることにより、入力信号には確定ジッタが生じるが、従来の測定においては、この確定ジッタの影響を含む、即ち伝送線路と電子デバイスとを含む系のビット誤り率、及びジッタ耐力を測定し、測定した結果を電子デバイス3000のみによるビット誤り率、ジッタ耐力としていた。このため、電子デバイス3000のビット誤り率、及びジッタ耐力を精度よく測定できなかった。
本例における測定装置100は、確定ジッタの影響を除去したジッタ耐力、及び確定ジッタの影響を含むジッタ耐力を測定する。このため、確定ジッタが生じる長伝送線路を実使用時に使用する場合の系のジッタ耐力を算出することができる。また、電子デバイス3000のみのジッタ耐力を精度よく測定できる。例えば、伝送線路の長さが異なる環境で試験を行う場合であっても、電子デバイス3000のジッタ耐力の試験において再現性のある試験を行うことができる。
一例として測定装置100は、図71に示すようにジッタ伝達関数測定装置101、対ジッタ信頼性推定部4102、系ジッタ耐力推定部392、ジッタ耐力劣化量推定部390、及び入力信号生成部388を備える。
入力信号生成部388は、電子デバイス3000に入力する入力信号を生成する。入力信号は、例えば所望のパターンを有するディジタル信号である。また、入力信号生成部388は、入力信号に所望の入力タイミングジッタを重畳する。つまり入力信号生成部388は、図43に関連して説明したジッタ重畳部301と同一の機能を有する。
入力信号は伝送線路を介して電子デバイス3000に入力され、電子デバイス3000は入力信号に応じた出力信号を出力する。本例において、伝送線路は、所定の長さより短く、伝送する入力信号に確定ジッタを生じさせない。また、出力信号は、例えば図47に関連して説明した再生クロックであってもよい。
ジッタ伝達関数推定部101、及び対ジッタ信頼性推定部4102は、図43に関連して説明したジッタ伝達関数推定部101、及び図62に関連して説明した対ジッタ信頼性推定部4102と同一又は同様の機能及び構成を有する。本例における対ジッタ信頼性推定部4102は、図43において説明したビット誤り率推定部102及びジッタ耐力推定部302を有する。また、対ジッタ信頼性推定部4102は、ジッタ伝達関数のゲイン及び位相に基づいて、対ジッタ信頼性を算出するが、他の例においては、対ジッタ信頼性推定部4102は、出力信号の出力タイミングジッタのジッタ歪みに基づいて、対ジッタ信頼性を算出してもよい。この場合、測定装置100は、ジッタ伝達関数推定部101に代えて、図62に関連して説明したタイミングジッタ推定部501及びジッタ歪み推定部4100を備える。また、本例において、伝送線路は確定ジッタを生じさせないため、対ジッタ信頼性推定部4102は、電子デバイス3000の対ジッタ信頼性を算出する。
ここで、伝送線路と電子デバイス3000とを含む系のジッタ耐力inf(ΔθPP)は、下式で現される。
但し、ΔτPP(l)は、長さlの伝送線路を伝送させた場合に入力信号に生じる確定ジッタを示す。つまり、式(65)の右辺第一項は電子デバイスのジッタ耐力を示し、右辺第二項は確定ジッタによって伝送線路において劣化したジッタ耐力の劣化量を示す。
また、伝送線路が所定の長さlthより短い場合、伝送線路を伝送する入力信号に生じる確定ジッタによるジッタ耐力の劣化量は無視できる。このため、系のジッタ耐力inf(ΔθPP)は、下式で現してもよい。
ここで、u(l)は、lが0より大きい場合に1となり、lが0以下の場合に0となる単位ステップ関数である。
また、系のジッタ耐力inf(ΔθPP)は、下式で現してもよい。
但し、ΔθMODは、0.5UI又は0.5UIにほぼ等しい値である。
ジッタ耐力劣化量推定部390は、入力信号に基づいて、伝送線路を介した伝送により入力信号に生じる確定ジッタによって劣化するジッタ耐力劣化量を算出する。つまり、ジッタ耐力劣化量推定部390は、式(65)、式(66)、又は式(67)の右辺第二項を算出する。劣化量の算出の詳細については、図72において後述する。
本例においては、ジッタ耐力劣化量推定部390は、実使用時の長伝送線路におけるジッタ耐力劣化量を算出する。このとき、ジッタ耐力劣化量推定部390には、電子デバイス3000の実使用時に用いられる、入力信号のパターン、長伝送線路の単位長さ当たりの特性、及び長伝送線路の長さが入力され、これらに基づいて実使用時の長伝送線路の確定ジッタによるジッタ耐力劣化量を推定する。
系ジッタ耐力推定部392は、ジッタ耐力推定部302が算出したジッタ耐力を、ジッタ耐力劣化量推定部390が算出したジッタ耐力劣化量に基づいて補正することにより、実使用時の長伝送線路及び電子デバイス3000を含む系のジッタ耐力を算出する。例えば、式(65)、式(66)、式(67)を用いて、系のジッタ耐力を算出する。
また、測定装置100は、電子デバイス3000の試験時において、確定ジッタが生じる長さの長伝送線路を電子デバイス3000に接続した場合であっても、実使用時の長伝送線路と電子デバイス3000を含む系のジッタ耐力を推定することができる。この場合、ジッタ耐力劣化量推定部390は、試験時の伝送線路における確定ジッタと、実使用時の伝送線路における確定ジッタとの差分を算出し、系ジッタ耐力推定部392は、当該差分に基づいてジッタ耐力推定部302が算出したジッタ耐力を補正する。また、電子デバイス3000の試験時に、確定ジッタが生じる伝送線路を用い、電子デバイス3000のみのジッタ耐力を測定する場合、ジッタ耐力劣化量推定部390は、試験時の伝送線路におけるジッタ耐力劣化量を算出し、系ジッタ耐力推定部392は、ジッタ耐力推定部302が算出した電子デバイス3000のジッタ耐力と、ジッタ耐力劣化量推定部390が算出したジッタ耐力劣化量とに基づいて、電子デバイス3000のジッタ耐力を算出するデバイスジッタ耐力推定部として機能する。この場合、デバイスジッタ耐力推定部は、式(64)、式(65)、式(66)を用いて、右辺第一項のジッタ耐力を算出する。
また、本例においてジッタ耐力推定部302は、ジッタ伝達関数のゲイン、位相、又はジッタ歪みに基づいてジッタ耐力を算出したが、他の例においては、ビット誤り率推定部102が直接出力信号のビット誤りを検出し、ジッタ耐力推定部302は、ビット誤り率推定部102がビット誤りを検出する入力タイミングジッタの振幅をジッタ耐力として算出してもよい。この場合、入力信号生成部388は、振幅が増加する入力タイミングジッタを重畳した複数の入力信号を順次電子デバイス3000に入力し、ジッタ耐力推定部302は、ビット誤りが検出される入力タイミングジッタの振幅を検出する。
この場合のビット誤り率推定部102の動作の一例を以下で説明する。
電子デバイス3000が図47に示したようにデシリアライザである場合、ビット誤り率検出部102は、電子デバイス3000が出力するパラレル信号のうち少なくとも一つと、電子デバイスが出力する再生クロックとを受取り、これらを離散化する。このときのサンプリングレートは、被離散化信号の周波数の3倍以上であることが望ましい。
次に、離散化した信号をコンパレータ手段等により2値化し、2値化した再生クロックの立ち上がりで2値化したパラレル信号をサンプリングし、2値系列を生成し、入力信号に応じた期待値データと比較しビット誤りを検出する。
ところで、15段(15−stage)のPRBS(pseudo random binary sequence)のとき、シリアルビット列には15個の”1”が連続する部分が1箇所必ず存在する。従って、このような最大連長に対応する2値系列の部分をパターンマッチングにより見つけることにより、2値系列と基準PRBSをお互いに整列(align)できる。最後に、ビット対ビットの比較を行うことにより2値系列の誤りを検出できる。
図72は、ジッタ耐力劣化量推定部390の構成の一例を示す。ジッタ耐力劣化量推定部390は、入力信号スペクトル推定部394、伝送線路特性推定部396、及び確定ジッタ推定部398を有する。
入力信号スペクトル推定部394は、入力信号生成部388が伝送線路に入力する入力信号を受取り、入力信号のスペクトルを算出する。伝送線路特性推定部396は、伝送線路における、周波数帯域毎の通過特性を算出する。例えば、伝送線路特性推定部396は、伝送線路の種類毎に単位長さ当たりの通過特性を予め記憶していることが好ましい。この場合、伝送線路特性推定部396には、伝送線路の種類及び長さが入力され、伝送線路の種類及び長さに基づいて、伝送線路における通過特性を算出する。
確定ジッタ推定部398は、入力信号スペクトル推定部394が算出した入力信号のスペクトルと、伝送線路の通過特性とに基づいて、伝送線路を伝送する入力信号に生じる確定ジッタにより劣化するジッタ耐力を算出する。入力信号のスペクトル成分と、伝送線路の周波数帯域毎の通過特性とに基づいて、入力信号のそれぞれのエッジの遅延量を算出することができるので、確定ジッタを算出することができる。また、確定ジッタ推定部398は、確定ジッタの振幅のピーク値をジッタ耐力劣化量として算出してよい。
また、ジッタ耐力劣化量推定部390の他の例においては、入力信号生成部388から伝送線路に入力される入力信号と、伝送線路から電子デバイス3000に入力される入力信号とを比較することにより、当該伝送線路を伝送する入力信号に生じる確定ジッタによるジッタ耐力劣化量を算出してもよい。伝送線路に入力される信号と、伝送線路から出力される信号とを比較することにより、当該伝送線路において生じるジッタ耐力劣化量を算出することができる。
図73は、測定装置100の動作の一例を説明するフローチャートである。まず、S4300において、入力信号生成部388が電子デバイス3000に供給する入力信号に重畳する入力タイミングジッタの周波数を設定する。
次に、S4302において、入力信号に重畳する入力タイミングジッタの振幅を設定する。そして、S4304においてこのときの入力信号に応じて電子デバイスが出力する出力信号に、ビット誤りがあるか否かを検出する。
出力信号にビット誤りが検出されなかった場合、入力タイミングジッタの振幅を増加させ、S4302〜S4306を繰り返す。出力信号にビット誤りが検出された場合、このときの入力タイミングジッタの振幅をジッタ耐力として算出する(S4308)。そして、前述したように測定装置100は、当該入力タイミングジッタの周波数における、系のジッタ耐力、及び電子デバイス3000のジッタ耐力を算出する。
そして、他に試験するべき周波数帯域が有るかを判定し(S4310)、試験するべき全てのジッタ周波数についてジッタ耐力を算出した場合には処理を終了する。また、試験するべきジッタ周波数が残っている場合、S4300からS4310の処理を繰り返す。
以上の処理により、入力タイミングジッタの全ての周波数において、系のジッタ耐力及び電子デバイス3000のジッタ耐力を算出することができる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更または改良を加えることができる。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。また、本発明に係る測定装置及び試験方法は、測定対象として光回路等を含んだネットワーク等をも測定できることは明らかである。つまり、請求の範囲に記載した測定対象としての電子デバイスの範囲には、被試験回路、被試験電子デバイス、被試験システム、光回路等を含んだネットワーク等が含まれることは明らかである。また、内部に光回路等が含まれる被試験回路、被試験電子デバイス、及び被試験システムをも請求の範囲に記載した測定対象としての電子デバイスの範囲に含まれることは明らかである。
産業上の利用の可能性
上記説明から明らかなように、本発明によれば、DUTのジッタ伝達関数、ビット誤り率、及びジッタ耐力を効率よく算出することができる。また、確定ジッタの影響を含んだ系ジッタ耐力、確定ジッタの影響を含まないデバイスジッタ耐力とを容易に測定することができる。
【図面の簡単な説明】
図1は、本発明に係る測定装置100の構成の一例を示す図である。
図2は、本発明に係る測定方法の一例を示すフローチャートである。
図3は、ジッタ伝達関数測定装置101の構成の一例を示す図である。
図4は、ジッタ伝達関数推定段階S201の一例のフローチャートを示す。
図5は、ジッタ伝達関数測定装置101の構成の他の例を示す図である。
図6は、ジッタ伝達関数推定段階S201の他の例を示すフローチャートである。
図7は、ジッタ伝達関数推定段階S223の一例を示すフローチャートである。
図8は、入力タイミングジッタ値と出力タイミングジッタ値との関係の一例を示す図である。
図9は、タイミングジッタ推定部501の構成の一例を示す。
図10は、タイミングジッタ推定段階S221の一例を示すフローチャートである。
図11は、DUTが出力する出力信号x(t)の一例を示す図である。
図12は、解析信号変換部701が生成する解析信号z(t)の一例を示す図である。
図13は、瞬時位相推定部702が算出する解析信号の瞬時位相φ(t)の一例を示す図である。
図14は、アンラップされた瞬時位相φ(t)の一例を示す図である。
図15は、リニア瞬時位相φ(t)の一例を示す図である。
図16は、瞬時位相雑音Δφ(t)の一例を示す図である。
図17は、タイミングジッタ系列Δφ[n]の一例を示す図である。
図18は、解析信号z(t)の実数部の一例を示す図である。
図19は、ビット誤り率推定部102が算出したビット誤り率の一例を示す図である。
図20は、最悪ケースのアラインメントジッタの一例を示す図である。
図21は、入力タイミングジッタの周波数と、ジッタ耐力との関係の一例を示す図である。
図22は、位相雑音スペクトルの一例を示す図である。
図23は、タイミングジッタ推定部501の構成の他の例を示す図である。
図24は、タイミングジッタ推定段階S221の他の例を示すフローチャートである。
図25は、タイミングジッタ推定部501が受け取る信号の一例を示す図である。
図26は、振幅変調成分が除去された信号の一例を示す図である。
図27は、タイミングジッタ推定部501の他の構成の一例を示す図である。
図28は、タイミングジッタ推定段階S221の他の例を示すフローチャートである。
図29は、タイミングジッタ推定部501の構成の他の例を示す。
図30は、タイミングジッタ推定段階S221の他の例を示すフローチャートである。
図31は、解析信号変換部701の構成の一例を示す図である。
図32は、解析信号変換段階S801の一例を示すフローチャートである。
図33は、解析信号変換部701の構成の他の例を示す図である。
図34は、解析信号変換段階S801の他の例を示すフローチャートである。
図35は、解析信号変換部701が受け取る信号の一例を示す図である。
図36は、周波数領域の信号X(f)の一例を示す図である。
図37は、帯域制限された周波数領域の信号Z(f)を示す図である。
図38は、帯域制限された解析信号z(t)を示す図である。
図39は、解析信号変換部701の構成の他の例を示す図である。
図40は、解析信号変換段階S801の他の例を示すフローチャートである。
図41は、図7に関連して説明した位相差推定段階S2301の一例を示すフローチャートである。
図42は、図7に関連して説明した位相差推定段階S2301の他の例を示すフローチャートである。
図43は、測定装置100の構成の他の例を示す図である。
図44は、本発明に係る測定方法の他の例を示すフローチャートである。
図45は、測定装置100の構成の他の例を示す図である。
図46は、本発明に係る測定方法の他の例を示すフローチャートである。
図47は、DUTの構成の一例を示す図である。
図48は、測定装置100の構成の他の例を示す図である。
図49は、入力信号と出力信号の一例を示す図である。
図50は、本発明に係る測定方法の他の例を示すフローチャートである。
図51は、タイミング推定部3100の構成の一例を示す図である。
図52は、タイミング推定段階S3201の一例を示すフローチャートである。
図53は、出力信号の理想信号と実信号の一例を示す図である。
図54は、測定装置100と従来のビット誤り率測定装置のテスト時間を比較例を示す図である。
図55は、測定装置100における、印加ジッタ量の変更回数と、測定されるジッタ耐力との関係の一例を示す図である。
図56は、測定装置100の構成の他の例を示す図である。
図57は、パターン発生器4012が生成するパターンデータの一例を示す図である。
図58は、ジッタ伝達関数推定装置101のタイミング推定部501の構成の他の例を示す図である。
図59は、タイミング推定段階S221の他の例を示すフローチャートである。
図60は、ビット誤り率曲線の一例を示す。
図61は、ジッタ耐力の測定例を示す。
図62は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す図である。
図63は、DUT3000を測定する測定方法の一例を示すフローチャートである。
図64は、ジッタ耐力の測定の一例を示す図である。
図65は、ジッタ歪み推定部4100の構成の一例を示す図である。
図66は、ジッタ耐力の測定の他の例を説明する図である。
図67は、サイン波ジッタが入力信号に重畳された場合に、DUT3000が出力するべき出力信号の出力タイミングジッタのジッタスペクトルの他の例を示す図である。
図68は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す図である。
図69は、入力信号に重畳されたサイン波ジッタの振幅が、図64において説明した非線形領域にある場合の、出力タイミングジッタのジッタヒストグラムを示す図である。
図70は、測定装置100の一例であるジッタ耐力測定装置の構成の他の例を示す図である。
図71は、測定装置100の構成の更なる他の例を示す図である。
図72は、ジッタ耐力劣化量推定部390の構成の一例を示す図である。
図73は、測定装置100の動作の一例を示すフローチャートである。
図74は、ネットワークアナライザを用いてジッタ伝達関数を測定する場合を説明する図である。
図75は、ジッタアナライザを用いてデシリアライザのジッタ伝達関数を測定する場合について説明する図である。
図76は、アイダイアグラムを示す図である。
図77は、デシリアライザのジッタ耐力測定構成を示す図である。
Claims (13)
- 電子デバイスの対ジッタ信頼性を測定する測定装置であって、
確定ジッタを生じない伝送線路を介して入力される入力信号に応じて、前記電子デバイスが出力する出力信号に基づいて、前記電子デバイスのジッタ耐力を算出するジッタ耐力推定部と、
前記電子デバイスに前記確定ジッタが生じる長伝送線路を介して前記入力信号を入力した場合に、前記長伝送線路を介した伝送により前記入力信号に生じる確定ジッタによって劣化する前記ジッタ耐力の劣化量を算出するジッタ耐力劣化量推定部と、
前記電子デバイスのジッタ耐力と、前記ジッタ耐力の劣化量とに基づいて、前記長伝送線路と前記電子デバイスとを含む系のジッタ耐力を算出する系ジッタ耐力推定部と
を備えることを特徴とする測定装置。 - 前記出力信号に基づいて、前記出力信号の出力タイミングジッタ系列を算出するタイミングジッタ推定部と、
前記出力タイミングジッタ系列に基づいて、前記電子デバイスにおけるジッタ伝達関数を算出するジッタ伝達関数推定部と
を更に備え、
前記ジッタ耐力推定部は、前記ジッタ伝達関数のゲインに基づいて、前記系のジッタ耐力を算出することを特徴とする請求項1に記載の測定装置。 - 前記ジッタ耐力推定部は、前記ジッタ伝達関数の位相に更に基づいて、前記系のジッタ耐力を算出することを特徴とする請求項2に記載の測定装置。
- 前記出力信号に基づいて、前記出力信号の出力タイミングジッタ系列を算出するタイミングジッタ推定部と、
前記出力タイミングジッタ系列に基づいて、前記出力信号のタイミングジッタのジッタ歪みを算出するジッタ歪み推定部と
を更に備え、
前記ジッタ耐力推定部は、前記ジッタ歪みに基づいて、前記系のジッタ耐力を算出することを特徴とする請求項1に記載の測定装置。 - 前記ジッタ歪み推定部は、前記出力信号のタイミングジッタのスペクトルに基づいて前記ジッタ歪みを算出することを特徴とする請求項4に記載の測定装置。
- 前記タイミングジッタ推定部は、
前記出力信号に基づいて、前記出力信号の瞬時位相雑音を算出する瞬時位相雑音推定部と、
前記瞬時位相雑音を、所定のタイミングでリサンプリングした出力タイミングジッタ系列を生成するリサンプリング部と
を有することを特徴とする請求項2又は4に記載の測定装置。 - 前記瞬時位相雑音推定部は、
前記出力信号を複素数の解析信号に変換する解析信号変換部と、
前記解析信号に基づいて、前記解析信号の瞬時位相を測定する瞬時位相推定部と、
前記解析信号の瞬時位相に基づいて、前記出力信号のリニア瞬時位相を測定するリニア瞬時位相推定部と、
前記瞬時位相及び前記リニア瞬時位相に基づいて、前記瞬時位相から前記リニア瞬時位相を除去した前記瞬時位相雑音を算出するリニア位相除去部と
を有することを特徴とする請求項6に記載の測定装置。 - 前記タイミングジッタ推定部は、
前記出力信号の周期ジッタ系列を測定する周期ジッタ系列推定部と、
前記周期ジッタ系列の平均周期を算出する理想エッジタイミング推定部と、
前記周期ジッタ系列の前記平均周期と、前記周期ジッタ系列とに基づいて、前記出力タイミングジッタ系列を算出するエッジ誤差推定部と
を有することを特徴とする請求項2又は4に記載の測定装置。 - 周波数の異なる複数のタイミングジッタを重畳した前記入力信号を生成する入力信号生成部を更に備えることを特徴とする請求項1に記載の測定装置。
- 前記電子デバイスの前記出力信号に基づいて、前記出力信号のビット誤りを検出するビット誤り率推定部を更に備え、
前記入力信号生成部は、振幅の異なるタイミングジッタを重畳した複数の前記入力信号を順次前記電子デバイスに入力し、
前記ジッタ耐力推定部は、前記ビット誤り率推定部が前記出力信号のビット誤りを検出しない前記タイミングジッタの最大振幅を、前記ジッタ耐力として算出することを特徴とする請求項1に記載の測定装置。 - 前記ビット誤り率検出部は、前記電子デバイスが出力するデータ信号を、前記電子デバイスが出力するクロック信号でサンプリングし、前記データ信号のそれぞれのビットの値を検出し、検出した前記データ信号のそれぞれのビットと、与えられる前記基準信号のそれぞれのビットとを比較することにより、前記ビット誤りを検出することを特徴とする請求項10に記載の測定装置。
- 電子デバイスの対ジッタ信頼性を測定する測定装置であって、
所定の伝送線路を介して入力される入力信号に応じて、前記電子デバイスが出力する出力信号に基づいて、前記伝送線路と前記電子デバイスとを含む系のジッタ耐力を算出するジッタ耐力推定部と、
前記入力信号に基づいて、前記伝送線路を介した伝送により前記入力信号に生じる確定ジッタによって劣化するジッタ耐力劣化量を算出するジッタ耐力劣化量推定部と、
前記ジッタ耐力推定部が算出した前記系のジッタ耐力を、前記ジッタ耐力劣化量推定部が算出したジッタ耐力劣化量に基づいて補正することにより、前記電子デバイスのジッタ耐力を算出するデバイスジッタ耐力推定部と
を備えることを特徴とする測定装置。 - 前記入力信号を生成し、前記伝送線路を介して前記電子デバイスに入力信号を供給する入力信号生成部を更に備え、
前記ジッタ耐力劣化量推定部は、前記入力信号生成部から前記伝送線路に入力される前記入力信号と、前記伝送線路から前記電子デバイスに入力される前記入力信号とを比較し、当該比較結果に基づいて前記確定ジッタによる前記ジッタ耐力劣化量を算出することを特徴とする請求項12に記載の測定装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/005901 WO2003073280A1 (en) | 2002-02-26 | 2002-02-26 | Measuring apparatus and measuring method |
USPCT/US02/05901 | 2002-02-26 | ||
US26534902A | 2002-10-04 | 2002-10-04 | |
US10/265,349 | 2002-10-04 | ||
PCT/JP2003/001523 WO2003073115A1 (fr) | 2002-02-26 | 2003-02-14 | Instrument et procede de mesure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2003073115A1 true JPWO2003073115A1 (ja) | 2005-06-23 |
JP4216198B2 JP4216198B2 (ja) | 2009-01-28 |
Family
ID=27767301
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003571750A Expired - Fee Related JP4216198B2 (ja) | 2002-02-26 | 2003-02-14 | 測定装置、及び測定方法 |
JP2003572235A Expired - Fee Related JP4376064B2 (ja) | 2002-02-26 | 2003-02-26 | 測定装置、及び測定方法 |
JP2009027914A Expired - Fee Related JP5183520B2 (ja) | 2002-02-26 | 2009-02-09 | 測定装置および試験方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003572235A Expired - Fee Related JP4376064B2 (ja) | 2002-02-26 | 2003-02-26 | 測定装置、及び測定方法 |
JP2009027914A Expired - Fee Related JP5183520B2 (ja) | 2002-02-26 | 2009-02-09 | 測定装置および試験方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7305025B2 (ja) |
JP (3) | JP4216198B2 (ja) |
DE (2) | DE10392318T5 (ja) |
WO (2) | WO2003073115A1 (ja) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073280A1 (en) * | 2002-02-26 | 2003-09-04 | Advantest Corporation | Measuring apparatus and measuring method |
JP3886941B2 (ja) * | 2003-07-10 | 2007-02-28 | アンリツ株式会社 | ジッタ耐力測定装置 |
JP2005091108A (ja) * | 2003-09-16 | 2005-04-07 | Advantest Corp | ジッタ発生器及び試験装置 |
DE102004061510A1 (de) * | 2003-12-16 | 2005-10-06 | Advantest Corp. | Prüfvorrichtung und Prüfverfahren |
US7315574B2 (en) | 2004-05-03 | 2008-01-01 | Dft Microsystems, Inc. | System and method for generating a jittered test signal |
US7317309B2 (en) * | 2004-06-07 | 2008-01-08 | Advantest Corporation | Wideband signal analyzing apparatus, wideband period jitter analyzing apparatus, and wideband skew analyzing apparatus |
US7787543B2 (en) * | 2004-07-05 | 2010-08-31 | Anritsu Corporation | Pulse pattern generator and communication device evaluation system utilizing the same |
JP4509699B2 (ja) * | 2004-08-30 | 2010-07-21 | 富士通株式会社 | 回路解析方法および回路解析装置 |
US7571360B1 (en) * | 2004-10-26 | 2009-08-04 | National Semiconductor Corporation | System and method for providing a clock and data recovery circuit with a fast bit error rate self test capability |
TWI274250B (en) * | 2004-12-17 | 2007-02-21 | Univ Nat Chiao Tung | Bit error rate tester and pseudo random bit sequences generator thereof |
JP4537845B2 (ja) * | 2004-12-27 | 2010-09-08 | リーダー電子株式会社 | Ber測定用の信号自動検出装置 |
DE102006007617A1 (de) * | 2005-02-14 | 2006-08-24 | Advantest Corp. | Jittermessvorrichtung, Jittermessverfahren, Prüfvorrichtung und Elektronische Vorrichtung |
US7460592B2 (en) * | 2005-05-04 | 2008-12-02 | Advantest Corporation | Apparatus for measuring jitter and method of measuring jitter |
WO2006129491A1 (ja) * | 2005-06-01 | 2006-12-07 | Advantest Corporation | ジッタ発生回路 |
US7912117B2 (en) * | 2006-09-28 | 2011-03-22 | Tektronix, Inc. | Transport delay and jitter measurements |
US8103469B1 (en) * | 2005-12-07 | 2012-01-24 | Altera Corporation | Transceiver link bit error rate prediction |
US7945405B2 (en) * | 2008-05-08 | 2011-05-17 | Advantest Corporation | Jitter measurement apparatus, jitter measurement method, recording media, communication system and test apparatus |
US7715512B2 (en) * | 2006-09-26 | 2010-05-11 | Advantest Corporation | Jitter measurement apparatus, jitter measurement method, and recording medium |
EP2360488B1 (en) * | 2007-03-20 | 2013-01-23 | Rambus Inc. | Integrated circuit having receiver jitter tolerance ("JTOL") measurement |
JP2009038422A (ja) * | 2007-07-31 | 2009-02-19 | Nec Electronics Corp | 同期回路、及び、データ受信方法 |
US7808252B2 (en) * | 2007-12-13 | 2010-10-05 | Advantest Corporation | Measurement apparatus and measurement method |
JP5012663B2 (ja) * | 2008-05-27 | 2012-08-29 | 富士通株式会社 | 回路シミュレーション装置、回路シミュレーションプログラム、回路シミュレーション方法 |
US8180891B1 (en) | 2008-11-26 | 2012-05-15 | Free Stream Media Corp. | Discovery, access control, and communication with networked services from within a security sandbox |
JP2010169504A (ja) * | 2009-01-22 | 2010-08-05 | Anritsu Corp | ジッタ伝達特性測定装置 |
US8006141B2 (en) * | 2009-06-30 | 2011-08-23 | Freescale Semiconductor, Inc. | Method for speeding up serial data tolerance testing |
US20110093225A1 (en) * | 2009-10-20 | 2011-04-21 | Ramesh P E | Method of making frequency domain measurements on a time domain instrument |
JP5134026B2 (ja) * | 2010-02-09 | 2013-01-30 | アンリツ株式会社 | 誤り率測定装置及び方法 |
JP5194067B2 (ja) * | 2010-07-08 | 2013-05-08 | アンリツ株式会社 | 誤り率測定装置及び誤り率測定方法 |
US8504882B2 (en) * | 2010-09-17 | 2013-08-06 | Altera Corporation | Circuitry on an integrated circuit for performing or facilitating oscilloscope, jitter, and/or bit-error-rate tester operations |
US8522087B2 (en) * | 2011-02-02 | 2013-08-27 | Micron Technology, Inc. | Advanced converters for memory cell sensing and methods |
US8972215B2 (en) * | 2011-03-30 | 2015-03-03 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for determining parameters of sinusoidal signals |
KR101379371B1 (ko) | 2013-02-27 | 2014-03-28 | 동국대학교 산학협력단 | 대역폭이 제한된 채널에서 데이터 의존성 지터 추정 방법 |
US8878580B1 (en) * | 2013-07-22 | 2014-11-04 | Via Technologies, Inc. | Apparatus and method for generating a clock signal with reduced jitter |
WO2015049150A1 (en) * | 2013-10-01 | 2015-04-09 | Koninklijke Philips N.V. | Improved signal selection for obtaining a remote photoplethysmographic waveform |
JP6199420B2 (ja) * | 2016-02-02 | 2017-09-20 | アンリツ株式会社 | ジッタ耐力測定装置およびジッタ耐力測定方法 |
US10132846B2 (en) * | 2016-06-14 | 2018-11-20 | Analog Devices Global | Method of and apparatus for learning the phase error or timing delays within a current transducer and power measurement apparatus including current transducer error correction |
US10075286B1 (en) * | 2017-03-13 | 2018-09-11 | Tektronix, Inc. | Equalizer for limited intersymbol interference |
US10873517B2 (en) * | 2019-01-23 | 2020-12-22 | Rohde & Schwarz Gmbh & Co. Kg | Jitter decomposition method and measurement instrument |
US11047898B2 (en) * | 2019-02-12 | 2021-06-29 | Bae Systems Information And Electronic Systems Integration Inc. | Vector processing using amplitude or power detectors |
CN110333398B (zh) * | 2019-07-10 | 2020-05-05 | 北京航空航天大学 | 一种电磁频谱的噪声阈值计算方法 |
US11032725B1 (en) * | 2020-03-18 | 2021-06-08 | Litepoint Corporation | System and method for testing data packet signal transceivers with a tester using externally initiated and self-terminating test control sequences |
CN115483993A (zh) * | 2021-06-15 | 2022-12-16 | 中兴通讯股份有限公司 | 检测输入信号对输出信号影响的方法、装置、设备和介质 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0345390A1 (en) * | 1988-06-08 | 1989-12-13 | Hewlett-Packard Limited | Improvement in or Relating to Jitter Circuits |
JPH0850156A (ja) * | 1994-08-05 | 1996-02-20 | Anritsu Corp | ジッタ耐力測定装置 |
JP3051039B2 (ja) * | 1995-02-17 | 2000-06-12 | アンリツ株式会社 | ジッタ伝達特性測定装置 |
JPH08248078A (ja) * | 1995-03-07 | 1996-09-27 | Anritsu Corp | ジッタ伝達特性測定装置 |
JPH1183924A (ja) * | 1997-09-09 | 1999-03-26 | Hitachi Cable Ltd | 伝送機器の試験装置及びそれを用いた試験方法 |
US7012982B1 (en) * | 1999-11-24 | 2006-03-14 | Verizon Laboratories Inc. | Method and system for de-jittering of transmitted MPEG-2 and MPEG-4 video |
WO2001069328A2 (en) * | 2000-03-17 | 2001-09-20 | Vector 12 Corporation | High resolution time-to-digital converter |
US6735538B1 (en) * | 2000-03-29 | 2004-05-11 | Advantest Corporation | Apparatus and method for measuring quality measure of phase noise waveform |
-
2003
- 2003-02-14 JP JP2003571750A patent/JP4216198B2/ja not_active Expired - Fee Related
- 2003-02-14 DE DE10392318T patent/DE10392318T5/de not_active Ceased
- 2003-02-14 WO PCT/JP2003/001523 patent/WO2003073115A1/ja active Application Filing
- 2003-02-26 WO PCT/IB2003/001997 patent/WO2003073680A2/en active Application Filing
- 2003-02-26 JP JP2003572235A patent/JP4376064B2/ja not_active Expired - Fee Related
- 2003-02-26 DE DE10392148T patent/DE10392148B4/de not_active Expired - Fee Related
-
2004
- 2004-08-25 US US10/925,870 patent/US7305025B2/en not_active Expired - Lifetime
-
2009
- 2009-02-09 JP JP2009027914A patent/JP5183520B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4376064B2 (ja) | 2009-12-02 |
JP5183520B2 (ja) | 2013-04-17 |
DE10392148T5 (de) | 2004-09-02 |
US20050267696A1 (en) | 2005-12-01 |
DE10392318T5 (de) | 2005-07-07 |
WO2003073115A1 (fr) | 2003-09-04 |
JP2006504069A (ja) | 2006-02-02 |
JP2009103717A (ja) | 2009-05-14 |
DE10392148B4 (de) | 2010-08-19 |
WO2003073680A3 (en) | 2003-12-04 |
US7305025B2 (en) | 2007-12-04 |
WO2003073680A2 (en) | 2003-09-04 |
JP4216198B2 (ja) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4216198B2 (ja) | 測定装置、及び測定方法 | |
US7636387B2 (en) | Measuring apparatus and measuring method | |
JP4216249B2 (ja) | 測定装置、及び測定方法 | |
US7856330B2 (en) | Measuring apparatus, testing apparatus, and electronic device | |
US6990417B2 (en) | Jitter estimating apparatus and estimating method | |
JP4204806B2 (ja) | ジッタ測定方法 | |
US7623977B2 (en) | Periodic jitter (PJ) measurement methodology | |
US20070203659A1 (en) | Measuring apparatus, measuring method, testing apparatus, testing method, and electronics device | |
US7397847B2 (en) | Testing device for testing electronic device and testing method thereof | |
US7421355B2 (en) | Measuring apparatus, measuring method, testing apparatus, testing method, and electronic device | |
Dalal et al. | Measuring jitter of high speed data channels using undersampling techniques | |
US7844022B2 (en) | Jitter spectrum analysis using random sampling (RS) | |
JPWO2003036313A1 (ja) | クロック・スキュー測定装置、クロック・スキュー測定方法 | |
JP5170939B2 (ja) | 試験装置、及び試験方法 | |
EP1847844A1 (en) | Digital data signal analysis by evaluating sampled values in conjuction with signal bit values | |
Ichiyama et al. | Data jitter measurement using a delta-time-to-voltage converter method | |
Moradi | State-of-the-art within jitter measurement | |
Angrisani et al. | Problems with jitter measurement in PDH/SDH-based digital telecommunication systems | |
Guenther | Ward et al. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |