JPWO2003005002A1 - 伝搬測定装置及び伝搬測定方法 - Google Patents

伝搬測定装置及び伝搬測定方法 Download PDF

Info

Publication number
JPWO2003005002A1
JPWO2003005002A1 JP2003510927A JP2003510927A JPWO2003005002A1 JP WO2003005002 A1 JPWO2003005002 A1 JP WO2003005002A1 JP 2003510927 A JP2003510927 A JP 2003510927A JP 2003510927 A JP2003510927 A JP 2003510927A JP WO2003005002 A1 JPWO2003005002 A1 JP WO2003005002A1
Authority
JP
Japan
Prior art keywords
optical signal
light
frequency
terahertz
terahertz light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003510927A
Other languages
English (en)
Other versions
JP3828111B2 (ja
Inventor
城戸 隆
隆 城戸
尚治 仁木
尚治 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JPWO2003005002A1 publication Critical patent/JPWO2003005002A1/ja
Application granted granted Critical
Publication of JP3828111B2 publication Critical patent/JP3828111B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

被測定物の伝搬特性を測定する伝搬測定装置であって、第1の周波数の第1光信号を出力する第1光源と、第2の周波数の第2光信号を出力する第2光源と、第1光信号及び第2光信号を用いて、第1の周波数と第2の周波数との差の周波数のテラヘルツ光を生成し、被測定物に放射するテラヘルツ光出力部と、被測定物を透過したテラヘルツ光を検出する第1検出部と、第1検出部が検出したテラヘルツ光に基づいて、被測定物の伝搬特性を測定する測定部とを備える。

Description

技術分野
本発明は、伝搬測定装置及び伝搬測定方法に関する。また本出願は、下記の日本特許出願に関連する。文献の参照による組み込みが認められる指定国については、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
特願2001−200377 出願日 平成13年7月2日
背景技術
近時、テラヘルツ光領域(100GHz〜10THz程度)の物質の伝搬特性を測定する技術が注目されている。
図9は、従来の伝搬測定装置200の概略図を示す。伝搬測定装置200は、フェムト秒光パルス、即ちパルス幅がフェムト秒オーダーの極めて短い光パルスを用いて、物質の伝搬特性を測定する。なお、このような技術は、例えば「情報通信研究の最前線 郵政省通信総合研究所のすぺて」(3章 周波数資源の開拓 10 テラヘルツエレクトロニクス)電波新聞社や、阪井清美「光スイッチからテラヘルツ光発生」(0 plus E、Vol.22、No.1、pp.41〜50)に記載されている。
伝搬測定装置200では、パルスレーザ等から出力される例えば100フェムト秒以下のフェムト秒光パルス110は、ビームスプリツタ112により分割される。ビームスプリッタ112により分割されたフェムト秒パルス110の一方は、トリガパルス114としてテラヘルツ電磁波送信器118に入力される。ビームスプリッタ112により分割されたフェムト秒パルス110の他方は、サンプリングパルス116としてテラヘルツ電磁波受信器122に入力される。サンプリングパルス116は、時間遅延手段120により適宜遅延される。
テラヘルツ電磁波送信器118は、低温成長ガリウム砒素より成る光伝導膜(図示せず)上に、アンテナを兼ねる平行伝送線路124を形成することにより構成される。低温成長ガリウム砒素より成る光伝導膜は、光応答速度が極めて速く、優れた性質を有する。
テラヘルツ電磁波送信器118に直流電圧126を印加した状態で、平行伝送線路124の間隙部に、例えば100フェムト秒以下のトリガパルス114を入射すると、平行伝送線路124が瞬間的に短絡し、急峻な電流変化が生じる。これにより、100GHz〜数THz程度の周波数成分を含むテラヘルツパルスが、テラヘルツ電磁波送信器118のアンテナから送信される。
テラヘルツ電磁波送信器118から送信されるテラヘルツパルスは、軸外し放物面鏡128により収束され、試料130に入射される。試料130を透過したテラヘルツパルスは、軸外し放物面鏡128により収束され、テラヘルツ電磁波受信器122に入射される。
テラヘルツ電磁波受信器122としては、テラヘルツ電磁波送信器118と同様のデバイスが用いられる。テラヘルツ電磁波受信器122は、アンテナを兼ねる平行伝送線路132の間隙部に入射されるテラヘルツ電磁波を、サンプリングパルス116を用いてサンプリングする。テラヘルツ電磁波受信器122により得られた信号は、電流増幅器134により増幅される。
伝搬測定装置200は、テラヘルツ電磁波送信器118から励起されるテラヘルツパルスの波形を、サンプリングパルス116の遅延時間を変化させつつ、テラヘルツ電磁波受信器132により検出する。伝搬測定装置200では、テラヘルツパルスの波形が遅延時間の関数として検出される。このようにして検出されるテラヘルツパルスは、広帯域でコヒーレントであり、振幅や位相に関する情報が含まれているので、試料130の物理的性質を調べる上で有用である。また、試料130をX−Y方向に移動しながら測定することにより、試料の物理的性質を可視化することも可能である。
また、近赤外光領域における被測定物の波長分散を測定し得る波長分散測定装置が提案されている。
図10は、従来の波長分散測定装置300の概略図を示す。なお、このような技術は、S.Ryu,Y.Horiuchi,K.Mochizuki,“Novel chromatic dispersion measurement method over continuus Gigahertz tuning range”,J.Lightwave Technol.,Vol.7,No.8,pp.177〜1180,1989や、M.Fujise,M.Kuwazuru,M.Nunokawa,and Y.Iwamoto,“Chromatic dispersion measurement over a 100−km dispersion−shifted single−mode fibre by a newphase−shift technique”,Electron.Lett.,Vol.22,No.11,pp.570〜572,1986に記載されている。
波長分散測定装置300において、波長可変光源210から出力される近赤外光領域のレーザ光は、光強度変調器212に入力される。光強度変調器212は、参照用高周波信号源214から供給される周波数fIFの参照信号を用いて、波長可変光源210から出力されるレーザ光の強度を正弦波で変調する。
光強度変調器212により変調されたレーザ光は、被測定物216に入射される。被測定物216を透過したレーザ光は、光電変換器218により検出されて電気信号に変換され、増幅器220により増幅される。増幅器220により増幅された検出信号は、ネットワークアナライザ222の位相・振幅比較器224に入力される。
位相・振幅比較器224は、増幅器220により増幅された検出信号と、参照用高周波信号源214から供給される参照信号とを比較する。位相・振幅比較器224により比較された比較結果は、A/D変換器226によりA/D変換される。そして、データ処理ブロック228により、以下のようにして群遅延時間が求められる。
波長可変光源210から出力されるレーザ光の波長をλとし、参照用高周波信号源214から供給される参照信号の周波数をfIFとし、位相・振幅比較器224により求められる位相をφ(λ,fIF)とすると、群遅延時間τ(λ)は以下のように表される。
τ(λ)=φ(λ,fIF)/(2πfIF
従って、波長可変光源210から出力されるレーザ光の波長λを連続的に変化させながら、上記のようにして測定を行うことによって、各波長毎に群遅延時間τ(λ)を求められる。また、波長分散D(λ)は、群遅延時間τ(λ)を波長で微分したものであり、以下のように表される。
D(λ)=Δτ(λ)/Δλ
ここで、
Δτ(λ)=τ(λi+1)−τ(λ
Δλ=λi+1−λ
である。なお、このようにして群遅延時間τ(λ)を求める方法は、位相シフト法と称されている。
波長分散測定装置300では、高周波の位相解析技術を用いて群遅延時間τ(λ)を測定することができるので、高精度な波長分散測定を行うことができる。
また、ヘテロダイン検波により被測定物の断層像を画像化し得る光断層像画像化装置が提案されている。
図11は、従来の光断層像画像化装置400の概略図を示す。なお、このような技術は、特開平2−150747号公報や、特開2000−121550号公報に記載されている。
光断層像画像化装置400において、レーザ装置310から出力されるレーザ光は、レンズ312、レンズ314により収束され、ビームスプリッタ316により分割される。
ビームスプリツタ316により分割されたレーザ光の一方は、被測定物318に照射される。被測定物318を透過したレーザ光は、ミラー320により反射され、ビームスプリツタ322に入射される。
ビームスプリツタ316により分割されたレーザ光の他方は、ミラー324により反射され、光周波数変換器326に入力される。光周波数変換器326は、参照用高周波信号源328から供給される参照信号を用いてレーザ光の周波数を変換する。光周波数変換器326により周波数が変換されたレーザ光は、ビームスプリッタ322に入射される。
ビームスプリッタ322では、被測定物318を透過したレーザ光と、光周波数変換器326により周波数が変換されたレーザ光とが合併される。ビームスプリッタ322により合併されたレーザ光は、光検出器324に入射される。
光検出器324は、ヘテロダイン検波により光の検出を行う。ヘテロダイン検波には、指向性があるため、被測定物318を透過したレーザ光のうちの直進成分のみが検出される。
光検出器324により検出された光は、復調器326により復調され、コンピュータ329により分析される。コンピュータ329により分析された結果は、断層像として画像表示装置330により表示される。
光断層像画像化装置400の原理を以下に示す。
被測定物318に入射される光の電界をe(t)とし、光周波数変換器326から出力される光の電界をe(t)とすると、
(t)=Acosω
(t)=Acos{(ω+p)t+θ
で表される。
ここで、A、Aは電界強度であり、pは光の角周波数のシフト量であり、θは一定位相であり、ωは光の各周波数である。
また、被測定物318の伝達関数Y(ω)は、
Y(ω)=Yexp(jφ
で表されるとすると、
光検出器324に入射される電界eは、
=Y(ω)Acosωt+Acos{(ω+p)t+θ
光検出器324の出力電流iは、
=α{Y +A +2Ycos(pt+θ−φ)}
で表される。
ここで、αは比例係数であり、φは位相であり、ωはレーザ光の周波数である。また、位相φ、光周波数ω、群遅延時間τ(ω)との間には、以下のような関係がある。
τ(ω)=φ/ω
光断層像画像化装置400によれば、以上のような原理により、被測定物の断層像を画像化することができる。
しかしながら、図9に示した伝搬測定装置200では、単にフェムト秒光パルスを用いて試料130の伝搬特性を測定するので、テラヘルツ光領域における試料130の伝搬特性の周波数依存性を詳細に測定することはできなかった。また、図9に示した伝搬測定装置200は、フェムト秒パルス110を発生する光源が大がかりなものであり、パルス幅や光強度等の安定性も乏しかった。また、サンプリングパルス116の遅延時間を徐々に変化させながら、試料130の伝搬特性を測定するので、測定に長時間を要していた。また、空間光を用いるので、装置が大がかりになってしまい、複雑で、安定性が乏しかった。また、時間遅延手段120は、可動ステージを用いて遅延時間を変化させるので、可動ステージの機械的な精度の影響を受け、必ずしも高精度で測定することができなかった。
また、図10に示した波長分散測定装置300の技術をテラヘルツ光領域に応用した場合には、光強度変調器212としてテラヘルツ光領域の広帯域なものを用いることが必要となる。しかし、テラヘルツ光領域の広帯域な光強度変調器は、広く普及しているものではないため、入手が極めて困難であり、高価となってしまう。
また、図10に示した波長分散測定装置300の技術をテラヘルツ光領城に応用した場合には、波長可変光源210から出力されるテラヘルツ光は、光強度変調器212及び被測定物216を経由して、光電変換器218に入力される。テラヘルツ光領域におけるロスの少ない伝送技術は未だ開発されていないので、波長可変光源210から出力されるテラヘルツ光の強度を、伝送ロスの分だけ大きくしなければならない。そのためには、波長可変光源210として大出力のものを用いなければならず、装置の小型化における阻害要因となってしまう。
また、図11に示した光断層像画像化装置400の技術をテラヘルツ光領域に応用した場合には、光周波数変換器326としてテラヘルツ光領域の広帯域なものを用いることが必要となる。しかし、テラヘルツ光領域の広帯域な光周波数変換器は、広く普及しているものではないため、入手が極めて困難であり、高価となってしまう。
また、図11に示した光断層像画像化装置400の技術をテラヘルツ光領域に応用した場合には、レーザ装置310から出力されるテラヘルツ光は、レンズ312、314、ビームスプリツタ316、322、被測定物318、光周波数変換器326、ミラー320、324等を経由して、光電変換器324に入力される。テラヘルツ光領域におけるロスの少ない伝送技術は未だ開発されていないので、レーザ装置310から出力されるテラヘルツ光の強度を、伝送ロスの分だけ大きくしなければならない。そのためには、レーザ装置310として大出力のものを用いなければならず、装置の小型化における阻害要因となってしまう。
また、図11に示した光断層像画像化装置400の技術をテラヘルツ光領域に応用した場合には、テラヘルツ光の経路が、被測定物318側と光周波数変換器326側の両方にあるため、光軸調整が煩雑である。
また、図11に示した光断層像画像化装置400の技術は、位相比較を行うものではなく、単に振幅を測定するものであるので、被測定物318の伝搬遅延時間を測定することはできず、透過減衰量等の振幅情報しか測定することができない。
そこで本発明は、上記の課題を解決することのできる伝搬測定装置及び伝搬測定方法を提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
発明の開示
このような目的を達成するために、本発明の第1の形態によれば、被測定物の伝搬特性を測定する伝搬測定装置であって、第1の周波数の第1光信号を出力する第1光源と、第2の周波数の第2光信号を出力する第2光源と、第1光信号及び第2光信号を用いて、第1の周波数と第2の周波数との差の周波数のテラヘルツ光を生成し、被測定物に放射するテラヘルツ光出力部と、被測定物を透過したテラヘルツ光を検出する第1検出部と、第1検出部が検出したテラヘルツ光に基づいて、被測定物の伝搬特性を測定する測定部とを備える。
第1光源及び第2光源は、赤外光である第1光信号及び第2光信号をそれぞれ出力してもよい。
参照信号を発生する参照信号源と、参照信号源が発生した参照信号に基づいて、第1光信号及び第2光信号の少なくとも1つを変調する変調部とをさらに備え、測定部は、変調部が変調した第1光信号及び第2光信号の少なくとも一方と、参照信号源が発生した参照信号とに基づいて、被測定物の伝搬特性を測定してもよい。
変調部は、第1光源が出力した第1光信号の強度を変調し、テラヘルツ光出力部は、変調部が強度を変調した第1光信号、及び第2光源が出力する第2光信号を用いて、テラヘルツ光を生成し、被測定物に放射してもよい。
第1光源が発生した第1光信号と、第2光源が発生した第2光信号とを合波する第1合波器をさらに備え、変調部は、第1合波器が合波した第1光信号及び第2光信号の強度を変調し、テラヘルツ光出力部は、変調部が強度を変調した第1光信号及び第2光信号を用いて、テラヘルツ光を生成し、被測定物に放射してもよい。
テラヘルツ光出力部が放射したテラヘルツ光を被測定物を介さずに検出する第2検出部をさらに備え、測定部は、第1検出部が検出したテラヘルツ光と、第2検出部が検出したテラヘルツ光とに基づいて、被測定物の伝搬特性を測定してもよい。
第1光源が出力した第1光信号を分波する第1分波器と、第2光源が出力した第2光信号を分波する第2分波器と、第1分波器が分波した第1光信号の一方と、第2分波器が分波した第2光信号の一方とを合波する第1合波器と、第1分波器が分波した第1光信号の他方と、第2分波器が分波した第2光信号の他方とを合波する第2合波器とをさらに備え、テラヘルツ光出力部は、第1合波器が合波した第1光信号及び第2光信号を用いて、テラヘルツ光を生成し、被測定物に放射し、変調部は、第1分波器が分波した第1光信号の他方の周波数を変調し、第2合波器は、変調部が周波数を変調した第1光信号の他方と、第2分波器が分波した第2光信号の他方とを合波し、第1検出部は、第2合波器が合波した第1光信号の他方及び第2光信号の他方を用いて、被測定物を透過したテラヘルツ光のヘテロダイン検波を行ってもよい。
第1分波器が分波した第1光信号の他方、及び第2分波器が分波した第2光信号の他方の少なくとも一方を遅延させる遅延素子をさらに備えてもよい。
テラヘルツ光出力部が放射したテラヘルツ光を被測定物を介さずに検出し、第2合波器が合波した第1光信号の他方及び第2光信号の他方を用いて、ヘテロダイン検波を行う第2検出部をさらに備え、測定部は、第1検出部のヘテロダイン検波の検出結果と、第2検出部のヘテロダイン検波の検出結果とに基づいて、被測定物の伝搬特性を測定してもよい。
変調部は、光強度変調器、周波数変換器、又は音響光学変調器であってもよい。
第1の周波数と第2の周波数との差は、100GHz〜10THzであり、テラヘルツ光出力部は、100GHz〜10THzのテラヘルツ光を生成し、被測定物に放射してもよい。
第1光源又は第2光源は、周波数を掃引して第1光信号又は第2光信号を出力してもよい。
第1光源及び第2光源は、連続光である第1光信号及び第2光信号を出力してもよい。
本発明の第2の形態によれば、被測定物の伝搬特性を測定する伝搬測定方法であって、第1の周波数の第1光信号を出力する第1出力段階と、第2の周波数の第2光信号を出力する第2出力段階と、第1光信号及び第2光信号を用いて、第1の周波数と第2の周波数との差の周波数のテラヘルツ光を生成し、被測定物に放射するテラヘルツ光出力段階と、被測定物を透過したテラヘルツ光を検出する第1検出段階と、第1検出段階において検出したテラヘルツ光に基づいて、被測定物の伝搬特性を測定する測定段階とを備える。
参照信号を発生する参照信号発生段階と、参照信号発生段階において発生した参照信号に基づいて、第1光信号及び第2光信号の少なくとも1つを変調する変調段階とをさらに備え、測定段階は、変調段階において変調した第1光信号及び第2光信号の少なくとも一方と、参照信号段階において発生した参照信号とに基づいて、被測定物の伝搬特性を測定する段階を含んでもよい。
テラヘルツ光出力段階において放射したテラヘルツ光を被測定物を介さずに検出する第2検出段階をさらに備え、測定段階は、第1検出段階において検出したテラヘルツ光と、第2検出段階において検出したテラヘルツ光とに基づいて、被測定物の伝搬特性を測定する段階を含んでもよい。
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。
発明を実施するための最良の形態
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態はクレームにかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[第1実施形態]
図1は、本発明の第1実施形態に係る伝搬測定装置100の機能構成の一例を示す。本実施形態に係る伝搬測定装置100は、変調されたテラヘルツ光を被測定物10に放射する変調テラヘルツ光源12と、被測定物10を透過したテラヘルツ光を検出する第1検出部の一例であるテラヘルツ光検出素子14と、テラヘルツ光検出素子14により得られた検出信号を増幅する増幅器16と、変調テラヘルツ光源12とネットワークアナライザ18とに参照信号を供給する参照信号源の一例である参照用高周波信号源20と、参照信号を用いて増幅器16により増幅された検出信号を分析し、被測定物10の伝搬特性を測定する測定部の一例であるネットワークアナライザ18とを備える。
被測定物10を透過したテラヘルツ光には、被測定物10を透過する際に生じる減衰や遅延等の伝搬特性の情報が含まれている。従って、被測定物10を透過したテラヘルツ光を検出して分析することにより、被測定物10における減衰量や伝搬遅延等の伝搬特性を測定することができる。
以下、本実施形態による伝搬測定装置100の各構成部分について個々に詳述する。
(a)変調テラヘルツ光源12
変調テラヘルツ光源12は、周波数fの赤外光を出力する第1光源の一例である掃引型赤外光源22と、周波数fの赤外光を出力する第2光源の一例である赤外光源24と、参照用高周波信号源20が発生した周波数fIFの参照信号を用いて、赤外光源24が出力した周波数fの赤外光の強度を変調する変調部の一例である光強度変調器26と、掃引型赤外光源22が出力した赤外光と光強度変調器26が出力した赤外光とを合波する合波器28と、合波器28が合波した赤外光を用いて、変調されたテラヘルツ光を生成し、被測定物10に放射するテラヘルツ光出力部の一例である赤外光/テラヘルツ光変換素子30とを有する。なお、テラヘルツ光とは、テラヘルツ光領域の光、即ち100GHz〜10THz程度の光のことをいう。
掃引型赤外光源22は、周波数fの連続光(連続波(CW:Continuous Wave))を出力する。また、掃引型赤外光源22は、周波数fを掃引して赤外光を出力する。掃引型赤外光源22が掃引する周波数fの範囲は、例えば190THz〜200THzであることが好ましい。掃引型赤外光源22は、出力した赤外光を合波器28に供給する。
赤外光源24は、周波数fの連続光(連続波)を出力する。赤外光源24が出力する赤外光の周波数fは、掃引型赤外光源22が出力する赤外光の周波数fとの差(f−f又はf−f)が、テラヘルツ領域(100GHz〜10THz程度)となるように設定される。赤外光源24から出力される赤外光の周波数fは、例えば189.9THzであることが好ましい。赤外光源24は、出力した赤外光を光強度変調器26に供給する。
光強度変調器26は、参照用高周波信号源20が発生した周波数fIFの参照信号を用いて、赤外光源24が出力した周波数fの赤外光の強度を変調する。光強度変調器26としては、例えば190THz±5THzの赤外光領域の光強度変調器を用いることができる。このような狭帯域の赤外光領域の光強度変調器26は、広く普及されているので入手が容易である。そのため、容易に入手し得る赤外光領域の光強度変調器26を用いて、変調テラヘルツ光源12を安価に構成することができる。
光強度変調器26は、光強度変調器26が参照信号を用いて強度を変調した周波数f±fIFの赤外光と、変調されていない周波数fの赤外光とを出力し、合波器28に供給する。
合波器28は、掃引型赤外光源22が出力した赤外光と、光強度変調器26が出力した赤外光とを、偏波方向が互いに一致するように合波する。そして、合波器28は、周波数fの赤外光と、周波数fの赤外光と、周波数f±fIFの赤外光とが混合されたものを出力し、赤外光/テラヘルツ光変換素子30に供給する。
赤外光/テラヘルツ光変換素子30は、合波器28が出力した赤外光を用いて、変調されたテラヘルツ光を生成し、アンテナ(図示せず)を介して被測定物10に放射する。赤外光/テラヘルツ光変換素子30は、例えば低温成長ガリウム砒素より成る光伝導膜(図示せず)上に、アンテナを兼ねる平行伝送線路(図示せず)を形成することにより構成される。低温成長ガリウム砒素より成る光伝導膜は、光応答速度が極めて速く、優れた性質を有している。平行伝送線路には、直流電圧が適宜印加されるようになっている。このような赤外光/テラヘルツ光変換素子30は、赤外光を高効率でテラヘルツ光に変換することができる。
赤外光/テラヘルツ光変換素子30は、合波器28から周波数fの赤外光と、周波数fの赤外光と、周波数f±fIFの赤外光とが混合されたものが供給されると、赤外光/テラヘルツ光変換を行う。そして、赤外光/テラヘルツ変換素子30は、供給された複数の赤外光の周波数の差の周波数のテラヘルツ光、即ち周波数f−fのテラヘルツ光と、周波数(f−f)±fIFのテラヘルツ光とを生成し、被測定物10に放射する。ここでは、f>fとする。赤外光/テラヘルツ変換素子30は、例えば100GHz〜10THzのテラヘルツ光を生成し、被測定物10に放射する。
赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光は、周波数f−fのテラヘルツ光を、周波数fIFの参照信号で変調したものと同等である。即ち、本実施形態の変調テラヘルツ光源12によれば、テラヘルツ光領域の広帯域の光強度変調器を用いることなく、赤外光領域の光強度変調器26を用いて、変調されたテラヘルツ光を生成することができる。
また、掃引型赤外光源22が出力する赤外光の周波数fを掃引することにより、f−fの値が変化する。従って、掃引型赤外光源22が出力する赤外光の周波数fを掃引することにより、変調テラヘルツ光源12が出力するテラヘルツ光の周波数f−f、(f−f)±fIFを適宜変化させることができる。
(b)テラヘルツ光検出素子14
テラヘルツ光検出素子14は、被測定物10を透過したテラヘルツ光をアンテナ(図示せず)を介して検出する。テラヘルツ光検出素子14としては、例えば赤外光/テラヘルツ光変換素子30と同様のデバイスを用いることができる。
テラヘルツ光検出素子14は、変調テラヘルツ光源12が放射し、被測定物10を透過する際に減衰や遅延等が生じた周波数f−fのテラヘルツ光と周波数(f−f)±fIFのテラヘルツ光とを検出する。そして、テラヘルツ光検出素子14は、被測定物10の伝搬特性の情報を含む検出信号を電気信号として出力し、増幅器16に供給する。
(c)増幅器16
増幅器16は、テラヘルツ光検出素子14が出力した検出信号を、適宜増幅する。そして、増幅器16は、増幅した検出信号をネットワークアナライザ18の位相・振幅比較器32に供給する。
(d)ネットワークアナライザ18
ネットワークアナライザ18は、参照用高周波信号源20が発生する参照信号を用いて、増幅器16が増幅した検出信号の位相や振幅を求める位相・振幅比較器32と、位相・振幅比較器32が得たアナログ信号をデジタル信号に変換するA/D変換器34と、A/D変換器34が変換したデジタル信号に基づいて、被測定物10の伝搬特性を算出するデータ処理ブロック36とを有する。
位相・振幅比較器32は、参照用高周波信号源20が発生する参照信号を用いて、増幅器16が増幅した検出信号の位相や振幅を求める。位相・振幅比較器32は、比較結果をアナログ信号として出力し、A/D変換器34に供給する。
A/D変換器34は、位相・振幅比較器32が出力したアナログ信号をデジタル信号に変換する。A/D変換器34は、デジタル信号に変換した比較結果をデータ処理ブロック36に供給する。
データ処理ブロック36は、位相・振幅比較器32が得た比較結果を用いて、被測定物10の伝搬特性、例えば透過減衰量や伝搬遅延等を算出する。
(e)参照用高周波信号源20
参照用高周波信音源20は、変調テラヘルツ光源12が有する光強度変調器26と、ネットワークアナライザ18の位相・振幅比較器32とに、周波数fIFの電気信号である参照信号を供給する。光強度変調器26は、上述したように、赤外光源24から出力される赤外光を変調する際に、参照用高周波信号源20が発生した参照信号を用いる。位相・振幅比較器32は、上述したように、増幅器16が増幅した検出信号の位相や振幅を比較する際の基準信号として、参照用高周波信号源20が発生した参照信号を用いる。
参照用高周波信号源20から光強度変調器26及び位相・振幅比較器32に供給される参照信号の周波数fIFは、赤外光源24から出力される赤外光の周波数fに比べて十分に低く設定される。参照信号の周波数fIFは、例えば1GHzである。
本実施形態の伝搬測定装置100は、2つの赤外光源、即ち掃引型赤外光源22及び赤外光源24を備え、赤外光源24が出力した赤外光に対して光強度変調器26が変調を行い、これにより得られた2つの赤外光を用いて、変調されたテラヘルツ光を生成することに特徴がある。
図9に示した伝搬測定装置200では、フェムト秒光パルス、即ち短パルス光を用いてテラヘルツ光を生成していたので、線幅が広くなってしまっていた。このため、測定精度が低く、分解能も低くなってしまっていた。
これに対し、本実施形態の伝搬測定装置100では、線幅の狭い連続波の赤外光を用いてテラヘルツ光を生成するため、線幅の狭いテラヘルツ光を生成することができる。従って、高精度、高分解能で伝搬特性を測定することができる。
また、図9に示した伝搬測定装置200では、時間遅延手段120を用いてサンプリングパルス116の遅延時間を徐々に変化させることにより測定を行うので、測定に長時間を要していた。
これに対し、本実施形態の伝搬測定装置100では、掃引型赤外光源22が出力する赤外光の周波数を適宜掃引することにより、変調テラヘルツ光源12が出力するテラヘルツ光の周波数を変化させて、伝搬測定を行うことができる。従って、被測定物10の伝搬特性の周波数依存性を迅速かつ高精度に測定することができる。
図10に示した波長分散測定装置300の技術を単にテラヘルツ光領域に応用した場合には、光強度変調器212としてテラヘルツ光領域の広帯域なものを用いることが必要となる。このようにテラヘルツ光領域の広帯域な光強度変調器は、広く普及しているものではないので、入手が極めて困難であり、高価になってしまう。
これに対し、本実施形態の伝搬測定装置100では、2つの赤外光源、即ち掃引型赤外光源22と赤外光源24とを備え、赤外光源24が出力した赤外光に対して光強度変調器26が変調を行い、これにより得られた2つの赤外光を用いて、変調されたテラヘルツ光を生成することができる。そのため、テラヘルツ光領域の広帯域な光強度変調器を用いることなく、広く普及されている入手が容易な狭帯域の赤外光領域の光強度変調器26を用いて、変調テラヘルツ光源12を構成することができる。従って、テラヘルツ光領域の伝搬測定装置100を安価に提供することができる。
また、図10に示した波長分散測定装置300の技術を単にテラヘルツ光領域に応用した場合には、波長可変光源210が出力したテラヘルツ光は、光強度変調器212及び被測定物216を経由して、光電変換器218に入力される。テラヘルツ光領域におけるロスの少ない伝送技術は未だ開発されていないので、波長可変光源210が出力するテラヘルツ光の強度を、伝送ロスの分だけ大きくしなければならない。そのためには、波長可変光源210として大出力のものを用いなけれはならず、装置の小型化における阻害要因となってしまう。
これに対し、本実施形態の伝搬測定装置100では、テラヘルツ光が伝搬する経路が、赤外光/テラヘルツ光変換素子30からテラヘルツ光検出素子14までの極めて短い経路であるので、伝送におけるロスは小さい。従って、大型の光源を用いることなく、変調テラヘルツ光源12を構成することができ、伝搬測定装置の小型化に寄与することができる。
以上のように、本実施形態の伝搬測定装置100によれば、テラヘルツ光領域における被測定物10の伝搬特性を高精度且つ迅速に測定できる。さらに本実施形態の伝搬測定装置100を簡便な構成で且つ安価に提供することができる。
本実施形態においては、赤外光を用いてテラヘルツ光を生成する場合について説明したが、赤外光以外の光信号を用いてもよい。即ち、変調テラヘルツ光源12は、掃引型赤外光源22及び赤外光源24に換えて、赤外光以外の光信号を出力する光源を有してもよく、赤外光/テラヘルツ光変換素子30に換えて、赤外光以外の光信号をテラヘルツ光に変換する変換素子を有してもよい。
図2は、第1実施形態に係る伝搬測定装置100の機能構成の第1変形例を示す。
図1に示した伝搬測定装置100は、赤外光源24と合波器28との間に光強度変調器26を備える設けられるが、本変形例に係る伝搬測定装置100は、掃引型赤外光源22と合波器28との間に光強度変調器26を備える。
このように掃引型赤外光源22と合波器28との間に光強度変調器26を設ける場合であっても、変調されたテラヘルツ光を出力し得る変調テラヘルツ光源12aを構成することができる。従って、本変形例によっても、テラヘルツ光領域における被測定物の伝搬特性を高精度且つ迅速に測定し得る簡便な構成の伝搬測定装置100を安価に提供することができる。
図3は、第1実施形態に係る伝搬測定装置100の機能構成の第2変形例を示す。
図1に示した伝搬測定装置100は、赤外光源24と合波器28との間に光強度変調器26を備えるが、本変形例に係る伝搬測定装置100は、合波器28と赤外光/テラヘルツ光変換素子30との間に光強度変調器26を備える。光強度変調器26は、合波器28が合波した2つの赤外光の強度を変調する。そして、赤外光/テラヘルツ光変換素子30は、光強度変調器26が強度を変調した2つの赤外光を用いてテラヘルツ光を生成する。
このように合波器28と赤外光/テラヘルツ光変換素子30との間に光強度変調器26を設ける場合であっても、変調されたテラヘルツ光を出力し得る変調テラヘルツ光源12bを構成することができる。従って、本変形例によっても、テラヘルツ光領域における被測定物の伝搬特性を、高精度且つ迅速に測定し得る簡便な構成の伝搬測定装置100を安価に提供することができる。
[第2実施形態]
図4は、本発明の第2実施形態に係る伝搬測定装置100の機能構成の一例を示す。第2実施形態においては、第1実施形態に係る伝搬測定装置100と同一の構成要素には、同一の符号を付して説明を省略又は簡潔にする。
本実施形態に係る伝搬測定装置100は、第1実施形態に係る伝搬測定装置100に加えて、赤外光/テラヘルツ光変換素子30が放射したテラヘルツ光を分波する分波器38と、赤外光/テラヘルツ光変換素子30が放射したテラヘルツ光を被測定物10を介さずに検出する第2検出部の一例であるテラヘルツ光検出素子14aとをさらに備える。テラヘルツ光検出素子14aには、テラヘルツ光検出素子14と同様のデバイスを用いる。
テラヘルツ光検出素子14は、分波器38が分波したテラヘルツ光の一方を被測定物10を介して検出して、検出信号を増幅器16に供給する。そして、増幅器16は、テラヘルツ光検出素子14により得られた検出信号を増幅して、ネットワークアナライザ18の位相・振幅比較器32に供給する。
テラヘルツ光検出素子14aは、分波器38が分波したテラヘルツ光の他方を被測定物10を介さずに検出して、検出信号をネットワークアナライザ18の位相・振幅比較器32に供給する。
位相・振幅比較器32は、テラヘルツ光検出素子14aが検出したテラヘルツ光に基づく検出信号を参照信号として、テラヘルツ光検出素子14が検出したテラヘルツ光に基づく検出信号の位相や振幅を求める。
第1実施形態の伝搬測定装置100では、位相・振幅比較器32は、参照用高周波信号源20が発生する信号を参照信号として用いるので、赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光の強度が変動すると、位相・振幅比較器32における比較の基準となる参照信号の大きさに対して、検出信号の大きさが変動してしまう。そのため、第1実施形態の伝搬測定装置100では、赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光の強度が変動した場合には、位相・振幅比較器32による比較結果に誤差が生じてしまう場合がある。
これに対し、本実施形態の伝搬測定装置100では、赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光を用いて参照信号を生成するので、赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光の強度が変動した場合には、位相・振幅比較器32に供給される検出信号の大きさと参照信号の大きさとが同様に変動する。従って、赤外光/テラヘルツ光変換素子30が出力するテラヘルツ光の強度の変動の影響を受けることなく、高精度に被測定物10の伝搬特性を測定することができる。
[第3実施形態]
図5は、本発明の第3実施形態に係る伝搬測定装置100の機能構成の一例を示す。第3実施形態においては、第1実施形態又は第2実施形態に係る伝搬測定装置100と同一の構成要素には、同一の符号を付して説明を省略又は簡潔にする。
本実施形態に係る伝搬測定装置100は、テラヘルツ光を被測定物10に放射するテラヘルツ光源12cと、赤外光源24から分波器40を介してテラヘルツ光源12cの外部に出力される赤外光の周波数を、参照用高周波信号源20が発生する参照信号を用いて変換する変調部の一例である光周波数変換器44と、掃引型赤外光源22から分波器42を介してテラヘルツ光源12eの外部に出力される赤外光と周波数変換器44が周波数を変換した赤外光とを合波する合波器46と、合波器46が合波した赤外光を用いて、被測定物10を透過したテラヘルツ光のヘテロダイン検波を行う第1検出部の一例であるテラヘルツ光検出・周波数変換素子14bと、テラヘルツ光検出・周波数変換素子14bが検出した検出信号を増幅する増幅器16と、増幅器16が増幅した検出信号を分析し、被測定物10の伝搬特性を測定する測定部の一例であるネットワークアナライザ18と、光周波数変換器44とネットワークアナライザ18とに参照信号を供給する参照信号源の一例である参照用高周波信号源20とを備える。
以下、本実施形態による伝搬測定装置100の各構成部分について個々に詳述する。
(a)テラヘルツ光源12c
テラヘルツ光源12cは、周波数fの赤外光を出力する第1光源の一例である掃引型赤外光源22と、掃引型赤外光源22が出力する赤外光を分波する分波器42と、周波数fの赤外光を出力する第2光源の一例である赤外光源24と、赤外光源24が出力する赤外光を分波する分波器40と、分波器42が分波した赤外光の一方と分波器40が分波した赤外光の一方とを合波する合波器28と、合波器28が合波した赤外光を用いて、テラヘルツ光を生成し、被測定物10に放射するテラヘルツ光出力部の一例である赤外光/テラヘルツ光変換素子30と有する。
赤外光/テラヘルツ光変換素子30は、掃引型赤外光源22が出力する周波数fの赤外光と、赤外光源24が出力する周波数fの赤外光とを用いて、周波数f−fのテラヘルツ光を生成し、被測定物10に放射する。
テラヘルツ光源12cは、掃引型赤外光源22が出力して分波器42が分波した周波数fの赤外光の他方を外部に出力する。掃引型赤外光源22から分波器42を介してテラヘルツ光源12cの外部に出力される赤外光は、合波器46に供給される。
テラヘルツ光源12cは、赤外光源24が出力して分波器40が分波した周波数fの赤外光の他方を外部に出力する。赤外光源24から分波器40を介してテラヘルツ光源12cの外部に出力される赤外光は、光周波数変換器44に供給される。
(b)光周波数変換器44
光周波数変換器44は、赤外光源24が出力して分波器40が分波した赤外光の他方の周波数を、参照用高周波信号源20が発生する参照信号を用いて変換する。光周波数変換器44は、参照用高周波信号源20が発生する参照信号を用いて周波数変換を行い、周波数f+fIF又はf−fIFの赤外光を出力し、合波器46に供給する。
(c)合波器46
合波器46は、掃引型赤外光源22が出力し分波器42が分波した赤外光の他方と、光周波数変換器44が周波数を変換した赤外光とを合波し、テラヘルツ光検出・周波数変換素子14bに供給する。
(d)テラヘルツ光検出・周波数変換素子14b
テラヘルツ光検出・周波数変換素子14bは、合波器46が合波した赤外光を用いて、被測定物10を透過したテラヘルツ光のヘテロダイン検波を行う。テラヘルツ光検出・周波数変換素子14bには、被測定物10を透過した周波数f−fのテラヘルツ光と、合波器46が出力する周波数fの赤外光及び周波数f+fIF又はf−fIFの赤外光とが入力される。
テラヘルツ光検出・周波数変換素子14bに入力されるf−fのテラヘルツ光と、周波数fの赤外光と、周波数f+fIFの赤外光とによるビート周波数は、
(f−f)+(f+fIF)−f=fIF
となる。
テラヘルツ光検出・周波数変換素子14bは、電子がビート周波数fIFに追随してヘテロダイン検波を行う。即ち、テラヘルツ光検出・周波数変換素子14bは、周波数f−fのテラヘルツ光と、周波数fの赤外光と、周波数f+fIFの赤外光とを入力信号とし、周波数fIFの検出信号を出力信号とするヘテロダイン検波を行う。
合波器46が合波してテラヘルツ光検出・周波数変換素子14bに供給される周波数fの赤外光及び周波数f+fIFの赤外光の強度は、被測定物10を透過してテラヘルツ光検出・周波数変換素子14bにより検出される周波数f−fのテラヘルツ光の強度に比べて十分に強い。このため、テラヘルツ光の強度に比べて十分に強い強度の赤外光を用いて、ヘテロダイン検波を行うことができ、ショットノイズ限界程度の微小なテラヘルツ光を検出することができる。
以上のように、本実施形態の伝搬測定装置100によれば、テラヘルツ光のヘテロダイン検波を行うことができるので、被測定物10の伝搬特性をより高感度に測定することができる。
本実施形態において、伝搬測定装置100は、分波器40と合波器46との間に光周波数変換器44を備えるが、光周波数変換器44を設ける箇所は分波器40と合波器46との間に限定されるものではなく、例えば分波器42と合波器46との間、分波器42と合波器28との間、又は分波器40と合波器28との間に備えてもよい。
図6は、第3実施形態に係る伝搬測定装置100の機能構成の第1変形例を示す。
本変形例に係る伝搬測定装置100は、図5に示した伝搬測定装置100が備える分波器40及び光周波数変換器44に換えて、AOM(Acousto−Optic Modulator、音響光学変調器)48を備える。AOM48は、音響光学回折を用いた光学変調器である。
AOM48は、赤外光源が出力する赤外光の周波数fを変換する。AOM48は、赤外光源24から供給される赤外光を、周波数を変換することなく0次側から出力し、合波器28に供給する。AOM48は、赤外光源24から供給される赤外光の周波数を変換して1次側から出力し、合波器46に供給する。
図5に示した伝搬測定装置100では、赤外光源24が出力する赤外光を分波器40が分波し、分波器40が分波した赤外光を光周波数変換器44が周波数変換するので、構成要素の数が多くなる。
これに対し、本変形例の伝搬測定装置100によれば、分波機能と周波数変換機能とを有するAOM48を備えるので、構成要素の数を少なくすることができる。従って、伝搬測定装置100の構成を簡略化することができ、ひいては、小型化、低価格化に寄与することができる。
また、本変形例の伝搬測定装置100では、AOM48の0次側を合波器28に接続し、AOM48の1次側を合波器46に接続したが、AOM48の0次側を合波器46に接続し、AOM48の1次側を合波器28に接続してもよい。また、本変形例の伝搬測定装置100は、赤外光源24と合波器28との間にAOM48を備えるが、掃引型赤外光源22と合波器28との間にAOM48をを備えてもよい。この場合、赤外光源24と合波器28との間に、分波器を備えればよい。
図7は、第3実施形態に係る伝搬測定装置100の機能構成の第2変形例を示す。
本変形例に係る伝搬測定装置100は、分波器42と合波器46との間に遅延素子50をさらに備える。遅延素子50は、分波器42が分波した赤外光がテラヘルツ光検出・周波数変換素子14bに達するまでの時間を遅延させる。
このように遅延素子50を備えることにより、分波器42が分波した赤外光が、合波器28、赤外光/テラヘルツ光変換素子30、及び被測定物10を経由して、テラヘルツ光としてテラヘルツ光検出・周波数変換素子14bに到達するまでの伝搬時間Tと、遅延素子50及び合波器46を経由して、赤外光としてテラヘルツ光検出・周波数変換素子14bに到達するまでの伝搬時間Tとを、一致させることができる。
伝搬時間Tと伝搬時間Tとが一致していない場合、掃引型赤外光源22が出力する赤外光の周波数fを掃引すると、テラヘルツ光検出・周波数変換素子14bが検出するテラヘルツ光の周波数が変化するタイミングと、テラヘルツ光検出・周波数変換素子14bに供給される赤外光の周波数が変化するタイミングとの間で不一致が生じ、これにより測定誤差が生じてしまう。
これに対し、本変形例の伝搬測定装置100は、分波器42と合波器46との間に遅延素子50を備えるので、伝搬時間Tと伝搬時間Tとを一致させることができる。このため、掃引型赤外光源22が出力する赤外光の周波数fを掃引した場合であっても、赤外光の周波数fの掃引に起因して測定誤差が生じることを防止できる。従って、本変形例によれば、より高精度且つ迅速に伝搬特性の周波数依存性を測定できる。
[第4実施形態]
図8は、本発明の第4実施形態に係る伝搬測定装置100の機能構成の一例を示す。第4実施形態においては、第1実施形態、第2実施形態、又は第3実施形態に係る伝搬測定装置100と同一の構成要素には、同一の符号を付して説明を省略又は簡潔にする。
本実施形態に係る伝搬測定装置100は、第3実施形態に係る伝搬測定装置100に加えて、赤外光/テラヘルツ光変換素子30が放射したテラヘルツ光を分波する分波器38と、合波器46が合波した赤外光を分波する分波器52と、赤外光/テラヘルツ光変換素子30が放射したテラヘルツ光を被測定物10を介さずに検出し、分波器52が分波した赤外光を用いて、ヘテロダイン検波を行う第2検出部の一例であるテラヘルツ光検出・周波数変換素子14cとを備える。テラヘルツ光検出・周波数変換素子14cには、テラヘルツ光検出・周波数変換素子14bと同様のデバイスを用いる。
テラヘルツ光検出・周波数変換素子14bは、分波器38が分波したテラヘルツ光の一方を被測定物10を介して検出し、分波器52が分波した赤外光の一方を用いて、ヘテロダイン検波を行う。そして、テラヘルツ光検出・周波数変換素子14bは、ヘテロダイン検波による検出結果の検出信号を増幅器16に供給する。増幅器16は、テラヘルツ光検出・周波数変換素子14bにより得られた検出信号を増幅して、ネットワークアナライザ18の位相・振幅比較器32に供給する。
テラヘルツ光検出・周波数変換素子14cは、分波器38が分波したテラヘルツ光の他方を被測定物10を介さずに検出し、分波器52が分波した赤外光の他方を用いて、ヘテロダイン検波を行う。そして、テラヘルツ光検出・周波数変換素子14cは、ヘテロダイン検波による検出結果の検出信号をネットワークアナライザ18の位相・振幅比較器32に供給する。
位相・振幅比較器32は、テラヘルツ光検出・周波数変換素子14cが検出したテラヘルツ光に基づく検出信号を参照信号として、テラヘルツ光検出・周波数変換素子14bが検出したテラヘルツ光に基づく検出信号の位相や振幅を求める。
第3実施形態の伝搬測定装置100では、位相・振幅比較器32は、参照用高周波信号源20が発生する信号を参照信号として用いるので、赤外光/テラヘルツ光変調素子30が出力するテラヘルツ光の強度が変動すると、位相・振幅比較器32における比較の基準となる参照信号の大きさに対して、検出信号の大きさが変動してしまう。そのため、第3実施形態の伝搬測定装置100では、赤外光/テラヘルツ光変調素子30が出力するテラヘルツ光の強度が変動した場合には、位相・振幅比較器32による比較結果に誤差が生じてしまう場合がある。
これに対し、本実施形態の伝搬測定装置100では、赤外光/テラヘルツ光変調素子30が出力するテラヘルツ光を用いて参照信号を生成するので、赤外光/テラヘルツ光変調素子30が出力するテラヘルツ光の強度が変動した場合には、位相・振幅比較器32に供給される検出信号の大きさと参照信号の大きさとが同様に変動する。従って、赤外光/テラヘルツ光変調素子30が出力するテラヘルツ光の強度の変動の影響を受けることなく、高精度に被測定物10の伝搬特性を測定することができる。
本発明に係る伝搬測定装置100は、上記実施形態に限らず種々の変形が可能である。例えば、上記実施形態による伝搬測定装置100において、テラヘルツ光検出素子14もしくは14aと位相・振幅比較器32との間、又はテラヘルツ光検出・周波数変換素子14b又は14cと位相・振幅比較器32との間に、中心周波数fIFの帯域フィルタを挿入してもよい。これにより、ノイズを除去することができ、測定精度の向上を図ることができる。
以上発明の実施の形態を説明したが、本出願に係る発明の技術的範囲は上記の実施の形態に限定されるものではない。上記実施の形態に種々の変更を加えて、請求の範囲に記載の発明を実施することができる。そのような発明が本出願に係る発明の技術的範囲に属することもまた、請求の範囲の記載から明らかである。
産業上の利用可能性
以上の説明から明らかなように、本発明によれば、テラヘルツ光領域における被測定物の伝搬特性を高精度且つ迅速に測定し得る伝搬測定装置及び伝搬測定方法を提供することができる。さらに、このような伝搬測定装置を簡便な構成で安価に提供することができる。
【図面の簡単な説明】
図1は、本発明の第1実施形態に係る伝搬測定装置100の機能構成の一例を示す。
図2は、第1実施形態に係る伝搬測定装置100の機能構成の第1変形例を示す。
図3は、第1実施形態に係る伝搬測定装置100の機能構成の第2変形例を示す。
図4は、本発明の第2実施形態に係る伝搬測定装置100の機能構成の一例を示す。
図5は、本発明の第3実施形態に係る伝搬測定装置100の機能構成の一例を示す。
図6は、第3実施形態に係る伝搬測定装置100の機能構成の第1変形例を示す。
図7は、第3実施形態に係る伝搬測定装置100の機能構成の第2変形例を示す。
図8は、本発明の第4実施形態に係る伝搬測定装置100の機能構成の一例を示す。
図9は、従来の伝搬測定装置200の概略図を示す。
図10は、従来の波長分散測定装置300の概略図を示す。
図11は、従来の光断層像画像化装置400の概略図を示す。

Claims (16)

  1. 被測定物の伝搬特性を測定する伝搬測定装置であって、
    第1の周波数の第1光信号を出力する第1光源と、
    第2の周波数の第2光信号を出力する第2光源と、
    前記第1光信号及び前記第2光信号を用いて、前記第1の周波数と前記第2の周波数との差の周波数のテラヘルツ光を生成し、前記被測定物に放射するテラヘルツ光出力部と、
    前記被測定物を透過した前記テラヘルツ光を検出する第1検出部と、
    前記第1検出部が検出した前記テラヘルツ光に基づいて、前記被測定物の伝搬特性を測定する測定部と
    を備えることを特徴とする伝搬測定装置。
  2. 前記第1光源及び前記第2光源は、赤外光である前記第1光信号及び前記第2光信号をそれぞれ出力することを特徴とする請求項1に記載の伝搬測定装置。
  3. 参照信号を発生する参照信号源と、
    前記参照信号源が発生した前記参照信号に基づいて、前記第1光信号及び前記第2光信号の少なくとも1つを変調する変調部と
    をさらに備え、
    前記測定部は、前記変調部が変調した前記第1光信号及び前記第2光信号の少なくとも一方と、前記参照信号源が発生した前記参照信号とに基づいて、前記被測定物の伝搬特性を測定することを特徴とする請求項1に記載の伝搬測定装置。
  4. 前記変調部は、前記第1光源が出力した前記第1光信号の強度を変調し、
    前記テラヘルツ光出力部は、前記変調部が強度を変調した前記第1光信号、及び前記第2光源が出力する前記第2光信号を用いて、前記テラヘルツ光を生成し、前記被測定物に放射することを特徴とする請求項3に記載の伝搬測定装置。
  5. 前記第1光源が発生した前記第1光信号と、前記第2光源が発生した前記第2光信号とを合波する第1合波器をさらに備え、
    前記変調部は、前記第1合波器が合波した前記第1光信号及び前記第2光信号の強度を変調し、
    前記テラヘルツ光出力部は、前記変調部が強度を変調した前記第1光信号及び前記第2光信号を用いて、前記テラヘルツ光を生成し、前記被測定物に放射することを特徴とする請求項3に記載の伝搬測定装置。
  6. 前記テラヘルツ光出力部が放射した前記テラヘルツ光を前記被測定物を介さずに検出する第2検出部をさらに備え、
    前記測定部は、前記第1検出部が検出した前記テラヘルツ光と、前記第2検出部が検出した前記テラヘルツ光とに基づいて、前記被測定物の伝搬特性を測定することを特徴とする請求項1に記載の伝搬測定装置。
  7. 前記第1光源が出力した前記第1光信号を分波する第1分波器と、
    前記第2光源が出力した前記第2光信号を分波する第2分波器と、
    前記第1分波器が分波した前記第1光信号の一方と、前記第2分波器が分波した前記第2光信号の一方とを合波する第1合波器と、
    前記第1分波器が分波した前記第1光信号の他方と、前記第2分波器が分波した前記第2光信号の他方とを合波する第2合波器と
    をさらに備え、
    前記テラヘルツ光出力部は、前記第1合波器が合波した前記第1光信号及び前記第2光信号を用いて、前記テラヘルツ光を生成し、前記被測定物に放射し、
    前記変調部は、前記第1分波器が分波した前記第1光信号の他方の周波数を変調し、
    前記第2合波器は、前記変調部が周波数を変調した前記第1光信号の他方と、前記第2分波器が分波した前記第2光信号の他方とを合波し、
    前記第1検出部は、前記第2合波器が合波した前記第1光信号の他方及び前記第2光信号の他方を用いて、前記被測定物を透過した前記テラヘルツ光のヘテロダイン検波を行うことを特徴とする請求項3に記載の伝搬測定装置。
  8. 前記第1分波器が分波した前記第1光信号の他方、及び前記第2分波器が分波した前記第2光信号の他方の少なくとも一方を遅延させる遅延素子をさらに備えることを特徴とする請求項7に記載の伝搬測定装置。
  9. 前記テラヘルツ光出力部が放射した前記テラヘルツ光を前記被測定物を介さずに検出し、前記第2合波器が合波した前記第1光信号の他方及び前記第2光信号の他方を用いて、ヘテロダイン検波を行う第2検出部をさらに備え、
    前記測定部は、前記第1検出部のヘテロダイン検波の検出結果と、前記第2検出部のヘテロダイン検波の検出結果とに基づいて、前記被測定物の伝搬特性を測定することを特徴とする請求項7に記載の伝搬測定装置。
  10. 前記変調部は、光強度変調器、周波数変換器、又は音響光学変調器であることを特徴とする請求項3に記載の伝搬測定装置。
  11. 前記第1の周波数と前記第2の周波数との差は、100GHz〜10THzであり、
    前記テラヘルツ光出力部は、100GHz〜10THzのテラヘルツ光を生成し、前記被測定物に放射することを特徴とする請求項1に記載の伝搬測定装置。
  12. 前記第1光源又は前記第2光源は、周波数を掃引して前記第1光信号又は前記第2光信号を出力することを特徴とする請求項1に記載の伝搬測定装置。
  13. 前記第1光源及び前記第2光源は、連続光である前記第1光信号及び前記第2光信号を出力することを特徴とする請求項1に記載の伝搬測定装置。
  14. 被測定物の伝搬特性を測定する伝搬測定方法であって、
    第1の周波数の第1光信号を出力する第1出力段階と、
    第2の周波数の第2光信号を出力する第2出力段階と、
    前記第1光信号及び前記第2光信号を用いて、前記第1の周波数と前記第2の周波数との差の周波数のテラヘルツ光を生成し、前記被測定物に放射するテラヘルツ光出力段階と、
    前記被測定物を透過した前記テラヘルツ光を検出する第1検出段階と、
    前記第1検出段階において検出した前記テラヘルツ光に基づいて、前記被測定物の伝搬特性を測定する測定段階と
    を備えることを特徴とする伝搬測定方法。
  15. 参照信号を発生する参照信号発生段階と、
    前記参照信号発生段階において発生した前記参照信号に基づいて、前記第1光信号及び前記第2光信号の少なくとも1つを変調する変調段階と
    をさらに備え、
    前記測定段階は、前記変調段階において変調した前記第1光信号及び前記第2光信号の少なくとも一方と、前記参照信号段階において発生した前記参照信号とに基づいて、前記被測定物の伝搬特性を測定する段階を含むことを特徴とする請求項14に記載の伝搬測定方法。
  16. 前記テラヘルツ光出力段階において放射した前記テラヘルツ光を前記被測定物を介さずに検出する第2検出段階をさらに備え、
    前記測定段階は、前記第1検出段階において検出した前記テラヘルツ光と、前記第2検出段階において検出した前記テラヘルツ光とに基づいて、前記被測定物の伝搬特性を測定する段階を含むことを特徴とする請求項14に記載の伝搬測定方法。
JP2003510927A 2001-07-02 2002-06-20 伝搬測定装置及び伝搬測定方法 Expired - Lifetime JP3828111B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001200377 2001-07-02
JP2001200377 2001-07-02
PCT/JP2002/006175 WO2003005002A1 (fr) 2001-07-02 2002-06-20 Appareil et procede de mesure des propagations

Publications (2)

Publication Number Publication Date
JPWO2003005002A1 true JPWO2003005002A1 (ja) 2004-10-28
JP3828111B2 JP3828111B2 (ja) 2006-10-04

Family

ID=19037511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003510927A Expired - Lifetime JP3828111B2 (ja) 2001-07-02 2002-06-20 伝搬測定装置及び伝搬測定方法

Country Status (4)

Country Link
US (1) US6873405B2 (ja)
JP (1) JP3828111B2 (ja)
DE (1) DE10297037B4 (ja)
WO (1) WO2003005002A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129491B2 (en) * 2002-11-13 2006-10-31 Rensselaer Polytechnic Institute Diffraction mode terahertz tomography
US6949734B2 (en) * 2003-04-22 2005-09-27 Itt Manufacturing Enterprises, Inc. Active remote sensing using a spectral lock-in technique
US7259859B2 (en) * 2004-01-23 2007-08-21 Hrl Laboratories, Llc Terahertz modulation spectrometer
GB2418337B (en) * 2004-09-17 2008-07-16 Tera View Ltd An imaging apparatus and method
JP2006275910A (ja) * 2005-03-30 2006-10-12 Canon Inc 位置センシング装置及び位置センシング方法
GB0510109D0 (en) * 2005-05-18 2005-06-22 Ct For Integrated Photonics Th Method to generate and detect the radiation
JP4861663B2 (ja) 2005-09-07 2012-01-25 株式会社アドバンテスト 測定装置、方法、プログラムおよび記録媒体
JP4819466B2 (ja) * 2005-10-03 2011-11-24 株式会社アドバンテスト 伝達特性測定装置、方法、プログラムおよび記録媒体
JP4534045B2 (ja) * 2006-01-04 2010-09-01 国立大学法人 筑波大学 ヘテロダインビートプローブ走査プローブトンネル顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
DE102006001731A1 (de) * 2006-01-13 2007-07-19 Robert Bosch Gmbh Heterodyninterferometer
CN101688834A (zh) * 2007-06-21 2010-03-31 皇家飞利浦电子股份有限公司 具有光源和光检测器的微电子传感器设备
DE102008019010A1 (de) * 2008-04-15 2009-10-22 Deutsche Telekom Ag Verfahren und Vorrichtung zur Verarbeitung von Terahertz-Wellen
GB0807176D0 (en) * 2008-04-18 2008-05-21 Univ Leeds Signal generation
DE102008020466A1 (de) * 2008-04-23 2009-10-29 Deutsche Telekom Ag Drahtlose Datenübertragung mit Terahertz-Wellen
WO2009146561A1 (en) * 2008-06-06 2009-12-10 T-Ray Science Inc. Dual mode terahertz spectroscopy and imaging systems and methods
JP5148381B2 (ja) * 2008-06-18 2013-02-20 株式会社アドバンテスト 光測定装置
US8027590B2 (en) * 2008-09-19 2011-09-27 Goodrich Corporation System and method for signal extraction by path modulation
US8145064B2 (en) * 2008-09-19 2012-03-27 Goodrich Corporation System and method for suppressing noise by frequency dither
JP4643705B2 (ja) * 2008-12-05 2011-03-02 日本電信電話株式会社 電磁波処理装置及び電磁波処理方法
JP5717335B2 (ja) * 2009-01-23 2015-05-13 キヤノン株式会社 分析装置
JP4934691B2 (ja) * 2009-03-12 2012-05-16 日本電信電話株式会社 分光システム
JP4574718B1 (ja) * 2009-04-22 2010-11-04 株式会社アドバンテスト 電磁波測定装置、測定方法、プログラム、記録媒体
US8481938B2 (en) * 2009-07-01 2013-07-09 Advantest Corporation Electromagnetic wave measuring apparatus, measuring method, program, and recording medium
JP5298264B2 (ja) * 2010-03-23 2013-09-25 国立大学法人 筑波大学 ヘテロダインビートプローブ走査プローブトンネル顕微鏡およびこれによってトンネル電流に重畳された微小信号の計測方法
DE102010003239A1 (de) * 2010-03-25 2011-09-29 Robert Bosch Gmbh Vorrichtunng und Verfahren zur Erkennung von Hautkrebs mittels THz-Strahlung
US9279723B2 (en) * 2010-08-19 2016-03-08 Novatrans Group Sa Terahertz spectroscopy system and method
DE102010040356A1 (de) * 2010-09-07 2012-03-08 Universität Zu Köln THz-Spektrometer und THz-Spektroskopieverfahren
JP5337132B2 (ja) * 2010-10-29 2013-11-06 エムコア コーポレイション 光源レーザビームの周波数をシフトするテラヘルツ周波数領域の分光計
JP5300923B2 (ja) * 2011-06-17 2013-09-25 日本電信電話株式会社 分光システムおよびその制御方法
JP2014052272A (ja) * 2012-09-06 2014-03-20 Nippon Telegr & Teleph Corp <Ntt> 電磁波検出システム及び電磁波検出方法
US11140809B2 (en) 2013-08-05 2021-10-12 Dutch Terahertz Inspection Services B.V. Method and apparatus for estimating a seed germination ability
JP5883079B2 (ja) * 2014-06-30 2016-03-09 日本電信電話株式会社 イメージングシステム及びその方法
US10404397B2 (en) * 2015-12-23 2019-09-03 Adva Optical Networking Se Wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1155284B (it) * 1982-02-10 1987-01-28 Cselt Centro Studi Lab Telecom Procedimento e apparecchiatura per la misura dell'indice di rifrazione e dello spessore di materiali trasparenti
IT1155285B (it) * 1982-02-10 1987-01-28 Cselt Centro Studi Lab Telecom Procedimento e apparecchiatura per la determinazione del profilo d'indice di rifrazione di fibre ottiche e preforme per fibre ottiche
JP2882803B2 (ja) * 1988-12-01 1999-04-12 科学技術振興事業団 光断層像画像化装置
US5150248A (en) * 1989-07-21 1992-09-22 Alfano Robert R Terahertz repetition rate optical computing systems, and communication systems and logic elements using cross-phase modulation based optical processors
FR2680248B1 (fr) * 1991-08-09 1993-10-08 Slimane Loualiche Procede et systeme de mesure de signaux electrique a haute frequence par effet electro-optique.
US6525862B2 (en) * 1996-10-30 2003-02-25 Photogen, Inc. Methods and apparatus for optical imaging
US6348683B1 (en) * 1998-05-04 2002-02-19 Massachusetts Institute Of Technology Quasi-optical transceiver having an antenna with time varying voltage
JP2000121550A (ja) * 1998-10-16 2000-04-28 Japan Science & Technology Corp ヘテロダイン検波による生体試料の画像検出方法及びその装置
GB2343964B (en) * 1998-11-03 2000-11-01 Toshiba Res Europ Ltd An optical device
US6144679A (en) * 1999-01-15 2000-11-07 Science Applications International Corporation Method and apparatus for providing a coherent terahertz source
AU5566600A (en) * 1999-06-21 2001-01-09 Hamamatsu Photonics K.K. Terahertz wave spectrometer
JP3896532B2 (ja) * 1999-07-09 2007-03-22 独立行政法人科学技術振興機構 テラヘルツ帯複素誘電率測定装置
GB2352512B (en) * 1999-07-23 2002-03-13 Toshiba Res Europ Ltd A radiation probe and detecting tooth decay
JP2002005828A (ja) * 2000-06-20 2002-01-09 Tochigi Nikon Corp 半導体の不純物濃度検査装置及び検査方法
WO2002015416A2 (en) * 2000-08-17 2002-02-21 Terabit Communications, L.L.C. High-speed communications system
JP2003015175A (ja) * 2001-04-27 2003-01-15 Mitsubishi Electric Corp 固体光源装置

Also Published As

Publication number Publication date
DE10297037T5 (de) 2004-08-19
WO2003005002A1 (fr) 2003-01-16
US6873405B2 (en) 2005-03-29
US20040130725A1 (en) 2004-07-08
JP3828111B2 (ja) 2006-10-04
DE10297037B4 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
JP3828111B2 (ja) 伝搬測定装置及び伝搬測定方法
US7697122B2 (en) Measuring device, method, program, and recording medium
US7450239B2 (en) Optical pulse evaluation device and in-service optical pulse evaluation device
US7079231B2 (en) Optical network analyzer
JP5713501B2 (ja) ホモダイン検波方式電磁波分光測定システム
JP3394902B2 (ja) 波長分散測定装置及び偏波分散測定装置
JP3631025B2 (ja) 波長分散測定装置及び偏波分散測定装置
JP2007212427A (ja) 光周波数検出装置、光スペクトラムアナライザおよび光信号処理装置
EP1253730B1 (en) Method and system for optical spectrum analysis with matched filter detection
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
WO2020039039A1 (en) Systems and methods for measuring a distance to a target and the complex reflectance ratio of a target
WO2006123163A1 (en) Method to generate and detect terahertz radiation
JP2003322588A (ja) 反射式ブリルアンスペクトル分布測定方法および装置
JP5334619B2 (ja) 光路長制御装置
JP2001050908A (ja) ミリ波イメージングシステム
JP2022525741A (ja) マルチチャネル光導電性テラヘルツ受信アンテナ、受信機、テラヘルツシステムおよびテラヘルツ方法
JPH09218130A (ja) 周波数掃引誤差検出方法および回路、光周波数掃引光源、ならびに光周波数領域反射測定回路
WO2023131624A1 (en) Optical measurement system
JP2020051941A (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP2007101319A (ja) 伝達特性測定装置、方法、プログラムおよび記録媒体
EP1541981A1 (en) Spectral phase measurement using phase-diverse coherent optical spectrum analyzer
JP2001272279A (ja) 光パルス評価装置
JP3384322B2 (ja) 波長分散測定方法及び波長分散測定装置
JP2010210593A (ja) 分光システム
WO2022130587A1 (ja) 光測定装置および光測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3828111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term