JPS63141258A - Manufacture of hydrogen absorption alloy negative electrode - Google Patents

Manufacture of hydrogen absorption alloy negative electrode

Info

Publication number
JPS63141258A
JPS63141258A JP61287903A JP28790386A JPS63141258A JP S63141258 A JPS63141258 A JP S63141258A JP 61287903 A JP61287903 A JP 61287903A JP 28790386 A JP28790386 A JP 28790386A JP S63141258 A JPS63141258 A JP S63141258A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen absorption
hydrogen storage
alloy
absorption alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61287903A
Other languages
Japanese (ja)
Other versions
JPH0756799B2 (en
Inventor
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Koji Gamo
孝治 蒲生
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61287903A priority Critical patent/JPH0756799B2/en
Publication of JPS63141258A publication Critical patent/JPS63141258A/en
Publication of JPH0756799B2 publication Critical patent/JPH0756799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To solve the problem of a powdering and oxidation, and to manufacture a hydrogen absorption alloy in a simple way, by giving a mechanical powdering process to a hydrogen absorption alloy in an alkaline water solution, and then, washing and drying it to make a hydrogen absorption alloy negative electrode. CONSTITUTION:A specific alloy material is put in a ball mill which consists of a pot and balls, and furthermore, a potassium hydroxide solution of the specific gravity 1.30 is added at the ratio 50 ml to to the alloy 100 g. The powdering is carried out by the ball mill in such a condition. The powdered hydrogen absorption alloy power is washed in the water and dried. The hydrogen absorption alloy sample powdered in such an alkaline solution is made into a paste, spread together with polyvinylalcohol or the like over a punching metal plate with a nickel coating, and dried to obtain a negative electrode plate. By applying such a hydrogen absorption alloy to the hydrogen absorption alloy negative electrode for an alkaline storage battery, the conventional problem of powdering or oxidation can be solved, and at the same time, the hydrogen absorption alloy can be produced in a simple way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いる水素吸蔵合金負極の製造方法に間するもので、
無公害で高エネルギー密度のアルカリ蓄電池こ提供でき
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a hydrogen storage alloy negative electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen.
A pollution-free, high energy density alkaline storage battery can be provided.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアルカ
リ蓄電池とが広く使われている。
BACKGROUND OF THE INVENTION Among various power sources, lead-acid batteries and alkaline batteries are widely used as secondary batteries.

アルカリ蓄電池のうち、最も広く使われているのは、ニ
ッケルーカドミウム蓄電池である。この電池は性能的に
かなり優れているが、依然として高エネル傘−粉tkや
無公害への期待が高く新しい電池系が検討されている。
The most widely used alkaline storage battery is the nickel-cadmium storage battery. Although this battery is quite superior in terms of performance, new battery systems are still being considered with high expectations for high-energy Umbrella TK and pollution-free performance.

例えばこの中で負極をカドミウムに代わって亜鉛が取り
上げられてきたが、よく知られているように寿命に問題
があるので広い実用化には至っていない、f!&近注目
されてきたのは水素を可逆的に吸蔵・放出する水素吸蔵
合金を負極に用いるアルカリ蓄電池である。この場合は
、カドミウムや亜鉛などと同じ取扱いで電池を構成でき
、実際の放電可能な容量密度をカドミウムより大きくで
きることや亜鉛のようなデンドライトの形成などがない
ことなどから、高エネルギー密度で長寿命、無公害のア
ルカリ蓄電池として有望である。
For example, zinc has been used as a negative electrode instead of cadmium, but as is well known, it has problems with its lifespan, so it has not been widely put into practical use. & What has recently attracted attention is alkaline storage batteries that use hydrogen storage alloys for the negative electrode that reversibly absorb and release hydrogen. In this case, batteries can be constructed using the same treatment as cadmium, zinc, etc., and the actual dischargeable capacity density can be higher than that of cadmium, and there is no dendrite formation like with zinc, so it has a high energy density and a long life. , is promising as a pollution-free alkaline storage battery.

ところが、水素吸蔵合金は水素の吸蔵・放出を繰り返す
ことにより微粉化が一層進み、これを電池用電極の構成
材料とした場合に、電極の変形や脱落をもたらす、また
、アルカリ蓄電池、特に密閉彫アルカリ蓄電池でノイマ
ン方式でガスの吸収を行なう系では、正極から発生する
酸素ガスによって表面が酸化を受けて水素の吸蔵・放出
能力の低下を生ずる。
However, as hydrogen storage alloys repeatedly absorb and release hydrogen, they become more pulverized, and when used as a constituent material for battery electrodes, the electrodes become deformed and fall off. In alkaline storage batteries that absorb gas using the Neumann method, the surface is oxidized by oxygen gas generated from the positive electrode, resulting in a decrease in hydrogen storage and release capacity.

従って、水素吸蔵合金を負極に使用する場合には電極に
する前に微粉化を進めておき、電池内で充放電をしても
それ以上微粉化しないようにすることや、酸素ガスによ
って性能が低下しないよう耐酸化性、の改善が重要であ
る。これらの解決のため従来から、出来るだけ細かく水
素吸蔵合金を粉砕することや水素吸蔵合金の表面を耐酸
化性の被膜で被覆することなどが検討されている。また
、粉砕した水素吸蔵合金をアルカリ水溶液で表面処理す
ることにより長寿命化を図ることも検討されていた。
Therefore, when using a hydrogen storage alloy as a negative electrode, it is necessary to pulverize it before making it into an electrode so that it does not become further pulverized even after charging and discharging in the battery, and the performance may be affected by oxygen gas. It is important to improve oxidation resistance so that it does not deteriorate. In order to solve these problems, studies have been conducted to crush the hydrogen storage alloy as finely as possible and to coat the surface of the hydrogen storage alloy with an oxidation-resistant film. It has also been considered to extend the life of the pulverized hydrogen storage alloy by surface treating it with an alkaline aqueous solution.

発明が解決しようとする問題点 水素吸蔵合金を負極に用いるアルカリ蓄電池は、このよ
うに高エネルギー密度の向上には有効であるが微粉化や
酸化に問題があった。
Problems to be Solved by the Invention Although alkaline storage batteries using hydrogen storage alloys as negative electrodes are effective in improving high energy density, they have problems with pulverization and oxidation.

本発明はこの水素吸蔵合金をアルカリ蓄電池の水素吸蔵
合金負極に使用するとき、これまで問題前あった微粉化
や酸化を解決すると同時に簡易な水素吸蔵合金の製造方
法を提供することを目的とする。
The purpose of the present invention is to solve the problems of pulverization and oxidation that have hitherto been a problem when this hydrogen storage alloy is used as a hydrogen storage alloy negative electrode for an alkaline storage battery, and at the same time to provide a simple method for manufacturing the hydrogen storage alloy. .

問題点を解決するための手段 本発明は水素吸蔵合金を機械的に粉砕する工程をアルカ
リ水溶液中で行なった後、少なくとも水洗と乾燥を施し
その後水素吸蔵合金負極にすることを特徴とする水素吸
蔵合金負極の製造方法である。そして、好ましくはアル
カリ水溶液が比重1゜05〜1.50の苛性アルカリで
あり、かつそのアルカリ水溶液′4:30〜80℃に加
温したものであり、水素吸蔵合金を機械的に粉砕する工
程が特にボールミル法であることが良い。
Means for Solving the Problems The present invention provides a hydrogen storage alloy characterized in that a hydrogen storage alloy is mechanically pulverized in an alkaline aqueous solution, and then at least washed with water and dried to form a hydrogen storage alloy negative electrode. This is a method for manufacturing an alloy negative electrode. Preferably, the alkaline aqueous solution is a caustic alkali having a specific gravity of 1.05 to 1.50, and the alkaline aqueous solution is heated to 30 to 80° C., and the hydrogen storage alloy is mechanically pulverized. It is particularly preferable to use the ball mill method.

作用 粉砕はアルカリ水溶液中で行なうことによって、比較的
粉砕され難い不純物相がアルカリ水溶液に溶解されるこ
とにより、より微細な粉砕が短時間に可能である。
By carrying out functional grinding in an alkaline aqueous solution, impurity phases that are relatively difficult to grind are dissolved in the alkaline aqueous solution, making it possible to achieve finer grinding in a short time.

実施例 まず、本発明の構成について概念的にのべる。Example First, the configuration of the present invention will be conceptually described.

水素吸蔵合金をアルカリ蓄電池の負極として使用する場
合、これまでから合金溶解によって得た水素吸蔵合金を
予め水素化や機械的な手段で粉砕することが行なわれて
いる。
When a hydrogen storage alloy is used as a negative electrode of an alkaline storage battery, the hydrogen storage alloy obtained by melting the alloy has been previously pulverized by hydrogenation or mechanical means.

本発明は、この粉砕工程を湿式の機械的粉砕法を採用す
るものであり、この場合アルカリ水溶液中で行なうとこ
ろに特徴がある。
The present invention employs a wet mechanical pulverization method for this pulverization step, and is characterized in that it is carried out in an alkaline aqueous solution.

これまで水素吸蔵合金を製造後、微粉末に粉砕した後ア
ルカリ水溶液中で水素吸蔵合金粉末もしくは水素吸蔵合
金負極をアルカリ処理することが行なわれていた。この
アルカリ処理は、アルカリ蓄電池の電解液である苛性ア
ルカリに溶解し易い成分を予めこの処理によって除去し
たり、水素吸蔵合金粉末表面をアルカリに馴染まずこと
によって密閉電池にしたとき、長寿命化が可能になるな
どの効果がある。
Hitherto, after producing a hydrogen storage alloy, it has been pulverized into a fine powder, and then the hydrogen storage alloy powder or the hydrogen storage alloy negative electrode is treated with alkali in an alkaline aqueous solution. This alkali treatment can extend the life of a sealed battery by removing components that are easily soluble in caustic alkali, which is the electrolyte of alkaline storage batteries, and by making the surface of the hydrogen storage alloy powder not compatible with alkali. It has the effect of making it possible.

すなわち、これまでそれぞれ別々に行なっていた粉砕工
程とアルカリ処理工程を同時に行なうことにより工程を
簡易にするとともに、二つの工程を同時に行なうことに
よってこれまでの粉砕をより効果的に行なおうとするも
のである。ここで重要なことは、単に別々に粉砕とアル
カリ処理を行なって得られる水素吸蔵合金負極よりも本
発明のように苛性アルカリ中で粉砕して得られた水素吸
蔵合金負極は、より優れた寿命特性を発揮することであ
る。その理由としては、水素吸蔵合金粉砕時に新しい合
金の粉砕面が直ちに苛性アルカリに触れることによるも
のと推定される。粉砕はアルカリ水溶液中で行なうこと
によって、比較的粉砕されにくい不純物相がアルカリ水
溶液に溶解されることにより、より微細な粉砕が短時間
に可能である。
In other words, it aims to simplify the process by simultaneously performing the pulverization process and the alkali treatment process, which had previously been performed separately, and to make the conventional pulverization more effective by performing the two processes at the same time. It is. What is important here is that the hydrogen storage alloy negative electrode obtained by pulverization in caustic alkali as in the present invention has a longer lifespan than the hydrogen storage alloy negative electrode obtained by simply performing pulverization and alkali treatment separately. It is about demonstrating one's characteristics. The reason for this is presumed to be that the crushed surface of the new alloy immediately comes into contact with caustic alkali when the hydrogen storage alloy is crushed. By performing the pulverization in an alkaline aqueous solution, impurity phases that are relatively difficult to be pulverized are dissolved in the alkaline aqueous solution, making it possible to achieve finer pulverization in a short time.

さらに粉砕時での発熱もよい影響を与えている。Furthermore, the heat generated during crushing also has a positive effect.

つまり、特別な加熱を行なわなくてもアルカリ中粉砕は
加熱を促進している。
In other words, pulverization in alkali promotes heating without special heating.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

市販のMm(ミツシュメタル)l Nil Co。Commercially available Mm (Mitshu Metal) Nil Co.

Mn、AIの各原材料を一定の組成比に秤量してアルゴ
ンアーク溶解炉によってMmN 13,6C00゜5M
 n o、4A I 0.3合金を製造した。ついでこ
の合金を公知の方法に従って真空熱処理炉で熱処理した
Each raw material of Mn and AI was weighed to a certain composition ratio and melted into MmN 13,6C00°5M in an argon arc melting furnace.
No. 4A I 0.3 alloy was produced. This alloy was then heat treated in a vacuum heat treatment furnace according to a known method.

この合金試料をアルミナ製のポットとボールからなるボ
ールミルに入れ、さらに比重1.30の水酸化カリウム
水溶液を合金100gに対し50m1の割合で加えた。
This alloy sample was placed in a ball mill consisting of an alumina pot and a ball, and an aqueous potassium hydroxide solution having a specific gravity of 1.30 was added at a ratio of 50 ml per 100 g of the alloy.

この状態でボールミル粉砕を10時間室温下で行なった
。なおこの粉砕終了時のボールミル内の温度は約40℃
であった。粉砕した水素吸蔵合金粉末を水洗し、その後
乾燥した。このアルカリ水溶液中で粉砕した合金試料の
粒度分布測定をしたところ全て50ミクロン以下の微粉
末になっていた。
In this state, ball mill pulverization was performed at room temperature for 10 hours. The temperature inside the ball mill at the end of this grinding is approximately 40°C.
Met. The pulverized hydrogen storage alloy powder was washed with water and then dried. When the particle size distribution of the alloy samples ground in this alkaline aqueous solution was measured, all of them were found to be fine powders of 50 microns or less.

このようなアルカリ水溶液中受粉砕した水素吸蔵合金試
料をその後、ポリビニルアルコールなどの結着剤ととも
にペーストにし、ニッケルメッキを施したパンチングメ
タル板に塗着して乾燥を行い負極板Aを得た。
The hydrogen storage alloy sample pulverized in an alkaline aqueous solution was then made into a paste with a binder such as polyvinyl alcohol, applied to a nickel-plated punched metal plate, and dried to obtain a negative electrode plate A.

このようにして得られた負極板Aを電池に組み込んだ、
電池としては、単2形の円筒密閉形ニッケルー水素蓄電
池を例にした。したがって、このようにして得られた負
極板Aを幅3.9cm、長さ26cmに裁断し、リード
板を所定の2カ所にスポット溶接によ′り取り付けた。
The thus obtained negative electrode plate A was incorporated into a battery.
As an example of the battery, a AA cylindrical sealed nickel-metal hydride storage battery was used. Therefore, the negative electrode plate A thus obtained was cut to a width of 3.9 cm and a length of 26 cm, and lead plates were attached to two predetermined locations by spot welding.

相平衡としては、公知の焼結式ニッケル極を選び、同じ
く幅3.9cm、長さ22cmとして用いた。この場合
もリード板を2カ所取り付けた。
For the phase equilibrium, a known sintered nickel electrode was selected and used, also having a width of 3.9 cm and a length of 22 cm. In this case as well, lead plates were attached at two locations.

セパレータとしては、ボリアミド不織布、電解液として
は、比重1.20の苛性カリ水溶液に水酸化リチウムを
20g/L溶解して用いた。公称容量は3.OAhであ
る。この電池をAとする。
A polyamide nonwoven fabric was used as the separator, and 20 g/L of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.20 as the electrolyte. The nominal capacity is 3. It is OAh. This battery is called A.

つぎに比較のために、従来の方法として先と同じM m
 N l 3.sCOo、5M n □、4A l O
,3合金を選びその水素吸蔵合金を機械的に50ミクロ
ン以下の粒径に粉砕した。所要時間は24時間であった
Next, for comparison, the conventional method uses the same M m as before.
N l 3. sCOo, 5M n □, 4A l O
, 3 alloys were selected and the hydrogen storage alloys were mechanically crushed to a particle size of 50 microns or less. The time required was 24 hours.

その後40℃の比重1.30の水酸化カリウム水溶液中
に10時間浸漬しアルカリ処理を行なったものを同様な
方法で負極板Bとし、電池Bを得た。
Thereafter, the negative electrode plate B was obtained by immersing it in an aqueous potassium hydroxide solution having a specific gravity of 1.30 at 40° C. for 10 hours to perform alkali treatment, thereby obtaining a battery B.

正極の容量律則にしているのでこの電池の公称容量も3
.OAhである。
Since the capacity law of the positive electrode is used, the nominal capacity of this battery is also 3.
.. It is OAh.

さらに比較のために、先と同じ水素吸蔵合金で間しく2
4時間機械的粉砕して50ミクロン以下にし、アルカリ
処理をしないで負極板Cを得、同様に公称容量3.0A
hの電池Cを得た。
Furthermore, for comparison, we used the same hydrogen storage alloy as before to
Negative electrode plate C was obtained by mechanically grinding for 4 hours to a size of 50 microns or less without alkali treatment, and the nominal capacity was 3.0 A.
A battery C of h was obtained.

これらの電池を通常の充放電サイクル試験によって評価
した結果を説明する。
The results of evaluating these batteries by ordinary charge/discharge cycle tests will be explained.

充電は、0.2C(5時間率)で130%まで、放電は
0.50(2時間率)で終止電圧1.OVとし充放電サ
イクルを繰り返した。その結果A、B、Cの3種の電池
とも100サイクル程度までは放電容量がほぼ3.0A
hであり、Cの電池がA、Hの電池に比べてやや放電の
端子電圧が低いこと以外には大きな差異が見当らなかっ
た。しかし、この充放電サイクルをさらに繰り返して行
くと電池Cは142サイクル目より急激に放電容量が低
下した。また電池Bは356サイクル目から低下が始ま
った。これに対して本発明の電池Aは500サイクルま
で異常が認められなかった。
Charge up to 130% at 0.2C (5 hour rate) and discharge at 0.50C (2 hour rate) to a final voltage of 1. The battery was set to OV and the charge/discharge cycle was repeated. As a result, the discharge capacity of the three types of batteries A, B, and C was approximately 3.0A until about 100 cycles.
h, and no major difference was found except that the discharge terminal voltage of battery C was slightly lower than that of batteries A and H. However, when this charge/discharge cycle was repeated further, the discharge capacity of battery C suddenly decreased from the 142nd cycle. Further, battery B started to deteriorate from the 356th cycle. On the other hand, in Battery A of the present invention, no abnormality was observed up to 500 cycles.

このことから本発明の電池Aは、最も寿命特性に優れて
いることが明らかになった。
From this, it became clear that the battery A of the present invention had the best life characteristics.

発明の効果 以上のように本発明の水素吸蔵合金負極の製造方法は、
これまでの水素吸蔵合金の粉砕工程とアルカリ処理工程
を同時に行なうものであり、製造工程の簡易化は当然で
あるが、特に電池の充放電寿命を改善する効果がある。
Effects of the Invention As described above, the method for manufacturing the hydrogen storage alloy negative electrode of the present invention is as follows:
The conventional process of pulverizing the hydrogen storage alloy and the alkali treatment process are performed at the same time, which not only simplifies the manufacturing process, but also particularly improves the charge/discharge life of the battery.

Claims (4)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を機械的に粉砕する工程をアルカリ
水溶液中で行なった後、少なくとも水洗と乾燥を施しそ
の後水素吸蔵合金負極にすることを特徴とする水素吸蔵
合金負極の製造方法。
(1) A method for producing a hydrogen storage alloy negative electrode, which comprises mechanically pulverizing the hydrogen storage alloy in an alkaline aqueous solution, followed by at least washing with water and drying to form a hydrogen storage alloy negative electrode.
(2)アルカリ水溶液が比重1.05〜1.50の苛性
アルカリであり、かつそのアルカリ水溶液を30〜80
℃に加温したことを特徴とする特許請求の範囲第1項記
載の水素吸蔵合金負極の製造方法。
(2) The alkaline aqueous solution is a caustic alkali with a specific gravity of 1.05 to 1.50, and the alkaline aqueous solution has a specific gravity of 30 to 80%.
The method for producing a hydrogen storage alloy negative electrode according to claim 1, wherein the hydrogen storage alloy negative electrode is heated to a temperature of .degree.
(3)水素吸蔵合金を機械的に粉砕する工程が特にボー
ルミル法である特許請求の範囲第1項または第2項記載
の水素吸蔵合金負極の製造方法。
(3) The method for producing a hydrogen storage alloy negative electrode according to claim 1 or 2, wherein the step of mechanically pulverizing the hydrogen storage alloy is particularly a ball milling method.
(4)水素吸蔵合金をアルカリ水溶液中で機械的に粉砕
する工程で100ミクロン以下の粒子径にすることを特
徴とする特許請求の範囲第1項、第2項または第3項記
載の水素吸蔵合金負極の製造方法。
(4) Hydrogen storage according to claim 1, 2 or 3, characterized in that the hydrogen storage alloy is mechanically pulverized in an alkaline aqueous solution to a particle size of 100 microns or less. Method for manufacturing alloy negative electrode.
JP61287903A 1986-12-03 1986-12-03 Method for producing hydrogen storage alloy negative electrode Expired - Lifetime JPH0756799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61287903A JPH0756799B2 (en) 1986-12-03 1986-12-03 Method for producing hydrogen storage alloy negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61287903A JPH0756799B2 (en) 1986-12-03 1986-12-03 Method for producing hydrogen storage alloy negative electrode

Publications (2)

Publication Number Publication Date
JPS63141258A true JPS63141258A (en) 1988-06-13
JPH0756799B2 JPH0756799B2 (en) 1995-06-14

Family

ID=17723211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61287903A Expired - Lifetime JPH0756799B2 (en) 1986-12-03 1986-12-03 Method for producing hydrogen storage alloy negative electrode

Country Status (1)

Country Link
JP (1) JPH0756799B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004759A1 (en) * 1989-02-16 1990-09-20 Sanyo Electric Co Hydrogen absorbing alloy electrode used in rechargeable battery - consists of powdered metal-alloy with additive which regulates oxidn. of alloy surface
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JPH06231761A (en) * 1993-02-09 1994-08-19 Furukawa Battery Co Ltd:The Nickel-hydrogen secondary battery
EP0765705A1 (en) * 1995-09-27 1997-04-02 Furukawa Denchi Kabushiki Kaisha Manufacturing method for a hydrogen storage alloy powder for batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004759A1 (en) * 1989-02-16 1990-09-20 Sanyo Electric Co Hydrogen absorbing alloy electrode used in rechargeable battery - consists of powdered metal-alloy with additive which regulates oxidn. of alloy surface
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JPH06231761A (en) * 1993-02-09 1994-08-19 Furukawa Battery Co Ltd:The Nickel-hydrogen secondary battery
EP0765705A1 (en) * 1995-09-27 1997-04-02 Furukawa Denchi Kabushiki Kaisha Manufacturing method for a hydrogen storage alloy powder for batteries
US5775602A (en) * 1995-09-27 1998-07-07 Furkukawa Denchi Kabushiki Kaisha Manufacturing method for a hydrogen-storage-alloy powder for batteries

Also Published As

Publication number Publication date
JPH0756799B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JPH05225975A (en) Hydrogen storage alloy electrode
JP3214341B2 (en) Manufacturing method of hydrogen storage alloy for batteries
JPS63141258A (en) Manufacture of hydrogen absorption alloy negative electrode
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP4743997B2 (en) Hydrogen storage alloy electrode
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2982195B2 (en) Manufacturing method of battery electrode
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3010989B2 (en) Hydrogen storage electrode and method for producing the same
JP2000017302A (en) Hydrogen storage alloy sintered compact and hydrogen storage alloy sintered compact porous negative electrode
JPH02220355A (en) Hydrogen storage alloy electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JP2001148246A (en) Hydrogen occluded alloy powder for negative electrode of alkaline secondary battery and its manufacturing method
JPH01132049A (en) Hydrogen storage electrode
JPS63264869A (en) Manufacture of hydrogen storage electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JPH097589A (en) Manufacture of hydrogen absorbing alloy powder for electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof