JP2982195B2 - Manufacturing method of battery electrode - Google Patents

Manufacturing method of battery electrode

Info

Publication number
JP2982195B2
JP2982195B2 JP2011286A JP1128690A JP2982195B2 JP 2982195 B2 JP2982195 B2 JP 2982195B2 JP 2011286 A JP2011286 A JP 2011286A JP 1128690 A JP1128690 A JP 1128690A JP 2982195 B2 JP2982195 B2 JP 2982195B2
Authority
JP
Japan
Prior art keywords
electrode
alloy
battery
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011286A
Other languages
Japanese (ja)
Other versions
JPH03216959A (en
Inventor
良夫 森脇
肇 世利
明美 新谷
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2011286A priority Critical patent/JP2982195B2/en
Publication of JPH03216959A publication Critical patent/JPH03216959A/en
Application granted granted Critical
Publication of JP2982195B2 publication Critical patent/JP2982195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気化学的に水素を吸蔵・放出する水素吸
蔵合金を用いた電池用電極に関する。
Description: TECHNICAL FIELD The present invention relates to a battery electrode using a hydrogen storage alloy that electrochemically stores and releases hydrogen.

従来の技術 各種電源のうち蓄電池としては、鉛蓄電池とニッケル
−カドミウム蓄電池に代表されるアルカリ蓄電池とが広
く使われている。
2. Description of the Related Art Among various power sources, as storage batteries, lead storage batteries and alkaline storage batteries typified by nickel-cadmium storage batteries are widely used.

近年、高エネルギー密度に対する期待が高まってお
り、そこで注目されてきたのは水素を可逆的に吸蔵・放
出する水素吸蔵合金を用いたアルカリ蓄電池である。
In recent years, expectations for high energy density have increased, and attention has been paid to alkaline storage batteries using a hydrogen storage alloy that reversibly stores and releases hydrogen.

これに用いる水素吸蔵合金電極は、カドミウムや亜鉛
などと同じ取り扱いで電池を構成でき、実際の放電可能
な容量密度をカドミウムより大きくできることや亜鉛の
ような変形やデンドライトの形成などがないことなどか
ら、高エネルギー密度で長寿命、無公害のアルカリ蓄電
池用負極として有望である。
The hydrogen storage alloy electrode used for this can be used to construct a battery with the same handling as cadmium and zinc, etc., because the actual dischargeable capacity density can be larger than cadmium, and there is no deformation like zinc and no dendrite formation. It is promising as a high energy density, long life, non-polluting negative electrode for alkaline storage batteries.

この水素吸蔵合金電極は、一部水素吸蔵合金を粉砕し
これを焼結して得る焼結式が知られているが、主には導
電性芯材としてのパンチングメタルやエキスパンドメタ
ル、発泡メタル、金属繊維などに水素吸蔵合金粉末をペ
ースト状にして塗着したり、充填するペースト式や、プ
レスなどで加圧成形する加圧式などの非焼結式が採用さ
れている。
As the hydrogen storage alloy electrode, a sintering method in which a part of the hydrogen storage alloy is pulverized and sintered is known, but mainly a punching metal, an expanded metal, a foamed metal as a conductive core material, A non-sintering type, such as a paste type in which a hydrogen storage alloy powder is applied to a metal fiber or the like in the form of a paste or filled, or a pressure type in which pressure molding is performed by a press or the like, is employed.

通常、この水素吸蔵合金電極は溶解によって得た水素
吸蔵合金を均質化のための熱処理を行い、さらに機械的
もしくは水素ガスの吸蔵・放出により100ミクロン以下
の粒子径を有する微粉末とする。これをペースト式や加
圧式などの非焼結式製法により電極としこれを負極と
し、酸化ニッケルなどの正極、ポリオレフィンなどの不
織布からなるセパレータ、アルカリ電解液とともに密閉
形や開放形のアルカリ蓄電池を構成する。
Normally, the hydrogen storage alloy electrode is subjected to a heat treatment for homogenization of the hydrogen storage alloy obtained by melting, and further made into a fine powder having a particle diameter of 100 μm or less by mechanical or hydrogen gas storage / release. This is used as an electrode by a non-sintering method such as a paste method or a pressure method, and this is used as a negative electrode. I do.

このようにして得る水素吸蔵合金電極の問題の一つは
電池の充放電を繰り返すことにより水素吸蔵合金を構成
している特定の元素が一部電解液中に溶出し、電池内部
でのショートの原因になったり、合金の触媒特性が低下
して電池内圧の上昇をきたして急速充電特性が不可能に
なったり、さらには電池寿命の低下を招くなどの点であ
る。例えば水素吸蔵合金電極材料として知られる希土類
とニッケルをベースにしたMmNi5-xMx系合金(M=Mn,A
l,Co,Cuなど)の場合はMn,Coの溶出が知られている。そ
して従来、この合金構成元素の電池に構成してから後の
溶出を防止する目的で水素吸蔵合金の粉末もしくは電極
を熱アルカリ中で一定時間放置して溶出物を予め処理し
て電池を構成することが提案されていた。しかし、この
アルカリ中放置処理を行ってもまだ溶出に関しては不十
分であり、この解決が要望されていた。
One of the problems with the hydrogen storage alloy electrode obtained in this way is that, by repeating charge and discharge of the battery, specific elements constituting the hydrogen storage alloy are partially eluted into the electrolyte solution, causing a short circuit inside the battery. This causes the catalyst characteristics of the alloy to decrease, causing an increase in the internal pressure of the battery, making it impossible to perform quick charge characteristics, and further reducing the life of the battery. For example, an MmNi 5-x M x- based alloy (M = Mn, A) based on rare earth and nickel known as a hydrogen storage alloy electrode material
l, Co, Cu, etc.), the elution of Mn, Co is known. Conventionally, a powder or electrode of a hydrogen-absorbing alloy is left in a hot alkali for a certain period of time to treat the eluted material in advance to form a battery with the purpose of preventing the later elution after the battery is formed from the alloy constituent elements. That had been proposed. However, the elution is still insufficient even after the alkali treatment, and there has been a demand for a solution.

発明が解決しようとする課題 水素吸蔵合金電極の製造工程中およびこの電極を用い
た電池を動作中に水素吸蔵合金から溶出する特定の金属
元素の溶出を防止することが重要な課題である。
Problems to be Solved by the Invention It is an important problem to prevent specific metal elements eluted from a hydrogen storage alloy during the manufacturing process of a hydrogen storage alloy electrode and during operation of a battery using the electrode.

本発明は上記問題点に鑑み、高性能で長寿命の水素吸
蔵合金電極およびこれを用いた電池用電極の製造法を提
供することを目的とする。
In view of the above problems, an object of the present invention is to provide a high-performance and long-life hydrogen storage alloy electrode and a method for manufacturing a battery electrode using the same.

課題を解決するための手段 本発明は、超急冷法により20〜100ミクロンの粒子径
を有する球状の少なくともMnまたはCoを含有した水素吸
蔵合金を作製し、この球状合金を粒子の状態もしくは電
極に加工後のいずれかにおいてアルカリ溶液中、好まし
くは熱アルカリ溶液中に一定時間放置し、これを電池用
の電極として使用することを特徴とする。
Means for Solving the Problems The present invention produces a spherical hydrogen storage alloy containing at least Mn or Co having a particle diameter of 20 to 100 μm by a super-quenching method, and this spherical alloy is used in a state of particles or an electrode. It is characterized in that it is left in an alkaline solution, preferably in a hot alkaline solution for a certain period of time after any of the processing, and is used as an electrode for a battery.

作用 本発明は上記した方法により、電極の製造時や電池を
構成して充放電を動作する場合に合金の組成は同じでも
従来は水素吸蔵合金から溶出していた特定の金属元素も
溶出がほとんどなく極めて安定した性能を長期間維持す
ることが可能である。
Effect The present invention provides the above-described method, in which the metal composition is the same even when the electrode is manufactured or when the battery is configured to perform charge / discharge, even though the alloy composition is the same, the specific metal element that has conventionally eluted from the hydrogen storage alloy is almost eluted. And extremely stable performance can be maintained for a long period of time.

その理由としては、従来の方法では合金の均質性が不
十分であり場合によっては合金中に偏析の発生が見られ
たが、これが超急冷および球状の合金粒子にしたことに
よりおそらく粒子表面の化学的安定性が向上し、偏析な
どの形成が抑制されたことがあげられる。
The reason for this is that the conventional method lacked the homogeneity of the alloy and sometimes caused segregation in the alloy, but this was probably due to the rapid quenching and the formation of spherical alloy particles. And the formation of segregation was suppressed.

この超急冷でかつ球状の合金粒子に調整する手段とし
ては合金作成のための原材料を加熱溶解し、その溶湯を
高速で回転しているディスク等に導入し、そのディスク
の遠心力で超急冷球状合金粉末を得る遠心噴霧法、もし
くはその溶湯に高圧の不活性ガスを吹き付けることによ
り得られるガス噴霧法のいずれかが好ましい。
As a means for adjusting the ultra-quenched and spherical alloy particles, the raw material for alloy preparation is heated and melted, and the molten metal is introduced into a disk or the like rotating at a high speed, and the ultra-quenched spherical particles are centrifugally exerted by the disk. Either a centrifugal spraying method for obtaining an alloy powder or a gas spraying method obtained by blowing a high-pressure inert gas onto the molten metal is preferable.

また、それとともに超急冷法により作製した20〜100
ミクロンの粒子径を有する球状の水素吸蔵合金は溶解時
の溶湯が瞬時に凝固するために合金粒子自身の均質性が
極めて高く、これまで行っていた均質化のための熱処理
工程を省略しても優れた性能が得られることがわかっ
た、同様に電極を構成する水素吸蔵合金としてはこれま
で機械的粉砕法、水素ガス活性化粉砕法による粉砕工程
を必要としたが、本発明によれば必要な粒子径を合金作
製時に調整でき粉砕工程が不要になるなどの長所も得ら
れる。
In addition, 20-100 prepared by the rapid quenching method
Spherical hydrogen storage alloys with a micron particle size have extremely high homogeneity of the alloy particles themselves because the molten metal solidifies instantaneously during melting, so even if the heat treatment process for homogenization that had been performed so far was omitted. It has been found that excellent performance can be obtained. Similarly, as a hydrogen storage alloy constituting an electrode, a pulverizing step by a mechanical pulverization method and a hydrogen gas activated pulverization method has been required so far, but according to the present invention, Advantages can be obtained, such as the ability to adjust the particle size at the time of alloy preparation and the elimination of a pulverizing step.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

水素吸蔵合金として市販のMm(ミッシュメタル),Ni,
Co,Mn,Alの各原材料を一定の組成比に秤量し、高周波誘
導加熱溶解炉により溶解し、得られる溶湯を遠心噴霧法
により超急冷でかつ球状のMmNi3.8Co0.5Mn0.4Al0.3合金
を製造した。すなわち不活性ガス中で溶湯の入った坩堝
から溶湯を少量ずつ約20,000rpmで高速回転するディス
ク上に滴下させ粉末を得た。このようにして得た合金粉
末について調べたところ平均粒径60ミクロンの非常にき
れいな球状粒子を形成しており、合金組織や元素分析に
より極めて均質性が良好であり、かつ水素吸蔵合金とし
ての特性も優れていた。
Commercially available hydrogen storage alloys such as Mm (Misch metal), Ni,
Each raw material of Co, Mn, Al is weighed to a certain composition ratio, melted by high frequency induction heating melting furnace, and the resulting molten metal is ultra-quenched and spherical MmNi 3.8 Co 0.5 Mn 0.4 Al 0.3 alloy by centrifugal spray method. Manufactured. That is, in an inert gas, the molten metal was dropped little by little from a crucible containing the molten metal on a disk rotating at a high speed of about 20,000 rpm to obtain a powder. Examination of the alloy powder obtained in this way revealed that very fine spherical particles with an average particle size of 60 microns were formed, and the alloy structure and elemental analysis showed extremely good homogeneity and properties as a hydrogen storage alloy. Was also excellent.

このようにして得た合金粒子を熱アルカリ処理を行な
った。すなわち比重1.30の水酸化カリウム水溶液を80℃
に加熱し5時間浸たし、その後水洗した。
The alloy particles thus obtained were subjected to a hot alkali treatment. That is, an aqueous solution of potassium hydroxide having a specific gravity of 1.30 is heated to 80 ° C.
And soaked for 5 hours, and then washed with water.

つぎにこの合金粒子をカルボキシメチルセルローズ
(CMC)の希水溶液と混合攪拌しペースト状にして、電
極支持体として平均ポアサイズ150ミクロン、多孔度95
%、厚さ1.0mmの発泡状ニッケルシートに充填した。こ
れを120℃で乾燥してローラープレスで加圧し、さらに
その表面にフッソ樹脂粉末をコーテングし水素吸蔵合金
電極とした。これが本発明の一実施例であり電極Aとす
る。
Next, the alloy particles are mixed and stirred with a dilute aqueous solution of carboxymethyl cellulose (CMC) to form a paste, and as an electrode support, an average pore size of 150 microns and a porosity of 95 are used.
%, And filled into a foamed nickel sheet having a thickness of 1.0 mm. This was dried at 120 ° C., pressed with a roller press, and further coated with a fluorine resin powder on the surface to obtain a hydrogen storage alloy electrode. This is one embodiment of the present invention and is referred to as electrode A.

この電極の特性を比較するために従来の方法による電
極も合わせて作製した。すなわち、従来の方法としては
高周波誘導加熱溶解炉により先と同様のMmNi3.8Co0.5Mn
0.4Al0.3合金組成になるように溶解しその溶湯を通常の
方法で鋳造し合金塊を製造した。ついでこの合金を真空
中で熱処理し、その後平均粒径が60ミクロンになるよう
にボールミルによる機械粉砕を行なった。このようにし
て得た合金粉末を先と同様の熱アルカリ処理を行ない、
その後同様の方法で電極にした。これを従来法として電
極Bとする。
In order to compare the characteristics of this electrode, an electrode according to a conventional method was also manufactured. That is, as a conventional method, the same high-frequency induction heating and melting furnace was used to obtain the same MmNi 3.8 Co 0.5 Mn
The alloy was melted so as to have a composition of 0.4 Al 0.3 , and the melt was cast by an ordinary method to produce an alloy lump. Next, the alloy was heat-treated in a vacuum, and then mechanically pulverized by a ball mill so that the average particle size became 60 μm. The alloy powder thus obtained is subjected to the same thermal alkali treatment as above,
Thereafter, electrodes were formed in the same manner. This is referred to as an electrode B as a conventional method.

これらの電極を負極とし、対極に過剰の電気容量を有
する酸化ニッケル極を配し電解液に比重1.30の水酸化カ
リウム水溶液を用い、電解液が豊富な条件下で水素吸蔵
合金負極で容量規制を行なった開放系で充放電を行っ
た。充電は合金1gあたり100mA×4時間、放電は合金1g
あたり50mAで端子電圧が0.8Vまでとした。
Using these electrodes as negative electrodes, disposing a nickel oxide electrode with excess electric capacity at the counter electrode, using an aqueous solution of potassium hydroxide with a specific gravity of 1.30 for the electrolyte, and regulating the capacity with a hydrogen storage alloy negative electrode under conditions where the electrolyte is abundant Charging and discharging were performed in the open system. Charging is 100mA per 1g of alloy x 4 hours, discharging is 1g of alloy
The terminal voltage was set to 0.8 V at 50 mA per unit.

その結果、電極Aは300サイクルまでの長期の充放電
試験にもかかわらずほとんど一定した放電容量を維持し
ており、優れた性能の安定性を確認した。一方電極B
は、初期サイクルの放電容量は電極Aとほぼ同一であっ
たが30〜50サイクル付近から非常に僅かづつではあるが
充放電サイクルの経過とともに放電容量の低下が認めら
れた。300サイクル経過後それぞれのセルの電解液を採
取し金属元素の定量分析を行なったところ、A,Bいずれ
の電極で構成した電解液からも合金からの溶出と見られ
るMn,Coが検出されたが電極Aは電極Bに対してMnで1/1
4、Coで1/22の低い値であった。また300サイクル経過後
電極を解体し水素吸蔵合金の分析を行なったところ、電
極Aでは大きな変化は認められなかったが、電極Bでは
合金表面がかなりNiが多くなり、また合金構成元素が分
離して酸素物や水酸化物への状態変化が多く認められ
た。
As a result, the electrode A maintained an almost constant discharge capacity despite the long-term charge / discharge test up to 300 cycles, and confirmed excellent performance stability. One electrode B
The discharge capacity in the initial cycle was almost the same as that of the electrode A, but the discharge capacity decreased with the lapse of the charge / discharge cycle, although very little from about 30 to 50 cycles. After 300 cycles, each cell's electrolyte was sampled and quantitative analysis of metal elements was performed.Mn and Co, which were considered to be eluted from the alloy, were detected from the electrolyte composed of A and B electrodes. However, electrode A is 1/1 of Mn with respect to electrode B.
4. Co was a low value of 1/22. After 300 cycles, the electrode was disassembled and the hydrogen storage alloy was analyzed. No significant change was observed in electrode A, but in electrode B, the alloy surface became considerably rich in Ni, and alloy constituent elements were separated. As a result, many changes in the state to oxygenates and hydroxides were observed.

つぎにこれらの電極を用いて密閉形ニッケル−水素蓄
電池を構成した結果について説明する。先の電極A,Bを
それぞれ幅3.3cm、長さ21cm、厚さ0.50mmに調整し、リ
ード板を所定の2カ所に取り付けた。そして、正極、セ
パレータと組み合わせて円筒状に3層に渦巻き状にして
SCサイズの電槽に収納した。このときの正極は、公知の
発泡式ニッケル極を選び、幅3.3cm、長さ16cmとして用
いた。この場合もリード板を2カ所に取り付けた。また
セパレータは、親水性を付与したポリプロピレン不織布
を用いた。電解液としては、比重1.20の水酸化カリウム
水溶液に水酸化リチウムを30g/l溶解して用いた。これ
を封口して密閉形電池とした。この電池は、正極容量規
制で公称容量は2.5Ahである。この密閉形電池で水素吸
蔵合金電極の電極Aで構成した電池を電池A、同様に電
極Bで構成した電池を電池Bとする。
Next, the results of configuring a sealed nickel-hydrogen storage battery using these electrodes will be described. The electrodes A and B were adjusted to a width of 3.3 cm, a length of 21 cm, and a thickness of 0.50 mm, and lead plates were attached at two predetermined positions. Then, in combination with the positive electrode and the separator, it is spirally formed into three layers in a cylindrical shape.
It was stored in an SC size battery case. As the positive electrode at this time, a known foamed nickel electrode was selected and used with a width of 3.3 cm and a length of 16 cm. Also in this case, two lead plates were attached. In addition, a polypropylene nonwoven fabric provided with hydrophilicity was used as the separator. As an electrolyte, 30 g / l of lithium hydroxide was dissolved in an aqueous solution of potassium hydroxide having a specific gravity of 1.20 and used. This was sealed to obtain a sealed battery. This battery has a nominal capacity of 2.5 Ah under the positive electrode capacity regulation. In this sealed battery, a battery constituted by the electrode A of the hydrogen storage alloy electrode is referred to as a battery A, and a battery constituted similarly by the electrode B is referred to as a battery B.

これらの電池をそれぞれ10コづつ作成し通常の充放電
サイクル試験によって評価した結果を説明する。
The results of making 10 batteries each and evaluating them by a normal charge / discharge cycle test will be described.

充電は、1C(1時間率)で150%まで、放電は0.5C
(2時間率)で終止電圧1.0Vとし20℃での充放電サイク
ルを繰り返した。その結果A,Bいずれの電池もサイクル
の初期は、ほぼ2.6Ahの放電容量が得られたが、500サイ
クルまでの充放電試験により、電池Bは2コの電池で内
部ショートの発生が見られた。この現象は電池Aでは見
られなかった。また500サイクル後の平均放電容量も電
池Aでは2.6Ahを維持したのに対し電池Bでは2.3Ahに容
量の低下を示した。
Charge up to 150% at 1C (1 hour rate), 0.5C at discharge
The charge / discharge cycle at 20 ° C. was repeated at a final voltage of 1.0 V (2 hours). As a result, both batteries A and B achieved a discharge capacity of approximately 2.6 Ah at the beginning of the cycle, but charge-discharge tests up to 500 cycles showed that battery B had two internal short circuits. Was. This phenomenon was not observed in battery A. In addition, the average discharge capacity after 500 cycles also maintained 2.6 Ah for Battery A, while the battery B showed a decrease in capacity to 2.3 Ah.

また別の試験として電池A,Bを20℃で完全充電後60℃
の温度で2週間保存放置しその後さらに20℃の温度で放
電容量を調べ、高温保存特性を評価した。
As another test, after fully charging batteries A and B at 20 ° C, 60 ° C
At 2 ° C. for 2 weeks, and then the discharge capacity was further examined at a temperature of 20 ° C. to evaluate the high-temperature storage characteristics.

その結果、電池Aでは試験前の放電容量に対し平均で
45%の容量を維持した。電池Bでは10コ中3コが完全に
容量が0となり、残り8コも平均で23%の容量であり、
明らかに電池Aが保存性能に優れていた。
As a result, in battery A, the discharge capacity before the test was on average
45% capacity was maintained. In battery B, 3 out of 10 batteries have completely zero capacity, and the remaining 8 batteries have an average capacity of 23%,
Obviously, Battery A was excellent in storage performance.

なお、本実施例では、水素吸蔵合金として希土類とニ
ッケルをベースとし、これにMn,Al,Co,Cuなどの元素を
添加したCaCu5型構造を有する合金について示した。溶
出の程度は合金種により異なるが、このような効果は例
えばZrMn0.4Cr0.4Ni1.2などのAB2型Laves相合金などに
ついても同様に得られた。
In this example, an alloy having a CaCu 5- type structure based on a rare earth and nickel as a hydrogen storage alloy and added with elements such as Mn, Al, Co, and Cu was described. The extent of dissolution may vary depending on alloy species, such effect was obtained also for such AB 2 type Laves phase alloys such as ZrMn 0.4 Cr 0.4 Ni 1.2.

この水素吸蔵合金の作製方法としては遠心噴霧法もし
くはガス噴霧法のいずれかが好ましい。そして水素吸蔵
合金は特に希土類とニッケルをベースとし、これにMn,A
l,Co,Cuなどの元素を添加したCaCu5型構造を有する合金
の場合には特に有効である。
As a method for producing the hydrogen storage alloy, either a centrifugal spray method or a gas spray method is preferable. And hydrogen storage alloys are particularly based on rare earths and nickel, with Mn, A
This is particularly effective in the case of an alloy having a CaCu 5- type structure to which elements such as l, Co, and Cu are added.

またこの電極を用いると開放型電池においても同様の
効果が得られた。
When this electrode was used, the same effect was obtained in an open type battery.

発明の効果 以上のように本発明の電池用電極の製造法は、水素吸
蔵合金から従来は溶出していた特定の金属元素の溶出を
防止することが可能となり、高性能で長寿命の水素吸蔵
合金電極およびこれを用いた電池を提供できる。
Effect of the Invention As described above, the method for manufacturing a battery electrode of the present invention makes it possible to prevent the elution of a specific metal element that has conventionally eluted from a hydrogen storage alloy, and provides a high performance and long life hydrogen storage. An alloy electrode and a battery using the same can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−132048(JP,A) 特開 昭62−294107(JP,A) 特開 平1−152204(JP,A) 特開 平1−130468(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/38 H01M 4/24 - 4/26 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Iwaki 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-1-132048 (JP, A) JP-A-62- 294107 (JP, A) JP-A-1-152204 (JP, A) JP-A-1-130468 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/38 H01M 4 / 24-4/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくともMnまたはCoを含有した水素吸蔵
合金を超急冷法により球状の粉末にし、球状形状を維持
したままの前記粉末か、もしくは電極に加工後のいずれ
かにおいてアルカリ溶液中、もしくは熱アルカリ溶液中
に放置した水素吸蔵合金を電極とすることを特徴とする
電池用電極の製造法。
1. A hydrogen storage alloy containing at least Mn or Co is converted into a spherical powder by a super-quenching method, and the powder is maintained in a spherical shape, or after being processed into an electrode, in an alkaline solution, or A method for producing an electrode for a battery, comprising using a hydrogen storage alloy left in a hot alkaline solution as an electrode.
【請求項2】水素吸蔵合金を遠心噴霧法もしくはガス噴
霧法のいずれかで作製することを特徴とする請求項1記
載の電池用電極の製造法。
2. The method for producing an electrode for a battery according to claim 1, wherein the hydrogen storage alloy is produced by a centrifugal spraying method or a gas spraying method.
【請求項3】球状合金の粒径が20〜100ミクロンである
ことを特徴とする請求項1記載の電池用電極の製造法。
3. The method according to claim 1, wherein the spherical alloy has a particle size of 20 to 100 microns.
JP2011286A 1990-01-19 1990-01-19 Manufacturing method of battery electrode Expired - Lifetime JP2982195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286A JP2982195B2 (en) 1990-01-19 1990-01-19 Manufacturing method of battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286A JP2982195B2 (en) 1990-01-19 1990-01-19 Manufacturing method of battery electrode

Publications (2)

Publication Number Publication Date
JPH03216959A JPH03216959A (en) 1991-09-24
JP2982195B2 true JP2982195B2 (en) 1999-11-22

Family

ID=11773754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286A Expired - Lifetime JP2982195B2 (en) 1990-01-19 1990-01-19 Manufacturing method of battery electrode

Country Status (1)

Country Link
JP (1) JP2982195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499924B2 (en) * 1994-07-22 2004-02-23 三洋電機株式会社 Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH10265801A (en) * 1997-03-25 1998-10-06 Sanyo Special Steel Co Ltd Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder

Also Published As

Publication number Publication date
JPH03216959A (en) 1991-09-24

Similar Documents

Publication Publication Date Title
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JP2982195B2 (en) Manufacturing method of battery electrode
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPS6119063A (en) Hydrogen occlusion electrode
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP3016064B2 (en) Method for producing hydrogen storage alloy powder for battery
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3786143B2 (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JP3374995B2 (en) Manufacturing method of nickel electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11