JPS6230494B2 - - Google Patents

Info

Publication number
JPS6230494B2
JPS6230494B2 JP11502379A JP11502379A JPS6230494B2 JP S6230494 B2 JPS6230494 B2 JP S6230494B2 JP 11502379 A JP11502379 A JP 11502379A JP 11502379 A JP11502379 A JP 11502379A JP S6230494 B2 JPS6230494 B2 JP S6230494B2
Authority
JP
Japan
Prior art keywords
insulating film
forming
contact hole
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11502379A
Other languages
Japanese (ja)
Other versions
JPS5638842A (en
Inventor
Haruo Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11502379A priority Critical patent/JPS5638842A/en
Publication of JPS5638842A publication Critical patent/JPS5638842A/en
Publication of JPS6230494B2 publication Critical patent/JPS6230494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は多層配線を有する半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having multilayer wiring.

まず第1図に従来の多層配線を有する半導体装
置の製造方法の代表例として、NチヤネルSiゲー
トMOS半導体装置の製造方法を述べ、その問題
点を指摘する。
First, in FIG. 1, a method for manufacturing an N-channel Si gate MOS semiconductor device will be described as a representative example of a conventional method for manufacturing a semiconductor device having multilayer wiring, and the problems thereof will be pointed out.

P型単結晶シリコン基体1に選択的に厚さ約1
μmのフイールド酸化膜2a,2bを形成しさら
に約1000Åのゲート酸化膜3を形成する。次にゲ
ート酸化膜3、フイールド酸化膜2a,2bの表
面上に、公知の気相成長技術と、フオトエツチン
グ技術により、約0.5μmの多結晶シリコンより
なるゲート電極4多結晶シリコン配線層5を形成
する。次いでゲート電極4に覆われていない表面
をエツチング除去した領域に、公知の拡散技術ま
たは、イオン注入技術によりN型導電性をもつソ
ース・ドレイン領域6,7を形成し、さらに、層
間絶縁耐圧を高めるために、ソース・ドレイン領
域6,7ゲート電極4多結晶シリコン配線層5の
表面を例えば熱酸化により酸化膜8a,8b,8
c,8dを形成する(第1図A)。次に公知の気
相成長法により約1μmのリンガラス層9を成長
させ、表面をなだらかにするために、例えばN2
雰囲気中で熱処理する。リンガラス層9はリンの
拡散によつても形成できる(第1図B)。この平
坦なリンガラス層によりゲート電極4、多結晶シ
リコン配線層5の上を交差して配線される、Al
配線層の断線を防ぐことができる。次に公知のフ
オトエツチング技術により、リンガラス層9と、
酸化膜8a,8b,8c,8dを選択的に除去
し、第1のコンタクトホール10,11,12を
開孔する(第1図C)。次に第1のコンタクトホ
ール10,11,12でのリンガラス層9の段差
を緩和するために、再度熱処理する。さらに公知
の気相成長法により、約0.5μmの酸化シリコン
膜13を成長させる(第1図O)。次に再度、公
知のフオトエツチング技術により、気相成長酸化
膜13を選択的に除去し、第1コンタクトホール
10,11,12と同一の場所に、第2のコンタ
クトホール14,15,16を開孔する(第1図
E)。次に約1μmのAlを蒸着し、選択的に、Al
配線層17,18,19を配線層し、Nチヤネル
SiゲートMOS半導体装置を完成する(第1図
F)。以上、第1図では、第1コンタクトホール
10,11,12と第2コンタクトホール14,
15,16とは図形的に一致するように図示し、
説明したが、現実には、第2図で図示するよう
に、第1コンタクトホールのマスクAと、第2コ
ンタクトホールBとのマスクずれがあり、第2コ
ンタクトホールの開孔の時、すなわち、気相成長
酸化膜13をエツチングする時、例えば、フツ酸
系のエツチング液で気相成長酸化膜13の下のリ
ンガラス層9が大きくオーバーエツチされ、リン
ガラスがえぐられる。そこをAl配線層18が通
れば断線する確率が高くなる。このように従来の
製造方法によれば、現在のフオトエツチング技術
の能力から考えれば歩留りの低下は避けられなか
つた。また、気相成長酸化膜13によりリンガラ
ス層9とAl配線層18とが直接、接することが
なく、気相成長酸化膜13に欠陥が少なければ耐
水性にある程度の効果があるが現実には、気相成
長酸化膜13は欠陥が多く、その結果耐水性が不
十分で、さらに絶縁耐圧が低く、信頼性に多くの
問題を持つていた。
A thickness of approximately 1 is selectively applied to a P-type single crystal silicon substrate 1.
Field oxide films 2a and 2b with a thickness of μm are formed, and a gate oxide film 3 with a thickness of about 1000 Å is further formed. Next, on the surfaces of the gate oxide film 3 and field oxide films 2a and 2b, a gate electrode 4 made of polycrystalline silicon with a thickness of approximately 0.5 μm is formed using a known vapor phase growth technique and a photoetching technique. Form. Next, source/drain regions 6 and 7 having N-type conductivity are formed in the area where the surface not covered by the gate electrode 4 is etched away by a known diffusion technique or ion implantation technique, and further, the interlayer dielectric breakdown voltage is increased. In order to increase the height of
c, 8d (Fig. 1A). Next, a phosphorus glass layer 9 of about 1 μm is grown by a known vapor phase growth method, and in order to make the surface smooth, for example, N 2
Heat treatment in an atmosphere. The phosphorus glass layer 9 can also be formed by diffusion of phosphorus (FIG. 1B). This flat phosphorus glass layer allows wiring to be made by crossing over the gate electrode 4 and the polycrystalline silicon wiring layer 5.
Disconnection of the wiring layer can be prevented. Next, by a known photoetching technique, a phosphor glass layer 9,
Oxide films 8a, 8b, 8c, and 8d are selectively removed, and first contact holes 10, 11, and 12 are opened (FIG. 1C). Next, in order to reduce the step difference in the phosphor glass layer 9 at the first contact holes 10, 11, and 12, heat treatment is performed again. Furthermore, a silicon oxide film 13 of approximately 0.5 μm is grown by a known vapor phase growth method (FIG. 1O). Next, the vapor-grown oxide film 13 is selectively removed again using a known photo-etching technique, and second contact holes 14, 15, 16 are formed in the same locations as the first contact holes 10, 11, 12. Open a hole (Fig. 1E). Next, about 1 μm of Al is vapor-deposited, and selectively Al
Wiring layers 17, 18, and 19 are formed into a wiring layer to form an N channel.
A Si gate MOS semiconductor device is completed (Fig. 1F). As described above, in FIG. 1, the first contact holes 10, 11, 12, the second contact hole 14,
15 and 16 are shown to match graphically,
However, in reality, as shown in FIG. 2, there is a mask misalignment between the mask A of the first contact hole and the second contact hole B, and when the second contact hole is opened, that is, When the vapor-phase grown oxide film 13 is etched, the phosphorus glass layer 9 under the vapor-phase growth oxide film 13 is largely overetched using, for example, a hydrofluoric acid-based etching solution, and the phosphorus glass is gouged out. If the Al wiring layer 18 passes through it, the probability of disconnection increases. As described above, according to the conventional manufacturing method, a decrease in yield was unavoidable considering the capabilities of current photoetching technology. In addition, if the vapor-phase grown oxide film 13 prevents the phosphorus glass layer 9 and the Al wiring layer 18 from coming into direct contact with each other, and the vapor-phase grown oxide film 13 has few defects, it will have some effect on water resistance, but in reality, The vapor-phase grown oxide film 13 has many defects, and as a result, has insufficient water resistance, has a low dielectric strength voltage, and has many problems with reliability.

本発明の目的は、A1配線層のコンタクトホー
ル部での断線が非常に少なく、耐水性に優れ、さ
らに絶縁耐圧に優れた層間絶縁膜を有する半導体
装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device having an interlayer insulating film with very few disconnections at the contact hole portion of the A1 wiring layer, excellent water resistance, and excellent dielectric strength.

本発明による半導体装置の製造方法は半導体基
板表面に第1の絶縁膜とを形成する工程と、前記
第1の絶縁膜を選択的にエツチングして、上記半
導体基板の一部領域を露出する第1のコンタクト
ホールを形成する工程と、上記、前記第1コンタ
クトホールにより露出された領域の上に窒化シリ
コン膜よりなる第2の絶縁膜を形成する工程と、
上記第2絶縁膜の上に気相成長法により酸化シリ
コン膜よりなる第3の絶縁膜を形成する工程と、
上記第3の絶縁膜を選択的にエツチングして、上
記領域と直接、接している第2の絶縁物の少なく
とも一部を、露出させる第2のコンタクトホール
を形成する工程と全面に不純物を拡散して、上記
第2コンタクトホールにより露出された第2の絶
縁膜と、第3の絶縁膜の表面をリンガラス層に変
える工程と、上記ガラス層を除去し、上記領域の
一部を露出させる工程と、上記露出された領域の
上に、金属よりなる配線層を形成する工程とを備
えることを特徴とする。ここでシリコン窒化膜は
その膜厚全部にわたつてリンガラス層に変換しな
くてはならないからたとえば500〜600Åとし、あ
まり膜厚を大きくできない。一方、層間絶縁膜と
しては、たとえば上下配線層間の容量を小とする
ためにも、ある一定の膜厚を必要とする。このた
めにシリコン窒化膜上に酸化シリコン酸化膜を設
ける。又、シリコン窒化膜は全面に被着した後コ
ンタクト部近傍のみを残して他をPR工程で除去
してもかまわない。しかしこのようにするとPR
工程の追加が必要となる。残余させておいても一
向に差支えなくかつその方が複合膜としてのピン
ホールの発生確率が小となり、かつ上記したよう
に選択的に除去するとそれだけ工程が増加するか
ら、後から述べる実施例においては、コンタクト
部およびその近傍以外の第1の絶縁膜上にもその
まま窒化シリコン膜を残余させている。
The method for manufacturing a semiconductor device according to the present invention includes a step of forming a first insulating film on a surface of a semiconductor substrate, and a step of selectively etching the first insulating film to expose a partial region of the semiconductor substrate. a step of forming a second insulating film made of a silicon nitride film on the region exposed by the first contact hole;
forming a third insulating film made of a silicon oxide film on the second insulating film by vapor phase growth;
A step of selectively etching the third insulating film to form a second contact hole that exposes at least a portion of the second insulating film that is in direct contact with the region; and diffusing impurities over the entire surface. and converting the surfaces of the second insulating film and the third insulating film exposed by the second contact hole into phosphor glass layers, and removing the glass layer to expose a part of the region. and a step of forming a wiring layer made of metal on the exposed region. Here, since the entire thickness of the silicon nitride film must be converted into a phosphorus glass layer, the film thickness cannot be increased very much, for example, from 500 to 600 Å. On the other hand, the interlayer insulating film requires a certain film thickness, for example, in order to reduce the capacitance between upper and lower wiring layers. For this purpose, a silicon oxide film is provided on the silicon nitride film. Alternatively, after the silicon nitride film is deposited on the entire surface, only the area near the contact portion may be left and the rest may be removed by a PR process. However, if you do it like this, PR
Additional processes are required. There is no problem in leaving it behind, and the probability of pinholes occurring in the composite film is smaller, and selectively removing it as described above increases the number of steps, so in the examples described later, , the silicon nitride film is left as it is on the first insulating film other than the contact portion and the vicinity thereof.

以下本発明の一実施例を第3図A〜Gを参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3A to 3G.

ここでは第3図Aから第3図―Cまでの工程は
従来と同一であるので説明は省略する。
Here, since the steps from FIG. 3A to FIG. 3-C are the same as the conventional process, their explanation will be omitted.

第1コンタクトホール10,11,12を開孔
後、例えばN2雰囲気中で熱処理した後、公知の
気相成長法により、約500Åの窒化シリコン膜1
20を形成させた後、その上に約0.5μmの酸化
シリコン膜113を形成する(第3図O)。次に
従来と同様に、公知のフオトエツチング技術によ
り第2コンタクトホール114,115,116
を開孔する。この時、気相成長酸化膜113の下
の窒化シリコン膜120がエツチングのストツパ
ーとなり、たとえ第1コンタクトホール10,1
1,12と第2コンタクトホール114,11
5,116のマスクずれがあつても、リンガラス
層9がエツチングされない(第3図E)。次に全
面にリンを拡散することにより気相成長酸化膜1
13の表面と、第2コンタクトホール114,1
15,116の下の窒化シリコン膜を第2のリン
ガラス層121に変える(第3図F)。このリン
拡散は気相成長酸化膜113を緻密にする効果
と、第2コンタクトホール114,115,11
6での気相成長酸化膜113の段差を緩和する効
果を同時にもつ。次に例えばフツ酸系のエツチン
グ液で第2のリンガラス層121を除去し、その
後約1μmのAlを蒸着し、選択的にAl配線層1
17,118,119を形成しNチヤネルSiゲー
トMOS半導体装置を完成する。(第3図G)。
After opening the first contact holes 10, 11, and 12, a silicon nitride film 1 of about 500 Å is formed by a known vapor phase growth method, for example, after heat treatment in an N2 atmosphere.
After forming 20, a silicon oxide film 113 of about 0.5 μm is formed thereon (FIG. 3O). Next, as in the prior art, second contact holes 114, 115, 116 are formed using a known photoetching technique.
Drill a hole. At this time, the silicon nitride film 120 under the vapor grown oxide film 113 acts as an etching stopper, and even if the first contact holes 10, 1
1, 12 and second contact holes 114, 11
Even if there is a mask shift of 5,116, the phosphor glass layer 9 is not etched (FIG. 3E). Next, by diffusing phosphorus over the entire surface, a vapor-phase grown oxide film 1 is formed.
13 and the second contact hole 114,1
The silicon nitride film below 15 and 116 is replaced with a second phosphorous glass layer 121 (FIG. 3F). This phosphorus diffusion has the effect of making the vapor grown oxide film 113 denser and the second contact holes 114, 115, 11
At the same time, it has the effect of alleviating the step difference in the vapor-phase grown oxide film 113 in step 6. Next, the second phosphor glass layer 121 is removed using, for example, a hydrofluoric acid-based etching solution, and then approximately 1 μm of Al is deposited, selectively forming the Al wiring layer 121.
17, 118, and 119 are formed to complete an N-channel Si gate MOS semiconductor device. (Figure 3G).

本発明によれば第4図に示す通り第1コンタク
トホールのマスクCと第2コンタクトホールのマ
スクOとのマスクずれがあつてもエツチングが窒
化シリコン膜120でとまるためリンガラス層9
がえぐられてエツチングされることがなく、さら
に、リン拡散により第2コンタクトホールでの気
相成長酸化膜113の段差が緩和されているの
で、コンタクトホール部はなだらかであり、その
結果コンタクトホール部を通るAl配線層118
の断線はない。また、リンガラス層9の上には窒
化シリコン膜120とリン拡散によつて、緻密に
なつた気相成長酸化膜113の2層の膜が存在
し、耐水性に十分な効果をもたらす。また、層間
絶縁膜の耐圧については、窒化シリコン膜120
が耐圧を従来よりも高めている。以上説明した如
く、本発明の製造方法に従えば、従来の製造方法
に比べて、歩留りおよび信頼性を大きく向上させ
ることができる。なお本発明は実施例のようにN
チヤネルSiゲートMOS半導体装置の製造方法に
限定されることなく、その他のN型導電性の不純
物領域を有する多層配線構造の半導体装置の製造
方法に適用できることは言うまでもない。
According to the present invention, as shown in FIG. 4, even if there is a mask misalignment between the mask C of the first contact hole and the mask O of the second contact hole, etching is stopped at the silicon nitride film 120, so the phosphor glass layer 9
There is no gouging and etching, and the level difference in the vapor-grown oxide film 113 at the second contact hole is alleviated by phosphorus diffusion, so the contact hole part is gentle. Al wiring layer 118 passing through
There is no disconnection. Further, on the phosphorus glass layer 9, there are two layers, a silicon nitride film 120 and a vapor-grown oxide film 113 which has become dense due to phosphorus diffusion, and has a sufficient effect on water resistance. Regarding the withstand voltage of the interlayer insulating film, the silicon nitride film 120
The withstand voltage is higher than before. As explained above, according to the manufacturing method of the present invention, yield and reliability can be greatly improved compared to conventional manufacturing methods. Note that in the present invention, as in the embodiment, N
Needless to say, the present invention is not limited to the method of manufacturing a channel Si gate MOS semiconductor device, but can be applied to a method of manufacturing a semiconductor device having a multilayer wiring structure having an impurity region of N-type conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Fは従来の半導体装置の製造方法の
それぞれ工程断面図、第2図は従来の製造方法で
製造された半導体装置のコンタクトホール部での
拡大図、第3図A〜Gは本発明の実施例による製
造方法を工程順に示す断面図、第4図は本発明の
製造方法で製造された半導体装置のコンタクトホ
ール部での拡大図である。 1:半導体基板、2a,2b:フイールド酸化
膜、3:ゲート絶縁膜。
1A to 1F are process cross-sectional views of a conventional semiconductor device manufacturing method, FIG. 2 is an enlarged view of a contact hole portion of a semiconductor device manufactured by the conventional manufacturing method, and FIGS. 3A to 3G are FIG. 4 is a cross-sectional view showing the manufacturing method according to an embodiment of the present invention in the order of steps, and FIG. 4 is an enlarged view of a contact hole portion of a semiconductor device manufactured by the manufacturing method of the present invention. 1: Semiconductor substrate, 2a, 2b: Field oxide film, 3: Gate insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板表面に第1の絶縁膜を形成する工
程と、前記第1の絶縁膜を選択的にエツチングし
て、前記半導体基板の一部領域を露出する第1の
コンタクトホールを形成する工程と、全面に窒化
シリコン膜よりなる第2の絶縁膜を形成する工程
と、前記第2絶縁膜の上に酸化シリコン膜よりな
る第3の絶縁膜を形成する工程と、前記第3の絶
縁膜を選択的にエツチングして第2の絶縁膜の少
なくとも一部を、露出する第2のコンタクトホー
ルを形成する工程と、前記第2コンタクトホール
により露出された第2の絶縁膜と、第3の絶縁膜
の表面をガラス層に変える工程と、前記ガラス層
を除去し前記領域の一部を露出させる工程と、前
記露出された領域の上に配線層を形成する工程と
を含むことを特徴とした半導体装置の製造方法。
1. A step of forming a first insulating film on the surface of the semiconductor substrate; and a step of selectively etching the first insulating film to form a first contact hole exposing a partial region of the semiconductor substrate. , a step of forming a second insulating film made of a silicon nitride film on the entire surface, a step of forming a third insulating film made of a silicon oxide film on the second insulating film, and a step of forming the third insulating film. forming a second contact hole that exposes at least a portion of the second insulating film by selectively etching the second insulating film exposed by the second contact hole; The method includes the steps of: changing the surface of the film into a glass layer; removing the glass layer to expose a part of the region; and forming a wiring layer on the exposed region. A method for manufacturing a semiconductor device.
JP11502379A 1979-09-07 1979-09-07 Manufacture of semiconductor device Granted JPS5638842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11502379A JPS5638842A (en) 1979-09-07 1979-09-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11502379A JPS5638842A (en) 1979-09-07 1979-09-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5638842A JPS5638842A (en) 1981-04-14
JPS6230494B2 true JPS6230494B2 (en) 1987-07-02

Family

ID=14652313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11502379A Granted JPS5638842A (en) 1979-09-07 1979-09-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5638842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312625A (en) * 1995-05-19 1996-11-26 Takashi Nakao Nut device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147046A (en) * 1982-02-25 1983-09-01 Nippon Denso Co Ltd Semiconductor device
JPH0626235B2 (en) * 1984-06-20 1994-04-06 株式会社日立製作所 Semiconductor integrated circuit device
JP2512900B2 (en) * 1986-05-22 1996-07-03 三菱電機株式会社 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312625A (en) * 1995-05-19 1996-11-26 Takashi Nakao Nut device

Also Published As

Publication number Publication date
JPS5638842A (en) 1981-04-14

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPH05206451A (en) Mosfet and its manufacture
JPH0923001A (en) Manufacture of semiconductor device
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
US6194257B1 (en) Fabrication method of gate electrode having dual gate insulating film
JPS6230494B2 (en)
JPH0415619B2 (en)
JPS58213449A (en) Semiconductor integrated circuit device
JPS59168675A (en) Manufacture of semiconductor device
JPS5952879A (en) Manufacture of semiconductor device
JP2596848B2 (en) Method for manufacturing semiconductor device
JPS6150385B2 (en)
JP2950620B2 (en) Semiconductor device
KR960016230B1 (en) Contact hole forming method
JPS5910274A (en) Mis type semiconductor device
JPH04123458A (en) Manufacture of semiconductor device
JPS5885529A (en) Manufacture of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPH0377376A (en) Manufacture of semiconductor device
JPS62219960A (en) Manufacture of thin film mos structure semiconductor device
JPH08298286A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS60217645A (en) Manufacture of semiconductor device
JPS60160142A (en) Manufacture of semiconductor device
JPH0463469A (en) Soi type semiconductor device