JPH0923001A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0923001A
JPH0923001A JP7169125A JP16912595A JPH0923001A JP H0923001 A JPH0923001 A JP H0923001A JP 7169125 A JP7169125 A JP 7169125A JP 16912595 A JP16912595 A JP 16912595A JP H0923001 A JPH0923001 A JP H0923001A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
forming
base layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7169125A
Other languages
Japanese (ja)
Other versions
JP3201221B2 (en
Inventor
Yasuto Ninomiya
康人 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16912595A priority Critical patent/JP3201221B2/en
Publication of JPH0923001A publication Critical patent/JPH0923001A/en
Application granted granted Critical
Publication of JP3201221B2 publication Critical patent/JP3201221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing costs of semiconductor devices having the same structure by reducing the number of processes. SOLUTION: After a base layer 3 and a source layer 4 are formed on the entire surface of a wafer, a vertical groove is formed through the layers 4 and 3. Then a gate electrode 6 is formed by forming a gate oxide film 5 and laminating aluminum upon the layer 5, and then, filling up the groove with the alumi,num by heat-treating the aluminum. After laminating an interlayer insulating film 7 upon the gate oxide film 5 and gate electrode 6, a contact hole reaching the base layer 3 and electrode 6 is formed by etching. After forming the contact hole, wiring aluminum 8 is laminated so that the aluminum 8 can fill up the contact hole and, after patterning the aluminum 8, an SiN film is laminated upon the insulating film as a passivation film 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に縦型MOS(Metal Oxide Si
licon)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a vertical MOS (Metal Oxide Si).
licon).

【0002】[0002]

【従来の技術】従来、この種の製造方法としては、図4
及び図5に示すように、n/n+ エピ(100)、比抵
抗0.6〜2.0(Ω・cm)、エピ厚10μmを使用
し、ベース領域3にはボロン(Boron:ホウ素)を
ドーズ量7×1013cm-2、加速電圧100keVの条
件でイオン注入し、拡散長2μmとなるように拡散して
いる。
2. Description of the Related Art Conventionally, as a manufacturing method of this kind, FIG.
And, as shown in FIG. 5, n / n + epi (100), specific resistance 0.6 to 2.0 (Ω · cm), epi thickness 10 μm are used, and boron (Boron) is used for the base region 3. Is ion-implanted under the conditions of a dose amount of 7 × 10 13 cm −2 and an acceleration voltage of 100 keV, and diffused so that the diffusion length becomes 2 μm.

【0003】また、n+ ソース領域4にはヒ素をドーズ
量2×1015cm-2、加速電圧40keVで、ソースの
コンタクト部をマスクした状態で注入し、拡散長0.4
μmとなるように拡散している。
Further, arsenic is implanted into the n + source region 4 at a dose amount of 2 × 10 15 cm -2 and an acceleration voltage of 40 keV while the source contact portion is masked, and the diffusion length is 0.4.
It is diffused so that it becomes μm.

【0004】垂直溝14はRIE(Reactive
Ion Etching)、SF6+CCl4 混合ガス
を使用し、圧力100mTorrの条件で深さ4μmに
達するまでエッチングする。また、ゲート部の汚染層や
ダメージ領域を除去するための軽いウェットエッチング
を追加する[図4(a)参照]。
The vertical groove 14 is formed by RIE (Reactive).
Ion Etching) and SF6 + CCl4 mixed gas are used, and etching is performed at a pressure of 100 mTorr until a depth of 4 .mu.m is reached. In addition, light wet etching is added to remove the contaminated layer and the damaged region of the gate portion [see FIG. 4 (a)].

【0005】この上に、ゲート酸化膜13を650Å成
長させた後に、ポリシリコン6を減圧CVD(Chem
ical Vapor Deposition)によっ
て5000Å成長させ、リンドープした後にポリシリコ
ン6表面に酸化膜13を薄く成長させる[図4(b)参
照]。
After the gate oxide film 13 is grown on this by 650Å, the polysilicon 6 is decompressed by CVD (Chem).
Then, the oxide film 13 is grown thinly on the surface of the polysilicon 6 after the growth of 5000Å by the chemical vapor deposition) and phosphorus doping [see FIG. 4 (b)].

【0006】続いて、垂直溝14の充填用の第2ポリシ
リコン15を2.0μm成長させて垂直溝14を完全に
埋め込んだ後に[図4(c)参照]、全面ポリシリコン
エッチバックで垂直溝14の部分以外の領域のポリシリ
コン15を除去する[図5(a)参照]。ここで、第1
ポリシリコン6上の薄い酸化膜13は第1ポリシリコン
6へのオーバエッチングのストッパの役割を持ってい
る。
Subsequently, a second polysilicon 15 for filling the vertical groove 14 is grown to 2.0 μm to completely fill the vertical groove 14 [see FIG. 4 (c)], and then the entire surface is etched back by a polysilicon etch. The polysilicon 15 in the region other than the groove 14 is removed [see FIG. 5 (a)]. Here, the first
The thin oxide film 13 on the polysilicon 6 serves as a stopper for over-etching the first polysilicon 6.

【0007】ゲート電極6のパターニングの後、層間絶
縁膜7としてリン濃度8%のPSG(Phospho
Silicate Glass)膜を5000Å成長さ
せ、100℃、H2 +O2 雰囲気中でリフローし、ステ
ップ被覆性の向上を図る[図5(b)参照]。
After patterning the gate electrode 6, PSG (Phospho) having a phosphorus concentration of 8% is formed as an interlayer insulating film 7.
A Silicate Glass) film is grown at 5000Å and reflowed at 100 ° C. in an H 2 + O 2 atmosphere to improve the step coverage (see FIG. 5B).

【0008】また、コンタクトホール形成後、DCマグ
ネトロンスパッタ(DirectCurrent Ma
gnetron Sputtering)によって2μ
mのAl−Si−Cu8をデポし、ソース及びゲート電
極を形成する[図5(c)参照]。表面のパッシベーシ
ョン膜(図示せず)にはプラズマSiN膜を使用してい
る。
After the contact hole is formed, DC magnetron sputtering (Direct Current Ma) is performed.
2μ by gnetron Sputtering)
m Al-Si-Cu8 is deposited to form the source and gate electrodes [see FIG. 5 (c)]. A plasma SiN film is used for the passivation film (not shown) on the surface.

【0009】尚、上記の半導体装置の製造方法について
は、「超低イオン抵抗RMOSFET」(上田大助他
著、National Technical Repo
rtVol.32、No.2、Apr.1986)に詳
述されている。
Regarding the method of manufacturing the above semiconductor device, "Ultra-low ion resistance RMOSFET" (Dasuke Ueda et al., National Technical Report).
rtVol. 32, no. 2, Apr. 1986).

【0010】[0010]

【発明が解決しようとする課題】近年、半導体全般にコ
ストダウンが求められており、同じ構造の半導体であれ
ばいかに少ない工程でその半導体を実現するかが重要に
なっている。
In recent years, cost reduction has been demanded for semiconductors in general, and it is important to realize the semiconductor with the same structure in a small number of steps.

【0011】上述した従来の半導体装置の製造方法で
は、ソース領域形成時にベース層とコンタクトをとる部
分をマスクしているためにパターニングの工程が必要と
なり、この場合にはパターニングの工程をなくすことは
できない。
In the above-described conventional method for manufacturing a semiconductor device, a patterning step is required because the portion that makes contact with the base layer when forming the source region is masked. In this case, the patterning step can be eliminated. Can not.

【0012】これを解決するために、ソース領域を基板
全面に形成し、コンタクト形成時にベース層までシリコ
ンをエッチングする方法も考えられる。しかしながら、
ベース層までシリコンをエッチングしようとするとゲー
ト電極のポリシリコンも一緒にエッチングされるため、
ベース層までのコンタクトをゲート電極のコンタクトと
は別に形成するか、あるいはゲート電極の大きさや深さ
をエッチングされても支障のないサイズにしなければな
らない。
In order to solve this, a method of forming a source region on the entire surface of the substrate and etching silicon up to the base layer at the time of forming a contact can be considered. However,
When attempting to etch silicon up to the base layer, the polysilicon of the gate electrode is also etched, so
The contact to the base layer must be formed separately from the contact of the gate electrode, or the size and depth of the gate electrode must be sized so as not to interfere with etching.

【0013】そこで、本発明の目的は上記の問題点を解
消し、同一構造の半導体装置の製造において工程数を削
減することができ、コストダウンを図ることができる半
導体装置の製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above problems and to provide a method of manufacturing a semiconductor device which can reduce the number of steps in manufacturing a semiconductor device having the same structure and can reduce the cost. Especially.

【0014】[0014]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、基板上全面にベース層を形成する工程
と、前記ベース層上全面に前記ベース層よりも薄くソー
ス層を形成する工程と、前記ベース層及び前記ソース層
を貫通する溝を形成して前記ソース層の表面と前記溝の
表面及び側壁面に夫々ゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極材料を積層して前記溝
を埋め込む工程と、前記ゲート電極材料をパターニング
してゲート電極を形成する工程と、前記ゲート絶縁膜及
び前記ゲート電極上に層間絶縁膜を積層する工程と、前
記層間絶縁膜及び前記ゲート絶縁膜をエッチングして前
記ベース層及び前記ゲート電極へのコンタクトホールを
形成する工程とを備えている。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a base layer on the entire surface of a substrate, and a step of forming a source layer thinner than the base layer on the entire surface of the base layer. Forming a groove penetrating the base layer and the source layer and forming a gate insulating film on the surface of the source layer, the surface of the groove, and the side wall surface, respectively.
Stacking a gate electrode material on the gate insulating film to fill the groove; patterning the gate electrode material to form a gate electrode; forming an interlayer insulating film on the gate insulating film and the gate electrode; And a step of forming a contact hole to the base layer and the gate electrode by etching the interlayer insulating film and the gate insulating film.

【0015】本発明による他の半導体装置の製造方法
は、上記の構成のほかに、前記コンタクトホールを形成
した後に全面にボロンを注入する工程を具備している。
Another method of manufacturing a semiconductor device according to the present invention comprises, in addition to the above structure, a step of implanting boron over the entire surface after forming the contact hole.

【0016】本発明による別の半導体装置の製造方法
は、上記の構成のほかに、基板上全面にベース層を形成
する工程と、前記ベース層上全面に前記ベース層よりも
薄くソース層を形成する工程と、前記ベース層及び前記
ソース層を貫通する溝を形成して前記ソース層の表面と
前記溝の表面及び側壁面に夫々ゲート絶縁膜を形成する
工程と、前記ゲート絶縁膜上にゲート電極材料を積層し
て前記溝を埋め込む工程と、前記ゲート絶縁膜上に積層
した前記ゲート電極材料を熱処理で溶融して前記溝に集
中的に流し込むことでゲート電極を自己形成する工程
と、前記ゲート絶縁膜及び前記ゲート電極上に層間絶縁
膜を積層する工程と、前記層間絶縁膜及び前記ゲート絶
縁膜をエッチングして前記ベース層及び前記ゲート電極
へのコンタクトホールを形成する工程とを具備してい
る。
In addition to the above structure, another method of manufacturing a semiconductor device according to the present invention is a step of forming a base layer on the entire surface of the substrate, and forming a source layer thinner than the base layer on the entire surface of the base layer. A step of forming a groove penetrating the base layer and the source layer to form a gate insulating film on the surface of the source layer, the surface of the groove and the sidewall surface, respectively, and a gate on the gate insulating film. Stacking an electrode material to fill the groove; forming the gate electrode by melting the gate electrode material stacked on the gate insulating film by heat treatment and pouring the material into the groove in a concentrated manner; Stacking an interlayer insulating film on the gate insulating film and the gate electrode, and contact holes to the base layer and the gate electrode by etching the interlayer insulating film and the gate insulating film Is a step of forming.

【0017】本発明によるさらに別の半導体装置の製造
方法は、上記の構成のほかに、前記コンタクトホールを
形成した後に全面にボロンを注入する工程を具備してい
る。
Still another semiconductor device manufacturing method according to the present invention comprises, in addition to the above structure, a step of implanting boron over the entire surface after forming the contact hole.

【0018】[0018]

【作用】基板上全面にベース層を形成し、その上にソー
ス層を形成した後にベース層及びソース層を貫通する垂
直溝を形成してソース層の表面と垂直溝の表面及び側壁
面に夫々ゲート絶縁膜を形成する。
A base layer is formed on the entire surface of a substrate, a source layer is formed on the base layer, and then vertical grooves penetrating the base layer and the source layer are formed to form a surface of the source layer, a surface of the vertical groove, and a side wall surface, respectively. A gate insulating film is formed.

【0019】そのゲート絶縁膜上にゲート電極の材料を
積層して垂直溝を埋め込んでゲート電極を形成するとと
もに、ゲート絶縁膜及びゲート電極上に層間絶縁膜を積
層してからエッチングでベース層及びゲート電極へのコ
ンタクトホールを形成する。
The gate electrode material is laminated on the gate insulating film to fill the vertical groove to form the gate electrode, and the gate insulating film and the interlayer insulating film are laminated on the gate electrode, and then the base layer and the base layer are formed by etching. A contact hole to the gate electrode is formed.

【0020】これによって、ソース領域形成時にベース
層とコンタクトをとる部分をマスクしてパターニングす
るという工程が不要となるので、フォトマスクを用いた
パターニング工程を4工程に減らすことができる。
As a result, the step of patterning by masking the portion that comes into contact with the base layer when forming the source region is not required, and the patterning step using the photomask can be reduced to four steps.

【0021】よって、同一構造の半導体装置の製造にお
いて工程数の削減が可能となる。同時に、パターニング
工程で用いるガラスマスクも減らすことができるので、
コストダウンを図ることが可能となる。
Therefore, it is possible to reduce the number of steps in manufacturing semiconductor devices having the same structure. At the same time, the number of glass masks used in the patterning process can be reduced,
Costs can be reduced.

【0022】この場合、ゲート電極にはシリコンとの選
択比が大きいアルミニウム等を用いているので、ベース
層までシリコンをエッチングする場合にもシリコンと一
緒にエッチングされることはない。よって、ベース層ま
でのコンタクトホールをゲート電極のコンタクトホール
とは別に形成する必要はなく、ゲート電極の大きさや深
さをエッチングされても支障のないサイズにする必要も
ない。
In this case, since the gate electrode is made of aluminum or the like having a large selection ratio with respect to silicon, it is not etched together with silicon even when the silicon is etched up to the base layer. Therefore, it is not necessary to form the contact hole up to the base layer separately from the contact hole for the gate electrode, and it is not necessary to make the size and depth of the gate electrode a size that does not hinder the etching.

【0023】[0023]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0024】図1及び図2は本発明の一実施例による半
導体装置の製造工程を示す各工程の断面図である。これ
ら図1及び図2を用いて本発明の一実施例による半導体
装置の製造工程について説明する。
1 and 2 are cross-sectional views showing the steps of manufacturing a semiconductor device according to an embodiment of the present invention. The manufacturing process of the semiconductor device according to one embodiment of the present invention will be described with reference to FIGS.

【0025】N+ 基板1(100)[比抵抗0.002
〜0.006(Ω・cm)]にN-エピ2[比抵抗0.
6〜1.0(Ω・cm)、厚さ8μm]を成長させたウ
ェハを使用し、全面にボロンを注入して拡散深さ1.5
〜2.0μmとなるような熱処理を行い、ベース層3を
形成する。その後に、全面にヒ素を注入して拡散深さ
0.4〜0.6μmとなるような熱処理を行い、ソース
層4を形成する[図1(a)参照]。
N + substrate 1 (100) [specific resistance 0.002
~0.006 (Ω · cm)] in N - epi 2 [specific resistance 0.
6-1.0 (Ω · cm), thickness of 8 μm] is used, and boron is implanted over the entire surface to obtain a diffusion depth of 1.5.
The base layer 3 is formed by performing heat treatment such that the thickness is about 2.0 μm. After that, arsenic is implanted into the entire surface and heat treatment is performed so that the diffusion depth is 0.4 to 0.6 μm, and the source layer 4 is formed [see FIG. 1 (a)].

【0026】ソース層4を形成した後に、垂直溝をイオ
ンエッチングにてN+ ソース4及びPベース3を貫いて
- エピ2に到達する深さとなるように形成する。その
上にゲート酸化膜5を成長させ、さらにその上にアルミ
ニウムを積層する。積層したアルミニウムを熱処理によ
って垂直溝に埋め込み、ゲート電極6を形成する[図1
(b)及び図1(c)参照]。
After forming the source layer 4, a vertical groove is formed by ion etching so as to reach the N - epi 2 through the N + source 4 and the P base 3. A gate oxide film 5 is grown on it, and aluminum is further stacked thereon. The laminated aluminum is buried in the vertical groove by heat treatment to form the gate electrode 6 [FIG.
(B) and FIG. 1 (c)].

【0027】これらゲート酸化膜5及びゲート電極6の
上に層間絶縁膜7を積層した後に、イオンエッチングに
てベース層3及びゲート電極6まで届くコンタクトホー
ルを形成する[図2(a)参照]。この場合、ゲート電
極6にはシリコンとの選択比が大きい、つまりシリコン
のエッチングレートとの差が大きいエッチングレートの
アルミニウムを用いているので、シリコンをエッチング
してコンタクトホールを形成する場合でもゲート電極6
がエッチングされることはない。
After laminating the interlayer insulating film 7 on the gate oxide film 5 and the gate electrode 6, a contact hole reaching the base layer 3 and the gate electrode 6 is formed by ion etching [see FIG. 2 (a)]. . In this case, since the gate electrode 6 is made of aluminum having a large selection ratio with respect to silicon, that is, an etching rate having a large difference from the etching rate of silicon, even when the silicon is etched to form the contact hole, the gate electrode 6 is formed. 6
Is not etched.

【0028】これらコンタクトホールを埋め込むよう
に、アルミリフロースパッタにて配線アルミ8を積層
し、この配線アルミ8をパターニングした後にSiN膜
をパッシベーション膜9として積層する[図2(b)参
照]。
Wiring aluminum 8 is laminated by aluminum reflow sputtering so as to fill these contact holes, and after patterning the wiring aluminum 8, a SiN film is laminated as a passivation film 9 [see FIG. 2 (b)].

【0029】上記の製造方法によれば、フォトリソグラ
フィ技術を用いたパターニングが4回のみとなり、半導
体装置の製造工程の短縮及びパターニングに用いるマス
クを削減することができる。
According to the above manufacturing method, the patterning using the photolithography technique is performed only four times, so that the manufacturing process of the semiconductor device can be shortened and the mask used for the patterning can be reduced.

【0030】層間絶縁膜7を形成する前の状態は表面に
ほとんど段差がないので、層間絶縁膜7の形成後に熱処
理によるリフローを行う必要がない。また、ゲート電極
6の形成後に不純物の活性化や層間絶縁膜7のリフロー
等の高温の熱処理が不要となるので、ゲート電極6の材
料としてアルミニウム等の低融点金属を用いることがで
き、ゲート電極6にアルミニウムを用いることでポリシ
リコンに比べて大幅にゲート抵抗を低減することが可能
となる。尚、ゲート電極6の材料としてはアルミニウム
の他にW、Ti、An等を用いることができる。
Since there is almost no step on the surface before the interlayer insulating film 7 is formed, it is not necessary to perform reflow by heat treatment after forming the interlayer insulating film 7. Further, since high temperature heat treatment such as activation of impurities and reflow of the interlayer insulating film 7 is not required after the formation of the gate electrode 6, a low melting point metal such as aluminum can be used as the material of the gate electrode 6, By using aluminum for 6, it becomes possible to significantly reduce the gate resistance as compared with polysilicon. As the material of the gate electrode 6, W, Ti, An or the like can be used in addition to aluminum.

【0031】図3は本発明の他の実施例による半導体装
置の製造工程を示す各工程の断面図である。この図3を
用いて本発明の他の実施例による半導体装置の製造工程
について説明する。
3A to 3D are sectional views showing the steps of manufacturing a semiconductor device according to another embodiment of the present invention. A manufacturing process of a semiconductor device according to another embodiment of the present invention will be described with reference to FIG.

【0032】本発明の他の実施例では上記のゲート酸化
膜5の成長後にポリシリコン10を積層し、リン拡散を
行った後にWSiを積層して垂直溝を埋め込み、エッチ
バックによってゲート電極(ポリシリコン)10,及び
ゲート電極(WSi)11を形成する[図3(a)参
照]。
In another embodiment of the present invention, polysilicon 10 is laminated after the gate oxide film 5 is grown, phosphorus is diffused and then WSi is laminated to fill a vertical groove, and a gate electrode (polysilicon) is formed by etching back. Silicon) 10 and gate electrode (WSi) 11 are formed [see FIG. 3 (a)].

【0033】これらゲート酸化膜5及びゲート電極1
0,11の上に層間絶縁膜7を積層した後に、イオンエ
ッチングにてベース層3及びゲート電極11まで届くコ
ンタクトホールを形成する。その後に、全面にボロンを
注入することで、ベース層3にP+ 拡散領域12が形成
されるのでベース層3とのコンタクト抵抗を低減するこ
とができる[図3(b)参照]。このとき、ゲート電極
11に届くコンタクトホールのコンタクト部分にもボロ
ンが注入されるが、ゲート電極11の表面はWSiであ
るため、ボロンによる影響を受けることはない。
These gate oxide film 5 and gate electrode 1
After laminating the interlayer insulating film 7 on the layers 0 and 11, a contact hole reaching the base layer 3 and the gate electrode 11 is formed by ion etching. After that, by implanting boron over the entire surface, the P + diffusion region 12 is formed in the base layer 3, so that the contact resistance with the base layer 3 can be reduced [see FIG. 3 (b)]. At this time, boron is also injected into the contact portion of the contact hole reaching the gate electrode 11, but since the surface of the gate electrode 11 is WSi, it is not affected by boron.

【0034】これらコンタクトホールを埋め込むように
配線アルミ8を積層し、この配線アルミ8をパターニン
グした後にSiN膜をパッシベーション膜9として積層
する[図3(c)参照]。これによって、上記の製造方
法でも、フォトリソグラフィ技術を用いたパターニング
の回数が減るので、半導体装置の製造工程の短縮及びパ
ターニングに用いるマスクを削減することができる。
A wiring aluminum 8 is laminated so as to fill these contact holes, the wiring aluminum 8 is patterned, and then a SiN film is laminated as a passivation film 9 [see FIG. 3 (c)]. As a result, even in the above manufacturing method, the number of times of patterning using the photolithography technique is reduced, so that it is possible to shorten the manufacturing process of the semiconductor device and reduce the mask used for patterning.

【0035】このように、基板上全面にベース層3及び
ソース層4を形成した後にベース層3及びソース層4を
貫通する垂直溝を形成してソース層4の表面と垂直溝の
表面及び側壁面に夫々ゲート絶縁膜5を形成し、そのゲ
ート絶縁膜5上にゲート電極6,10,11の材料を積
層して垂直溝を埋め込んでゲート電極6,10,11を
形成するとともに、ゲート絶縁膜5及びゲート電極6,
10,11上に層間絶縁膜7を積層してからエッチング
でベース層3及びゲート電極6,11へのコンタクトホ
ールを形成することによって、ソース領域形成時にベー
ス層3とコンタクトをとる部分をマスクしてパターニン
グするという工程が不要となるので、フォトマスクを用
いたパターニング工程を4工程に減らすことができる。
In this way, after the base layer 3 and the source layer 4 are formed on the entire surface of the substrate, vertical grooves penetrating the base layer 3 and the source layer 4 are formed to form the surface of the source layer 4 and the surface and side of the vertical groove. Gate insulating films 5 are formed on the wall surfaces, and the materials for the gate electrodes 6, 10 and 11 are stacked on the gate insulating films 5 to fill the vertical grooves to form the gate electrodes 6, 10 and 11, and the gate insulating film 5 is formed. Film 5 and gate electrode 6,
By forming the interlayer insulating film 7 on the layers 10 and 11 and then forming contact holes to the base layer 3 and the gate electrodes 6 and 11 by etching, the portions that make contact with the base layer 3 when the source region is formed are masked. Since the step of patterning is not necessary, the patterning step using the photomask can be reduced to four steps.

【0036】よって、同一構造の半導体装置の製造にお
いて工程数を削減することができる。同時に、パターニ
ング工程で用いるガラスマスクも減らすことができるの
で、コストダウンを図ることができる。
Therefore, it is possible to reduce the number of steps in manufacturing semiconductor devices having the same structure. At the same time, the number of glass masks used in the patterning process can be reduced, so that the cost can be reduced.

【0037】この場合、ゲート電極6,11にはシリコ
ンとの選択比が大きいアルミニウム等を用いているの
で、ベース層3までシリコンをエッチングする場合にも
シリコンと一緒にエッチングされることはない。よっ
て、ベース層3までのコンタクトホールをゲート電極
6,11のコンタクトホールとは別に形成する必要はな
く、ゲート電極6,11の大きさや深さをエッチングさ
れても支障のないサイズにする必要もない。
In this case, since the gate electrodes 6 and 11 are made of aluminum or the like having a large selection ratio with respect to silicon, even when the silicon is etched up to the base layer 3, it is not etched together with the silicon. Therefore, it is not necessary to form the contact hole up to the base layer 3 separately from the contact holes of the gate electrodes 6 and 11, and it is also necessary to make the size and depth of the gate electrodes 6 and 11 such that etching does not cause any trouble. Absent.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、基
板上全面に形成したベース層及びソース層を貫通する溝
を形成し、ソース層の表面と溝の表面及び側壁面に夫々
ゲート絶縁膜を形成してからゲート絶縁膜上にゲート電
極材料を積層して溝を埋め込んでゲート電極を形成する
とともに、ゲート絶縁膜及びゲート電極上に層間絶縁膜
を積層した後に層間絶縁膜及びゲート絶縁膜をエッチン
グしてベース層及びゲート電極へのコンタクトホールを
形成することによって、同一構造の半導体装置の製造に
おいて工程数を削減することができ、コストダウンを図
ることができるという効果がある。
As described above, according to the present invention, a groove penetrating the base layer and the source layer formed on the entire surface of the substrate is formed, and the gate insulation is formed on the surface of the source layer, the surface of the groove, and the side wall surface, respectively. After forming the film, the gate electrode material is laminated on the gate insulating film to fill the groove to form the gate electrode, and the gate insulating film and the interlayer insulating film are laminated on the gate electrode and then the interlayer insulating film and the gate insulating film. By etching the film to form the contact holes to the base layer and the gate electrode, it is possible to reduce the number of steps in manufacturing a semiconductor device having the same structure, and it is possible to achieve cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体装置の製造工程
を示す各工程の断面図である。
FIG. 1 is a cross-sectional view of each process showing a manufacturing process of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例による半導体装置の製造工程
を示す各工程の断面図である。
FIG. 2 is a sectional view of each step showing the manufacturing process of the semiconductor device according to the embodiment of the present invention.

【図3】本発明の他の実施例による半導体装置の製造工
程を示す各工程の断面図である。
FIG. 3 is a cross-sectional view of each process showing a manufacturing process of a semiconductor device according to another embodiment of the present invention.

【図4】従来例による半導体装置の製造工程を示す各工
程の断面図である。
FIG. 4 is a sectional view of each step showing the manufacturing process of the semiconductor device according to the conventional example.

【図5】従来例による半導体装置の製造工程を示す各工
程の断面図である。
FIG. 5 is a sectional view of each step showing the manufacturing process of the semiconductor device according to the conventional example.

【符号の説明】[Explanation of symbols]

3 ベース層 4 ソース層 5 ゲート酸化膜 6 ゲート電極 7 層間絶縁膜 8 配線アルミ 9 パッシベーション膜 10 ゲート電極(ポリシリコン) 11 ゲート電極(WSi) 12 P+ 拡散領域3 Base Layer 4 Source Layer 5 Gate Oxide Film 6 Gate Electrode 7 Interlayer Insulation Film 8 Wiring Aluminum 9 Passivation Film 10 Gate Electrode (Polysilicon) 11 Gate Electrode (WSi) 12 P + Diffusion Region

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上全面にベース層を形成する工程
と、前記ベース層上全面に前記ベース層よりも薄くソー
ス層を形成する工程と、前記ベース層及び前記ソース層
を貫通する溝を形成して前記ソース層の表面と前記溝の
表面及び側壁面に夫々ゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極材料を積層して前記溝
を埋め込む工程と、前記ゲート電極材料をパターニング
してゲート電極を形成する工程と、前記ゲート絶縁膜及
び前記ゲート電極上に層間絶縁膜を積層する工程と、前
記層間絶縁膜及び前記ゲート絶縁膜をエッチングして前
記ベース層及び前記ゲート電極へのコンタクトホールを
形成する工程とを有することを特徴とする半導体装置の
製造方法。
1. A step of forming a base layer on the entire surface of a substrate, a step of forming a source layer thinner than the base layer on the entire surface of the base layer, and forming a groove penetrating the base layer and the source layer. And forming a gate insulating film on the surface of the source layer, the surface of the groove, and the sidewall surface, respectively,
Stacking a gate electrode material on the gate insulating film to fill the groove; patterning the gate electrode material to form a gate electrode; forming an interlayer insulating film on the gate insulating film and the gate electrode; A method of manufacturing a semiconductor device, comprising: a step of stacking; and a step of etching the interlayer insulating film and the gate insulating film to form contact holes to the base layer and the gate electrode.
【請求項2】 前記コンタクトホールを形成した後に全
面にボロンを注入する工程を含むことを特徴とする請求
項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of implanting boron over the entire surface after forming the contact hole.
【請求項3】 前記ゲート電極材料は、前記コンタクト
ホールの形成時にシリコンとの選択比が大きくかつエッ
チングされない材料からなることを特徴とする請求項1
または請求項2記載の半導体装置の製造方法。
3. The gate electrode material is made of a material that has a large selection ratio with silicon and is not etched when the contact hole is formed.
A method for manufacturing a semiconductor device according to claim 2.
【請求項4】 前記ゲート電極材料は、低抵抗かつ低融
点の金属材料からなることを特徴とする請求項1から請
求項3のいずれか記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the gate electrode material is a metal material having a low resistance and a low melting point.
【請求項5】 基板上全面にベース層を形成する工程
と、前記ベース層上全面に前記ベース層よりも薄くソー
ス層を形成する工程と、前記ベース層及び前記ソース層
を貫通する溝を形成して前記ソース層の表面と前記溝の
表面及び側壁面に夫々ゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極材料を積層して前記溝
を埋め込む工程と、前記ゲート絶縁膜上に積層した前記
ゲート電極材料を熱処理で溶融して前記溝に集中的に流
し込むことでゲート電極を自己形成する工程と、前記ゲ
ート絶縁膜及び前記ゲート電極上に層間絶縁膜を積層す
る工程と、前記層間絶縁膜及び前記ゲート絶縁膜をエッ
チングして前記ベース層及び前記ゲート電極へのコンタ
クトホールを形成する工程とを有することを特徴とする
半導体装置の製造方法。
5. A step of forming a base layer on the entire surface of a substrate, a step of forming a source layer thinner than the base layer on the entire surface of the base layer, and forming a groove penetrating the base layer and the source layer. And forming a gate insulating film on the surface of the source layer, the surface of the groove, and the sidewall surface, respectively,
A step of stacking a gate electrode material on the gate insulating film to fill the groove, and a step of melting the gate electrode material stacked on the gate insulating film by heat treatment and pouring the material into the groove in a concentrated manner. A step of self-forming, a step of stacking an interlayer insulating film on the gate insulating film and the gate electrode, and a step of etching the interlayer insulating film and the gate insulating film to form contact holes to the base layer and the gate electrode. And a step of forming the semiconductor device.
【請求項6】 前記コンタクトホールを形成した後に全
面にボロンを注入する工程を含むことを特徴とする請求
項5記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, further comprising the step of implanting boron on the entire surface after forming the contact hole.
【請求項7】 前記ゲート電極材料は、前記コンタクト
ホールの形成時にシリコンとの選択比が大きくかつエッ
チングされない材料からなることを特徴とする請求項5
または請求項6記載の半導体装置の製造方法。
7. The gate electrode material is made of a material that has a large selection ratio with respect to silicon and is not etched when the contact hole is formed.
7. A method for manufacturing a semiconductor device according to claim 6.
【請求項8】 前記ゲート電極材料は、低抵抗かつ低融
点の金属材料からなることを特徴とする請求項5から請
求項7のいずれか記載の半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 5, wherein the gate electrode material is made of a metal material having a low resistance and a low melting point.
JP16912595A 1995-07-05 1995-07-05 Method for manufacturing semiconductor device Expired - Fee Related JP3201221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16912595A JP3201221B2 (en) 1995-07-05 1995-07-05 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16912595A JP3201221B2 (en) 1995-07-05 1995-07-05 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0923001A true JPH0923001A (en) 1997-01-21
JP3201221B2 JP3201221B2 (en) 2001-08-20

Family

ID=15880751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16912595A Expired - Fee Related JP3201221B2 (en) 1995-07-05 1995-07-05 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3201221B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167787A (en) * 1997-08-26 1999-03-09 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH11103052A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of semiconductor device
JP2001044435A (en) * 1999-06-30 2001-02-16 Fairchild Semiconductor Corp Highly conductive trench structure
JP2002110983A (en) * 2000-09-28 2002-04-12 Shindengen Electric Mfg Co Ltd Mos transistor
JP2002368220A (en) * 2001-06-04 2002-12-20 Hitachi Ltd Semiconductor device and power system using the same
JP2002368221A (en) * 2001-06-08 2002-12-20 Nec Corp Semiconductor device equipped with longitudinal mosfet and manufacturing method therefor
JP2004504711A (en) * 2000-02-29 2004-02-12 ゼネラル セミコンダクター,インク. High-speed trench double diffusion metal oxide semiconductor
JP2006135038A (en) * 2004-11-04 2006-05-25 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
JP2007049204A (en) * 2006-11-15 2007-02-22 Mitsubishi Electric Corp Manufacturing method of semiconductor device having trench structure
WO2008099843A1 (en) * 2007-02-14 2008-08-21 Rohm Co., Ltd. Nitride semiconductor element and method for manufacturing nitride semiconductor element
JP2010147298A (en) * 2008-12-19 2010-07-01 Rohm Co Ltd Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598374A (en) * 1982-07-05 1984-01-17 Matsushita Electronics Corp Insulated gate field-effect transistor
JPS618941A (en) * 1984-06-23 1986-01-16 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH03109775A (en) * 1989-09-25 1991-05-09 Hitachi Ltd Insulation-gate-type semiconductor device
JPH05304297A (en) * 1992-01-29 1993-11-16 Nec Corp Semiconductor power device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598374A (en) * 1982-07-05 1984-01-17 Matsushita Electronics Corp Insulated gate field-effect transistor
JPS618941A (en) * 1984-06-23 1986-01-16 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH03109775A (en) * 1989-09-25 1991-05-09 Hitachi Ltd Insulation-gate-type semiconductor device
JPH05304297A (en) * 1992-01-29 1993-11-16 Nec Corp Semiconductor power device and manufacture thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167787A (en) * 1997-08-26 1999-03-09 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH11103052A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Manufacture of semiconductor device
JP2001044435A (en) * 1999-06-30 2001-02-16 Fairchild Semiconductor Corp Highly conductive trench structure
JP2004504711A (en) * 2000-02-29 2004-02-12 ゼネラル セミコンダクター,インク. High-speed trench double diffusion metal oxide semiconductor
JP2002110983A (en) * 2000-09-28 2002-04-12 Shindengen Electric Mfg Co Ltd Mos transistor
JP2002368220A (en) * 2001-06-04 2002-12-20 Hitachi Ltd Semiconductor device and power system using the same
JP2002368221A (en) * 2001-06-08 2002-12-20 Nec Corp Semiconductor device equipped with longitudinal mosfet and manufacturing method therefor
JP2006135038A (en) * 2004-11-04 2006-05-25 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
JP2007049204A (en) * 2006-11-15 2007-02-22 Mitsubishi Electric Corp Manufacturing method of semiconductor device having trench structure
WO2008099843A1 (en) * 2007-02-14 2008-08-21 Rohm Co., Ltd. Nitride semiconductor element and method for manufacturing nitride semiconductor element
JP2010147298A (en) * 2008-12-19 2010-07-01 Rohm Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP3201221B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
US6294476B1 (en) Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
JPS6072268A (en) Method of producing bipolar transistor structure
JPH01290236A (en) Method of levelling wide trench
JPH0923001A (en) Manufacture of semiconductor device
US6329251B1 (en) Microelectronic fabrication method employing self-aligned selectively deposited silicon layer
US5652172A (en) Method for controlling the etch profile of an aperture formed through a multi-layer insulator layer
JPH03248534A (en) Manufacture of semiconductor element
JPH04196122A (en) Manufacture of semiconductor device
JPS6230494B2 (en)
KR100256237B1 (en) Method of forming contact hole
JP2707536B2 (en) Method for manufacturing semiconductor device
KR100811449B1 (en) Semiconductor device and the fabricating method thereof
JPH0528501B2 (en)
JPS63257244A (en) Semiconductor device and manufacture thereof
JPH03163832A (en) Semiconductor device
KR970005704B1 (en) Semiconductor device and manufacturing method for the same
JPS60217645A (en) Manufacture of semiconductor device
JPS6320383B2 (en)
JP3298183B2 (en) Method for manufacturing semiconductor device
JPH0542817B2 (en)
JPS5968950A (en) Manufacture of semiconductor device
JPH10242275A (en) Manufacture of semiconductor device
JPS58175843A (en) Manufacture of semiconductor integrated circuit
JPH03181135A (en) Manufacture of semiconductor device
JPS62108576A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees