JPS62273568A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273568A
JPS62273568A JP11782386A JP11782386A JPS62273568A JP S62273568 A JPS62273568 A JP S62273568A JP 11782386 A JP11782386 A JP 11782386A JP 11782386 A JP11782386 A JP 11782386A JP S62273568 A JPS62273568 A JP S62273568A
Authority
JP
Japan
Prior art keywords
zirconium
intermediate layer
amorphous silicon
contg
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11782386A
Other languages
Japanese (ja)
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP11782386A priority Critical patent/JPS62273568A/en
Publication of JPS62273568A publication Critical patent/JPS62273568A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from an i-type semiconductor comprising an amorphous silicon contg. hydrogen atom as a main component, and by constituting an intermediate layer from a dried curing material of a solution contg. at least one kind of an org. zirconium compd. CONSTITUTION:The intermediate layer is laminated on a conductive substrate, and the photoconductive layer composed of the amorphous silicon is coated on the intermediate layer. The dried curing material of the solution contg. at least one kind of the org. zirconium compd. is used the intermediate layer. The i-type semiconductor contg. the amorphous silicon contg. hydrogen atom as the main component, and also contg. at least one of carbon atom, nitrogen atom, or oxygen atom is used as the photoconductive layer. The further preferable org. zirconium compd. is a zirconium complex and a zirconium alkoxide. The preferable org. zirconium compd. is exemplified by zirconium tetrakis acetyl acetonate, etc. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層にジ
ー晶質ケイ素を用いた電子写真用感光体に関する。
3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using G-crystalline silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、1′象露光により静電潜
像を形成し、この潜像をトナーと称される現像剤で現(
象後、転写紙にトナー像を転写し定着して複写物を得る
方法である。この電子写真法に用いられる感光体は、基
本構成として導電性基板上に感光層を積層して成る。し
かして、従来より、感光層を構成する材料としてはセレ
ンあるい:まセレン合金、硫化カドミウム、酸化亜鉛等
の無段感光材料、あるいは、ポリビニルカルバゾール、
トリニトロフルオレノン、ビスアゾ顔料、フタロンアニ
ン、ピラゾリン、ヒドラゾン等の有機感光材料が知られ
ており、感光1を単1あるいは隣層にして用いられてい
る。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to 1' quadrature, and this latent image is developed with a developer called toner.
After printing, the toner image is transferred to transfer paper and fixed to obtain a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, materials constituting the photosensitive layer include stepless photosensitive materials such as selenium, selenium alloys, cadmium sulfide, and zinc oxide, or polyvinylcarbazole,
Organic photosensitive materials such as trinitrofluorenone, bisazo pigments, phthalonanine, pyrazoline, and hydrazone are known, and Photosensitive 1 is used as a single layer or in adjacent layers.

発明が解決しようとする問題点 しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
Problems to be Solved by the Invention However, these conventionally used photosensitive layers have problems in durability, heat resistance, photosensitivity, etc. that still need to be solved.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、ンラン
(Si20 )ガスをグロー放電分解法等によりケイ素
の非晶質膜を導電性基板上に形成したものであって、非
晶質ケイ素膜中に水素原子が組み込まれて光導電性を呈
するものである。この非晶質ケイ素感光体は、感光層の
表面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も
高<、機械的強度においてもすぐれている。更に、非晶
質ケイ素は、分光感度域が広く、高い光感度を有する如
く感光特性もすぐれている。しかし反面、非晶質ケイ素
を用いた感光体は、暗減衰が大きく、帯電しても十分な
帯電電位が得られないという欠点を有する。即ち、非晶
質ケイ素感光体を帯電し、像露光して静電潜像を形成し
、次いで現像する際、感光体上の表面電荷が像露光工程
まで、あるいは現1象工程までの間に光照射を受けなか
った部分の電荷までも減衰してしまい、現像に必要な帯
電電位が1昇られない。この帯電電位の減衰は、環境条
件の影響によっても変化しやすく、特に高温高湿環境で
は帯電電位が大巾に低下する。更に、非晶質ケイ素の感
光体は、繰返し使用すると徐々に帯電電位が低下してし
まう。この様な帯電電位の暗減衰の大きな感光体を用い
て複写物を作成すると、画像濃度が低くまた、中間調の
再現性に乏しい複写物となる。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by a glow discharge decomposition method using Si20 gas. Hydrogen atoms are incorporated to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and is excellent in mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor increases before the image exposure step or the development step. Even the charge on the portions not irradiated with light is attenuated, and the charging potential required for development cannot be increased by one. This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment. Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雲囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the cloud surroundings of the external environment.

また、本発明の池の目的は、繰返し使用されても画(象
品質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の池の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
A further object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

問題点を解決するための手段 本発明者は、鋭意研究を行なった結果、導電性基板上に
、中間層を噴石し、その上に、非晶質ケイ素から成る光
導電層を被覆し、該中間層として、有機ジルコニウム化
合物を少なくとも1種類含有する溶液の乾if化物を用
いることによって上記目的が達成されることを見出した
。光導電層として:ま、水素原子を含有する非晶質ケイ
素を主体とし、更に、炭素原子、窒素原子または酸素原
子のうちの少なくとも1種類を1種類を含有する1型半
導体を用いる。
Means for Solving the Problems As a result of extensive research, the inventor of the present invention formed an intermediate layer on a conductive substrate, coated it with a photoconductive layer made of amorphous silicon, It has been found that the above object can be achieved by using, as the intermediate layer, a dried IF product of a solution containing at least one type of organic zirconium compound. As the photoconductive layer, a type 1 semiconductor is used which is mainly composed of amorphous silicon containing hydrogen atoms and further contains at least one of carbon atoms, nitrogen atoms, and oxygen atoms.

かくして、本発明に従えば、導電性基板上に中間層およ
び光導電層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とし、更に、炭素原子、窒素原子または酸素原子
のうちの少なくとも1種類を含有するl型半導体から成
り、前記中間層が、有機ジルコニウム化合物を少なくと
も1種類含む溶液の乾燥硬化物から成ることを特徴とす
る電子写真用感光体が提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. , further characterized in that the intermediate layer is made of an l-type semiconductor containing at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer is made of a dried and cured product of a solution containing at least one type of organic zirconium compound. An electrophotographic photoreceptor is provided.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機ジルコニウム化合物としては、種々のものが
考えられるが、特に好ましいのは、ジルコニウム錯体お
よびジルミニラムアルコキシドである。これらの好まし
い例としては、ジルコニウムテトラキスアセチルアセト
ネート、ジルコニウムジブトキシビスアセチルアセトネ
ート、ジルコニウムトリブトキシアセチルアセトネート
、ジルコニウムトリフロロアセチルアセトネート、ジル
コニウムテトラ−n−プロポキサイド、ジルコニウムテ
トラ−イソ−プロポキサイドジルコニウム−n−ブトキ
サイド、ジルコニウムイソブトキサイド、等が挙げられ
る。
Although various organic zirconium compounds can be used to form the intermediate layer of the electrophotographic photoreceptor of the present invention, particularly preferred are zirconium complexes and zirminilum alkoxide. Preferred examples of these include zirconium tetrakisacetylacetonate, zirconium dibutoxybisacetylacetonate, zirconium tributoxyacetylacetonate, zirconium trifluoroacetylacetonate, zirconium tetra-n-propoxide, zirconium tetra-iso-propoxide. Examples include zirconium-n-butoxide, zirconium isobutoxide, and the like.

本発明の電子写真用感光体を1昇るに当っては、上記の
ごとき有機ジルコニウム化合物の1種または2種以上を
適当な溶媒に溶解した溶液を塗布する。また、この際、
これらの有機ジルコニウム化合物に有機ケイ素化合物を
混合した溶液を用いてもよい。この有機ケイ素化合物と
しては一般にシランカップリング剤と呼ばれている化合
物が好適であり、例えば、ビニルトリクロルンラン、ビ
ニルトリエトキシシラン、ビニルトリス(β−メトキン
エトキン)シラン、T−グリシドキシプロピルトリメト
キシシラン、γ−メタアクリロキシプロピルトリメトキ
ンシラン、N−β(アミノエチル)T−アミ/プロピル
トリメトキシシラン、N−β(アミノエチル)T−アミ
ノプロピルメチルジメトキシシラン、γ−クロロプロピ
ルトリメトキシシラン、γ−メルカプトプロピルトリメ
トキンシラン、T−アミノプロピルトリエトキシシラン
、メチルトリメトキシシラン、ジメチルジメトキシンラ
ン、トリメチルモノメトキシシラン、ジフェニルジェト
キシシラン、ジフェニルジェトキシシラン、モノフェニ
ルトリメトキシシラン等が挙げられる。このようなシラ
ンカップリング剤を混合して用いる場合には、該シラン
カップリング剤が全固形物重量に対して5〜50%とな
るようにするのがよい。
In preparing the electrophotographic photoreceptor of the present invention, a solution containing one or more of the above-mentioned organic zirconium compounds dissolved in a suitable solvent is applied. Also, at this time,
A solution obtained by mixing these organic zirconium compounds with an organic silicon compound may also be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorane, vinyltriethoxysilane, vinyltris(β-methquinethoquine)silane, and T-glycidoxypropyltrimethoxysilane. , γ-methacryloxypropyltrimethoxysilane, N-β(aminoethyl)T-amino/propyltrimethoxysilane, N-β(aminoethyl)T-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, Examples include γ-mercaptopropyltrimethoxysilane, T-aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyljethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機ジルコニウム化合物、場合によっては更
に有機ケイ素化合物を含をする溶液を、導電性基板上に
、スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗
布などの方法で塗布した後、乾燥硬化させ、その上に光
導電層を積層することによって本発明の電子写真用感光
体が得られる。
Thus, a solution containing an organozirconium compound and optionally an organosilicon compound is applied onto a conductive substrate by a method such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing. The electrophotographic photoreceptor of the present invention can be obtained by laminating a photoconductive layer thereon.

乾燥硬化温度は100〜400℃の間の任意の温度に設
定することができる。最終的に得られる中間層の膜厚も
任意に設定され得るが、0.1〜10μmが好適である
The drying and curing temperature can be set at any temperature between 100 and 400°C. The thickness of the intermediate layer finally obtained can also be set arbitrarily, but 0.1 to 10 μm is suitable.

° 非晶質ケイ素を主体とする光導電層は、SiH,,
5i2L 、513H1l 、SjJ+o、等の水素ケ
イ素ガスの1種またはそれらの混合物を原料として、グ
ロー放電法、スパッタリング法、イオンブレーティング
法、真空蒸着法などの方法によって中間層上に形成する
。中でも、プラグ? CV D (ChemicalV
apor Deposiむ1on)  法によりシラン
(SiH,)  ガス等をグロー放電分解する方法(グ
ロー放電法)が、膜中への水素の含有量の制御の点から
好ましい。
° The photoconductive layer mainly composed of amorphous silicon is made of SiH,...
The intermediate layer is formed using one type of hydrogen silicon gas such as 5i2L, 513H1l, SjJ+o, or a mixture thereof as a raw material by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method. Especially the plug? CV D (Chemical V
A method (glow discharge method) of decomposing silane (SiH) gas or the like by glow discharge using an apor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film.

また、この場合水素の含有を一層効率良く行なうために
、プラズマCVD装置内にシランガス等と同時に、別途
に水素(H2)ガスを導入してもよい。また、膜成長速
度の点からは、SiH4,5i2Lを用いるのが好まし
い。
Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like. Furthermore, from the viewpoint of film growth rate, it is preferable to use SiH4,5i2L.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶質ケイ素を主体とするl型半
導体からなり、更に、炭素原子、窒素原子または酸素原
子のうちの少なくとも1種類を含有している。このよう
な原子の含有は、特に感光層膜の暗抵抗の増加、光感度
の増加、更には、帯電能(単位膜軍あたりの帯電電位)
の増加の点から好ましい。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is made of an l-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms, and further contains at least one of carbon atoms, nitrogen atoms, and oxygen atoms. Contains one type. The inclusion of such atoms particularly increases the dark resistance of the photosensitive layer, increases the photosensitivity, and further increases the charging ability (charging potential per unit film).
This is preferable in terms of the increase in .

なお、この非晶質ケイ素感光層中には、該層を、よりl
型半導体にするように、微量のホウ素(B)を添加する
ことができる。この日原子の添加には通常ジボラン(B
2H6)ガスが原料として用いられる。
Note that in this amorphous silicon photosensitive layer, the layer is more lubricated.
A trace amount of boron (B) can be added to make it a type semiconductor. The addition of atoms at this time is usually diborane (B
2H6) gas is used as the raw material.

この場合、B原子の添加量は10〜100ρplTl 
の程度である。
In this case, the amount of B atoms added is 10 to 100ρplTl
This is the extent of

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength range. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電−を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜3 QMHz 、放電時の真空
度は0、1〜5 Torr 、基板加熱温度は100〜
400℃である。しかして、非晶質ケイ素を主体とする
光導電層の膜厚は、1〜100μm、特に10〜50μ
mとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductor made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 3 QMHz, and the degree of vacuum during discharge. is 0.1~5 Torr, substrate heating temperature is 100~
The temperature is 400°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, particularly 10 to 50 μm.
It is preferable to set it to m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラ7(SI
84)  ガスを毎分12 Qcc、水素希釈の10 
Qppm ジボラン(82H,)ガスを毎分20CC1
100%エチレン(C2H4)ガスを毎分12CC1さ
らに100%水素(N2)ガスを毎分88ccの範囲で
流入させ、反応槽内をQ、5Torrの内圧に維持した
後、13.56MHzの高周波電力を投入して、グロー
放電を生じせしめ、高周波電源の出力を85Wに維持し
た。このようにして、円筒状のAj2基板上に厚さ25
μmの非晶質ケイ素を主体とし水素と炭素を含むl型半
導体から成る光導電層を有する感光体を得た。
Comparative Example 1: A cylindrical Aβ substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% Silica 7 (SI) was placed in the reaction chamber.
84) 12 Qcc of gas per minute, 10 of hydrogen dilution
Qppm diborane (82H,) gas 20CC1 per minute
100% ethylene (C2H4) gas was introduced at a rate of 12cc per minute, and 100% hydrogen (N2) gas was introduced at a rate of 88cc per minute to maintain an internal pressure of Q, 5 Torr in the reaction tank, and then a high frequency power of 13.56MHz was applied. The output of the high frequency power source was maintained at 85W by turning on the battery to generate a glow discharge. In this way, a thickness of 25 mm was placed on the cylindrical Aj2 substrate.
A photoreceptor was obtained having a photoconductive layer consisting of an l-type semiconductor mainly composed of micrometer-sized amorphous silicon and containing hydrogen and carbon.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, it gradually deteriorated. The image density decreased.

実施例1: 比較例1と同じ形状の円筒状A1基板上に、ジルコニウ
ムアセチルアセトン1重量部、メチルアルコール50 
ff11部、n −ブチルアルコール20重量部からな
る溶液を浸漬塗布し、250℃の炉中で2時間乾燥して
0.2μm厚の中間層を設けた。
Example 1: On a cylindrical A1 substrate having the same shape as Comparative Example 1, 1 part by weight of zirconium acetylacetone and 50 parts by weight of methyl alcohol were added.
A solution consisting of 11 parts of FF and 20 parts by weight of n-butyl alcohol was applied by dip coating and dried in an oven at 250° C. for 2 hours to form an intermediate layer with a thickness of 0.2 μm.

次に、この中間層上に、比較例1と同じ方法により、比
較例1と同じ内容の非晶質ケイ素を主とする光導電層を
、比較例1とほぼ同じ膜厚で設けた。
Next, on this intermediate layer, a photoconductive layer mainly made of amorphous silicon having the same content as in Comparative Example 1 was provided by the same method as in Comparative Example 1, and with almost the same thickness as in Comparative Example 1.

このようにして得られた光導電層はセラミックスに似た
性質を持ち、非晶質ケイ素の優れた特性である、表面硬
度、耐摩耗性、耐熱性をそのま5有していた。
The photoconductive layer thus obtained had properties similar to ceramics, and had the same surface hardness, abrasion resistance, and heat resistance that are excellent properties of amorphous silicon.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像1度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。同時
に負のコロナ帯電方式で実施した複写試験も、正帯電方
式の場合と同様、良好な結果を与えた。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, a 1-degree image with no practical problems was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Al基彼を設置し、基板温度を所定の温度であ
る250℃に推持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc、水素希釈の1009部
m  ジボラン(B、H,)ガスを毎分2 ’OCC,
100%の窒素(N2 )ガスを毎分85c(さらに1
00%水素(N2)ガスを毎分15ccで流入させ、反
応槽内をQ、5Torrの内圧に維持した後、13.5
6 !JHz の高周波電力を投入して、グロー放電を
生じせしめ、高周波電源の出力を85Wに維持した。こ
のようにして、円筒状のAfl基板上に、厚さ25μm
で非晶質ケイ素を主体とし水素と窒素を含むl型半導体
から成る光導電層を有する感光体を1尋た。
Comparative Example 2: A cylindrical Al base was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 12 Qcc per minute, 1009 parts m of hydrogen dilution Diborane (B,H,) gas at 2'OCC,
100% nitrogen (N2) gas at 85 c/min (plus 1
After introducing 00% hydrogen (N2) gas at a rate of 15 cc per minute and maintaining the internal pressure in the reaction tank at Q, 5 Torr, 13.5
6! A high frequency power of JHz was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a film with a thickness of 25 μm was placed on a cylindrical Afl substrate.
A photoreceptor having a photoconductive layer made of an l-type semiconductor mainly composed of amorphous silicon and containing hydrogen and nitrogen was prepared.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画1象濃度が得られたが、複写操作を繰り
返すうちに徐々に画像濃度は低下した。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density of one image that was acceptable for practical use was initially obtained, but as copying operations were repeated, The image density gradually decreased.

実施例2: 比較例2と向じ形状の円筒状1へβ基板上に、ジルコニ
ウムテトラブトキサイド1重量部、エチルアルコール1
00重量部かろなる溶液を浸?貴塗布し、250℃の炉
中て2時間乾燥して0.2μm軍の中間層を設けた。次
に、この中間層上に、比較例2と同じ方法により、比較
例2と同じ内容の非晶質ケイ素を主体とする光導電層を
、比較例2とほぼ同じ膜厚で設けた。
Example 2: 1 part by weight of zirconium tetrabutoxide and 1 part by weight of ethyl alcohol were placed on a β substrate in a cylindrical shape 1 having the opposite shape to that in Comparative Example 2.
Soak in 00 parts by weight solution? It was coated and dried in an oven at 250° C. for 2 hours to form an intermediate layer of 0.2 μm thick. Next, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 2 was provided with approximately the same thickness as in Comparative Example 2.

このようにして1尋られた感光体を複写機に入れ、正の
コロナ帯電方式で画質評価したところ、初期時では実用
上問題のない画像濃度が得られた。また、複写操作を5
万回繰り返したが画像濃度の低下はみられなかった。同
時に負のコロナ帯電方式で実施した複写試験も、正帯電
方式の場合と同様、良好な結果を与えた。
When the photoreceptor thus prepared was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Also, the copy operation is
Although the process was repeated 10,000 times, no decrease in image density was observed. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A42基板を設置し、基板温度を所定の温度で
ある250℃に維持し、反応室内に100%シラン(S
iH,)ガスを毎分12 Qcc、水素希釈の100p
pm ジボラン(B2H6)ガスを毎分20CC1およ
び100%の酸素く0□ )ガスを毎分1.Qcc、さ
らに100%水素(H2)ガスを毎分99ccで流入さ
せ、反応槽をQ、5Torrの内圧に維持した後、13
.56 M’Azの高層′y1電源の出力を投入して、
グロー放電を生じせしめ、高周波電源の出力を85Wに
維持した。このようにして、円筒状のi基板上に、厚さ
25μmで非晶質ケイ素を主体とし水素と酸素とを含む
l型半導体から成る光導電層を有する感光体を辱だ。
Comparative Example 3: A cylindrical A42 substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (S) was placed in the reaction chamber.
iH,) gas at 12 Qcc per minute, 100 p of hydrogen dilution
pm Diborane (B2H6) gas at 20 CC1/min and 100% oxygen (0□) gas at 1.0 C/min. Qcc, and then 100% hydrogen (H2) gas was introduced at a rate of 99 cc/min to maintain the internal pressure of Q, 5 Torr, and then 13
.. Turn on the output of the 56 M'Az high-rise 'y1 power supply,
A glow discharge was generated and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor having a 25 μm thick photoconductive layer made of an l-type semiconductor mainly composed of amorphous silicon and containing hydrogen and oxygen on a cylindrical i-substrate was exposed.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度は得ちれたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, Image density gradually decreased.

実施例3: 比較例3と同じ形状の円筒状Af基板上に、ジルコニウ
ムテトラブトキサイド1重量部、メチルトリメトキシシ
ラン1重量部、エチルアルコール10 C1重量1ff
l、イソプロピルアルコール100!量部からなる溶液
を浸漬塗布し、250℃の炉中にて2時間乾燥して0.
1μm厚の中間層を設けた。
Example 3: On a cylindrical Af substrate having the same shape as Comparative Example 3, 1 part by weight of zirconium tetrabutoxide, 1 part by weight of methyltrimethoxysilane, and 1 ff by weight of ethyl alcohol 10 C1 were added.
l, isopropyl alcohol 100! A solution consisting of several parts was applied by dip coating, and dried in an oven at 250°C for 2 hours to give a coating of 0.
A 1 μm thick intermediate layer was provided.

次に、この中間層上に、比較例3と同じ方法により比較
例3と同じ内容の非晶質ケイ素を主体とする光導電層を
比較例3とほぼ同じ膜厚で設)すた。
Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided by the same method as in Comparative Example 3, with approximately the same thickness as in Comparative Example 3.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。同時
に負のコロナ帯電方式で実施した複写試験も、正帯電方
式の場合と間隙、良好な結果を与えた。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. At the same time, a copying test conducted using the negative corona charging method also gave good results compared to the positive charging method.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受(すずに高い電荷保持力を有して、優れた品
質の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. Tin has a high charge retention ability and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層および光導電層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とするi型半導体から成り、更に、炭素原子、窒素原
子または酸素原子のうちの少なくとも1種類を含有して
おり、 前記中間層が、有機ジルコニウム化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. The intermediate layer further contains at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer contains at least one organic zirconium compound.
1. A photoreceptor for electrophotography, characterized in that it is made of a dried and cured product of a solution containing various types of photoreceptors.
JP11782386A 1986-05-22 1986-05-22 Electrophotographic sensitive body Pending JPS62273568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11782386A JPS62273568A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11782386A JPS62273568A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62273568A true JPS62273568A (en) 1987-11-27

Family

ID=14721130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11782386A Pending JPS62273568A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62273568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286591A (en) * 1991-07-10 1994-02-15 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor with subbing layer
US5443934A (en) * 1992-01-31 1995-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119359A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5833257A (en) * 1982-05-10 1983-02-26 Canon Inc Photoconductive member
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119359A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5833257A (en) * 1982-05-10 1983-02-26 Canon Inc Photoconductive member
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286591A (en) * 1991-07-10 1994-02-15 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor with subbing layer
US5443934A (en) * 1992-01-31 1995-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JPS62273568A (en) Electrophotographic sensitive body
JPS62273547A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273556A (en) Electrophotographic sensitive body
JPS62273564A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62288855A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273567A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273554A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body