JPS62273552A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273552A
JPS62273552A JP11780786A JP11780786A JPS62273552A JP S62273552 A JPS62273552 A JP S62273552A JP 11780786 A JP11780786 A JP 11780786A JP 11780786 A JP11780786 A JP 11780786A JP S62273552 A JPS62273552 A JP S62273552A
Authority
JP
Japan
Prior art keywords
amorphous silicon
titanium
atom
photoconductive layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11780786A
Other languages
Japanese (ja)
Other versions
JPH0727249B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117807A priority Critical patent/JPH0727249B2/en
Publication of JPS62273552A publication Critical patent/JPS62273552A/en
Publication of JPH0727249B2 publication Critical patent/JPH0727249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from a p-type semiconductor which comprises an amorphous silicon contg. hydrogen atom as a main component, and also contg. boron atom as the impurity and by constituting a surface layer from a dried curing material of a solution contg. at least one kind of an org. titanium compd. CONSTITUTION:The photoconductive layer composed of the amorphous silicon is coated on the conductive substrate. The surface layer is laminated on the photoconductive layer. The dried curing material of the solution contg. at least one kind of the org. titanium compd. is used as the surface layer. The p-type semiconductor which contains the amorphous silicon as the main component, and also contains boron atom and at least one kind of the atom selected from carbon atom, nitrogen atom and oxygen atom as an impurity is used as the photoconductive layer. The org. titanium compd. is further preferably exemplified by a titanium complex and a titanium alkoxide. The preferable example of the titanium compd. is diisopropoxytitanium bis(acetyl acetonate) etc. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrophotographic photoreceptor, and particularly relates to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer. .

(従来の技術) 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかして
、従来より、感光層を構成する材料としてはセレンある
いはセレン合金、硫化カドミウム、酸化亜鉛等の無機感
光材料、あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光層を単層あるいは積層にして用いられている。しか
しながら、従来より用いられているこれらの感光層は、
耐久性、耐熱性、光感度などにおいて未だ解決すべき問
題点を有している。
(Prior Art) In electrophotography, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called a toner,
This is a method of transferring and fixing a toner image onto transfer paper to obtain a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer have been inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Photosensitive materials are known,
The photosensitive layer is used as a single layer or as a stack. However, these conventionally used photosensitive layers are
There are still problems to be solved in terms of durability, heat resistance, photosensitivity, etc.

(発明が解決しようとする問題点) 近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH,)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られるという欠点を有する。即゛ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響、によっても変化しやすく、特に高温高湿環境では帯
電電位が大中に低下する。
(Problems to be Solved by the Invention) In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate using silane (SiH) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential decreases considerably.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雲囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the cloud surroundings of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

(問題点を解決するための手段及び作用)本発明者は、
鋭意研究を行なった結果、導電性基板上に、非晶質ケイ
素から成る光導電層を被覆し、更に、その上に表面層を
積層すると共に、該表面層として、有機チタン化合物を
少なくとも1種類含有する溶液の乾燥硬化物を用いるこ
とによって上記目的が達成されることを見出した。光導
電層としては、非晶質ケイ素を主体とし、不純物として
ホウ素原子と炭素原子、窒素原子および酸素原子のうち
の少なくとも1種類とを含有するp型半導体を用いる。
(Means and effects for solving the problem) The present inventor:
As a result of intensive research, we found that a photoconductive layer made of amorphous silicon was coated on a conductive substrate, a surface layer was further laminated thereon, and at least one kind of organic titanium compound was used as the surface layer. It has been found that the above object can be achieved by using a dry and cured product of the solution containing the present invention. As the photoconductive layer, a p-type semiconductor is used which is mainly composed of amorphous silicon and contains as impurities boron atoms and at least one of carbon atoms, nitrogen atoms, and oxygen atoms.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体として不純物とじてホウ素原子を含有するp型半
導体から成り、更に、炭素原子、窒素原子および酸素原
子のうち少なくとも1種類を含有しており、前記表面層
が、有機チタン化合物を少なくとも1種類含む溶液の乾
燥硬化物から成ることを特徴とする電子写真用感光体が
提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms. It is made of a p-type semiconductor containing boron atoms as impurities, and further contains at least one kind of carbon atoms, nitrogen atoms, and oxygen atoms, and the surface layer is made of a solution containing at least one kind of organic titanium compound. Provided is an electrophotographic photoreceptor comprising a dry cured product.

本発明の電子写真用感光体の表面層に形成するのに用い
られる有機チタン化合物としては、種々のものが考えら
れるが、特に好ましいのは、錯体およびチタンアルコキ
シドである。有機チタン化合物の好ましい例としては、
ジイソプロポキシチタンビス(アセチルアセトネート)
、ポリチタンアセチルアセトネート、ビス(アセチルア
セトネート)チタンオキシド、チタニウムテトラエトキ
シド、チタニウムテトラエトキシド、チタニウムテトラ
−n−プロポキシド、チタニウムテトライソプロポキシ
ド、チタニウムテトラブトキシド、チタニウムテトライ
ソブトキシド、等を挙げることができる。
Although various organic titanium compounds can be used to form the surface layer of the electrophotographic photoreceptor of the present invention, complexes and titanium alkoxides are particularly preferred. Preferred examples of organic titanium compounds include:
Diisopropoxy titanium bis(acetylacetonate)
, polytitanium acetylacetonate, bis(acetylacetonate) titanium oxide, titanium tetraethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetraisobutoxide, etc. can be mentioned.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機チタン化合物の1種または2種以上を適当な溶
媒に溶解した溶液を塗布する。また、この際、これらの
有機チタン化合物に有機ケイ素化合物を混合した溶液を
用いてもよい。この有機ケイ素化合物としては一般にシ
ランカップリング剤と呼ばれている化合物が好適であり
、例えば、ビニルトリクロルシラン、ビニルトリエトキ
シシラン、ビニルトリス(β−メトキシエトキシ)シラ
ン、r−グリシドキシプOピルトリメトキシシラン、γ
−メタアクリロキシプロピルトリメトキシンラン、N−
β(アミノエチル)γ−アミノプロピルトリメトキシシ
ラン、N−β(アミノエチル)T−アミノプロピルメチ
ルジメトキシ7ラン、γ−クロロプロピルトリメトキシ
シラン、T−メルカプトプロピルトリメトキシシラン、
T−アミノプロピルトリエトキシシラン、メチルトリメ
トキ7シラン、ジメチルジメトキシシラン、トリエチル
モノメトキシシラン、ジフェニルジメトキシシラン、ジ
フェニルジェトキシシラン、モノフェニルトリメトキシ
シラン等が挙げられる。このようなシランカップリング
剤を混合して用いる場合には、該シランカップリング剤
が全固形物重量に対して5〜50%となるようにするの
がよい。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above organic titanium compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotitanium compounds may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, and r-glycidoxypyltrimethoxysilane. , γ
-methacryloxypropyltrimethoxine run, N-
β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) T-aminopropylmethyldimethoxy7rane, γ-chloropropyltrimethoxysilane, T-mercaptopropyltrimethoxysilane,
Examples include T-aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, triethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機ジルコニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、光導電層上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾燥硬化させることによって
本発明の電子写真用感光体が得られる。乾燥硬化温度は
100〜400℃の間の任意の温度に設定することがで
きる。最終的に得られる表面層の膜厚も任意に設定され
得るが、0.1〜10μm1特に1μm以下が好適であ
る。
Thus, a solution containing an organozirconium compound and optionally an organosilicon compound is applied onto the photoconductive layer.
The electrophotographic photoreceptor of the present invention can be obtained by coating by spray coating, dip coating, knife coating, roll coating, or the like, and then drying and curing. The drying and curing temperature can be set at any temperature between 100 and 400°C. The thickness of the surface layer finally obtained can also be set arbitrarily, but a thickness of 0.1 to 10 .mu.m, particularly 1 .mu.m or less, is suitable.

非晶質ケイ素を主体とする光導電層は、5iflい5i
2Hs、5i3H,、S i<H+o1等の水素ケイ素
ガスの1種またはそれらの混合物を原料として、グロー
放電法、スパッタリング法、イオンブレーティング法、
真空蒸着法などによって基板上に形成する。中でも、プ
ラグ7 CV D (ChemicalVapor D
eposition )法によってシラン(SiH,)
ガス等をグロー放電分解する方法(グロー放電法)が、
膜中への水素の含有量の制御の点から好ましいっまた、
この場合水素の含有を一層効率良く行なうために、プラ
ズマCVD装置内にシランガス等と同時に、別途に水素
(H2)ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is 5ifl 5i
Using one type of hydrogen silicon gas such as 2Hs, 5i3H, Si<H+o1, or a mixture thereof as a raw material, a glow discharge method, a sputtering method, an ion blating method,
It is formed on a substrate using a vacuum evaporation method or the like. Among them, Plug 7 CV D (Chemical Vapor D
silane (SiH,) by eposition method
The method of decomposing gas etc. by glow discharge (glow discharge method) is
It is preferable from the viewpoint of controlling the hydrogen content in the film.
In this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶ケイ素を主体として不純物と
してホウ素原子を含有するp型半導体である。このホウ
素原子の添加には、通常、ジボラン(B2H6)ガスが
原料として用いられ、0、011原子%の程度添加する
ことによってp型半導体の非晶質ケイ素が得られる。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is a p-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing boron atoms as impurities. For this addition of boron atoms, diborane (B2H6) gas is usually used as a raw material, and amorphous silicon, which is a p-type semiconductor, can be obtained by adding about 0.011 atomic percent.

また、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。
Further, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region.

またハロゲン原子を添加することによって、暗抵抗の増
加等を図ることもできる。
Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜30MHz、放電時の真空度は
0.1〜5Torr、基板加熱温度は100〜400℃
である。しかして、非晶質ケイ素を主体とする光導電層
の膜厚は、1〜100μm、特に10〜50μmとする
のが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the degree of vacuum during discharge is 0.1-5 Torr, substrate heating temperature 100-400℃
It is. Therefore, the thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 μm, particularly 10 to 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

(実施例) 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
(Example) Next, the electrophotographic photoreceptor of the present invention will be further described with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Af基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラ7 (S
 i H,)ガスを毎分120cc、水素希釈のt O
Oppm ジボラン(B2H6)ガスを毎分20CC1
および100%のエチL/7(C2H4)ガスを毎分1
5cc、さらに100%水素(N2)ガスを毎分75c
cで流入させ、反応槽内をQ、5Torrの内圧に維持
した後、13.56 M Hzの交周波電力を投入して
、グロー放電を生じせしめ、高周波電源の出力を85W
に維持した。このようにして円筒状のAl基板上に、厚
さ25μmで非晶質ケイ素を主体とし不純物としてホウ
素、更に、炭素を含有するp型半導体から成る光導電層
を有する感光体を得た。
Comparative Example 1: A cylindrical Af substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was maintained at a predetermined temperature of 250°C.
i H,) gas at 120 cc/min, hydrogen dilution t O
Oppm diborane (B2H6) gas 20CC1 per minute
and 100% ethyl L/7 (C2H4) gas at 1 min.
5cc, plus 100% hydrogen (N2) gas at 75c/min
After maintaining the internal pressure in the reaction tank at Q and 5 Torr, 13.56 MHz alternating frequency power was applied to generate a glow discharge, and the output of the high frequency power supply was increased to 85 W.
maintained. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and further containing boron and carbon as impurities, on a cylindrical Al substrate.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
1尋る画像濃度は得られなかった。また、この感光体を
30℃、85%RHの環境下で画質評価したところ、画
像の流れが観察された。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use could not be obtained. Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image smearing was observed.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体としホウ素および炭素を含有するp型半導体か
ら成る光導電層を有する感光体の上に、ジイソプポキシ
チタンビス(アセチルアセトネート)1重量部、n−ブ
チルアルコール20重量部からなる溶液を浸漬塗布し、
250℃で1時間乾燥硬化して、0,4μm厚の表面層
を有する感光体を得た。このようにして得られた表面層
はセラミックスに似た性質を持ち、非晶質珪素の優れた
特性である、表面硬度、耐摩耗性、耐熱性をほとんど損
うことがなかった。
Example 1: On a photoreceptor having a photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing boron and carbon, which was produced by the same method and under the same conditions as Comparative Example 1, diisopropoxy titanium bis A solution consisting of 1 part by weight (acetylacetonate) and 20 parts by weight of n-butyl alcohol was applied by dip coating,
The photoreceptor was dried and cured at 250° C. for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.4 μm. The surface layer thus obtained had properties similar to ceramics, with almost no loss in surface hardness, wear resistance, and heat resistance, which are the excellent properties of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式により
画質評価したところ、初期時では実用上問題のない画像
濃度が1与られた。また、複写操作を5万回繰り返した
が画像濃度の低下はみられなかった。この感光体を30
℃、85%RHの環境下で画質評価を行なったが画像の
流れはみられず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density of 1 was given at the initial stage, which was not a problem for practical use. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor is 30
Image quality was evaluated under an environment of 85% RH and 85% RH, but no image flow was observed, indicating high resolution.

比較例2: 容重結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シ57(Si
H4)ガスを毎分120CC1水素希釈のtooppm
 ジボラン(82H6)ガスを毎分20CC1および1
00%の窒素(N2)ガスを毎分9Qcc、さらに10
0%水素(N2)ガスを毎分15ccで流入させ、反応
槽内をQ、5Torrの内圧に維持した後、13.56
 M Hzの交周波電力を投入して、グロー放電を生じ
せしめ、高周波電源の出力を85Wに維持した。このよ
うにして円筒状のAl基板上に、厚さ25μmで非晶質
ケイ素を主体とし不純物としてホウ素、更(ピ、窒素を
含有するp型半導体から成る光導電層を有する感光体を
得た。
Comparative Example 2: A cylindrical A1 substrate was installed at a predetermined position in the reaction chamber of a volume-heavy coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silicon 57 (Si) was placed in the reaction chamber.
H4) gas tooppm of 120CC1 hydrogen dilution per minute
Diborane (82H6) gas at 20 CC1 and 1 per minute
00% nitrogen (N2) gas per minute at 9 Qcc, then 10
After flowing 0% hydrogen (N2) gas at a rate of 15 cc per minute and maintaining the internal pressure in the reaction tank at Q, 5 Torr, 13.56
MHz alternating frequency power was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor was obtained which had a photoconductive layer on a cylindrical Al substrate with a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron and nitrogen as impurities. .

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価を行なったところ、実用に
耐え得る画像濃度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、画像の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image smearing was observed.

実施例2: 比・岐例2と同一方法、同一条件にて作成した非晶質ケ
イ素を主体としホウ素および窒素を含有するp型半導体
から成る光導電層を有する感光体の上に、テトラエチル
オルソチタネート1重量部、イソプロピルアルコール3
0重量部からなる溶液を浸漬塗布し、200℃で1時間
乾燥硬化して、0.3μm厚の表面層を有する感光体を
得た。この。
Example 2: Tetraethyl ortho 1 part by weight of titanate, 3 parts by weight of isopropyl alcohol
A solution consisting of 0 parts by weight was applied by dip coating and dried and cured at 200° C. for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.3 μm. this.

ようにして得られた表面層はセラミックスに似た性質を
持ち、非晶質珪素の優れた特性である、表面硬度、耐摩
耗性、耐熱性をほとんど損うことがなかった。
The surface layer thus obtained had properties similar to ceramics, with almost no loss in surface hardness, wear resistance, and heat resistance, which are the excellent properties of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式により
画質評価したところ、初期時では実用上問題のない画像
濃度が得られた。また、複写操作を5万回繰り返したが
画像濃度の低下はみられなかった。この感光体を30℃
、85%RHの環境下で画質評価を行なったが画像の流
れはみられず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor was heated at 30°C.
Image quality was evaluated under an environment of 85% RH, but no image flow was observed, indicating high resolution.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状へβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%ンラン(S 
IH4)ガスを毎分120cc、水素希釈の1000p
pm シボラフ(B2H6)ガスを毎分3Qcc、およ
び100%の酸素ガスを毎分l、Qcc、さらに100
%水素(H2)ガスを毎分89ccで流入させ、反応槽
内を0.5Torrの内圧を維持した後、13.56 
M Hzの交周波電力を投入して、グロー放電を生じせ
しめ、高周波電源の出力を85Wに維持した。このよう
にして円筒状のAβ基板上に、厚さ25μmで非晶質ケ
イ素を主体とし不純物としてホウ素、更に、酸素を含有
するp型半導体から°成る光導電層を有する感光体を得
た。
Comparative Example 3: A β substrate was installed in a cylindrical shape at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% unrun (S) was carried out in the reaction chamber.
IH4) 120cc gas per minute, 1000p hydrogen dilution
pm Sibolaf (B2H6) gas at 3 Qcc per minute and 100% oxygen gas at l, Qcc per minute, then 100
% hydrogen (H2) gas was introduced at a rate of 89 cc per minute to maintain an internal pressure of 0.5 Torr in the reaction tank.
MHz alternating frequency power was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron and oxygen as impurities, on a cylindrical Aβ substrate.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価を行なったところ、実用に
耐え得る画像濃度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、画像の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image smearing was observed.

実施例3: 比較例4と同一方法、同一条件で作成した非晶質ケイ素
を主体とし不純物としてホウ素および酸素を含有するp
型半導体から成る光導電層を有する感光体の上に、テト
ラブチルオルソチタネート1重量部、r−アクリロキシ
プロピルトリメトキシシラン1 重II、メチルアルコ
ール10重量部およびイソプロピルアルコール20重景
邦から成る溶液を浸漬塗布し、250℃で2時間乾燥硬
化して、0.3μm厚の表面層を有する感光体を得た。
Example 3: P made mainly of amorphous silicon and containing boron and oxygen as impurities, prepared by the same method and under the same conditions as Comparative Example 4.
A solution consisting of 1 part by weight of tetrabutyl orthotitanate, 1 part by weight of r-acryloxypropyltrimethoxysilane, 10 parts by weight of methyl alcohol and 20 parts by weight of isopropyl alcohol is applied onto a photoreceptor having a photoconductive layer consisting of a type semiconductor. was coated by dip coating and dried and cured at 250°C for 2 hours to obtain a photoreceptor having a surface layer with a thickness of 0.3 μm.

このようにして得られた表面層はセラミックスに似た性
質を持ち、非晶質珪素の優れた特性である、表面硬度、
耐摩耗性、耐熱性をほとんど損うことがなかった。
The surface layer obtained in this way has properties similar to ceramics, and has excellent surface hardness and
There was almost no loss in abrasion resistance and heat resistance.

この感光体を複写機に入れ、正のコロナ帯電方式により
画質評価したところ、初期時では実用上問題のない画像
濃度がi等られた。また、複写操作を5万回繰り返した
が画像濃度の低下はみられなかった。この感光体を30
℃、85%RHの環境下て画質評価を行なったが画像の
流れはみられず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, the image density at the initial stage was found to be i, which was not a problem for practical use. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor is 30
Image quality was evaluated under an environment of 85% RH and 85% RH, but no image flow was observed, indicating high resolution.

(発明の効果) 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の浸れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
(Effects of the Invention) The electrophotographic photoreceptor of the present invention maintains the characteristics of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and furthermore, It has a high charge retention ability without being affected by the external environment or the number of times it is used, and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に光導電層および表面層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし、不純物としてホウ素原子を含有するp型半導体
から成り、更に、炭素原子、窒素原子および酸素原子の
うちの少なくとも1種類を含有しており、 前記表面層が、有機チタン化合物を少なくとも1種類含
む溶液の乾燥硬化物から成ることを特徴とする電子写真
用感光体。
[Claims] An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms and contains no impurities. Drying of a solution comprising a p-type semiconductor containing a boron atom, and further containing at least one type of a carbon atom, a nitrogen atom, and an oxygen atom, wherein the surface layer contains at least one type of organic titanium compound. An electrophotographic photoreceptor comprising a cured product.
JP61117807A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117807A JPH0727249B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117807A JPH0727249B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273552A true JPS62273552A (en) 1987-11-27
JPH0727249B2 JPH0727249B2 (en) 1995-03-29

Family

ID=14720758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117807A Expired - Lifetime JPH0727249B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727249B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0727249B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS62273547A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62273556A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPS62273551A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273555A (en) Electrophotographic sensitive body
JPS62273567A (en) Electrophotographic sensitive body
JPS62273554A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62273564A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body