JPS62273557A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273557A
JPS62273557A JP11781286A JP11781286A JPS62273557A JP S62273557 A JPS62273557 A JP S62273557A JP 11781286 A JP11781286 A JP 11781286A JP 11781286 A JP11781286 A JP 11781286A JP S62273557 A JPS62273557 A JP S62273557A
Authority
JP
Japan
Prior art keywords
amorphous silicon
stannic
photoconductive layer
photoreceptor
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11781286A
Other languages
Japanese (ja)
Other versions
JPH0727252B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117812A priority Critical patent/JPH0727252B2/en
Publication of JPS62273557A publication Critical patent/JPS62273557A/en
Publication of JPH0727252B2 publication Critical patent/JPH0727252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from an n-type semiconductor which contains an amorphous silicon contg. hydrogen atom as a main component, and phosphorous atom as an impurity, and by constituting a surface layer from a dried curing material of a solution contg. at least one kind of an org. stannic compd. CONSTITUTION:The photoconductive layer composed of the amorphous silicon is coated on a conductive substrate, and the surface layer is laminated on the photoconductive layer. The dried curing material of the solution contg. at least one kind of the org. stannic compd. is used as the surface layer. The n-type semiconductor comprising the amorphous silicon as the main component, and phosphorous atom as the impurity is used as the photoconductive layer. The further preferable org. stannic compd. is a stannic complex and a stannic alkoxide. At the time of obtaining the titled body, one or >=2 kinds of the org. stannic compds. are dissolved a suitable solvent, and the obtd. solution is coated on the substrate. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、(象露光により静電潜像
を形成し、この潜像を現像剤で現像後、転写紙にトナー
像を転写し定着して複写物を得る方法として知られてい
る。この電子写真法に用いられる感光体は、基本構成と
して導電性基板上に感光層を積層して成る。しかして、
従来より、感光体を構成する材料としてはセレンあるい
はセレン合金、硫化カドミウム、酸化亜鉛等の無機感光
材料1.あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光層を単層あるいは積層にして用いられている。しか
しながら、従来より用いられているこれらの感光層は、
耐久性、耐熱性、光感度などにおいて未だ解決すべき問
題点を有している。
Conventional technology Electrophotography involves charging a photoreceptor and forming an electrostatic latent image by exposing it to light. After developing this latent image with a developer, the toner image is transferred to transfer paper and fixed to obtain a copy. The photoreceptor used in this electrophotographic method basically consists of a photosensitive layer laminated on a conductive substrate.
Conventionally, inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide have been used as materials constituting photoreceptors. Alternatively, organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone are known.
The photosensitive layer is used as a single layer or as a stack. However, these conventionally used photosensitive layers are
There are still problems to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH,)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響によっても変化しやすく、特に高温高湿環境では帯電
電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate using silane (SiH) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板上に
、非晶質ケイ素から成る光導電層を被覆し、更に、その
上に表面層を積層すると共に、該表面−として、有機ス
ズ化合物を少なくとも1種類含有する溶液の乾燥硬化物
を用いることによって上記目的が達成されることを見出
した。光導電層としては、非晶質ケイ素を主体とし、不
純物としてリン原子を含有するn型半導体を用いる。
Structure of the Invention As a result of extensive research, the present inventor coated a photoconductive layer made of amorphous silicon on a conductive substrate, further laminated a surface layer thereon, and as the surface layer. It has been found that the above object can be achieved by using a dried and cured product of a solution containing at least one type of organic tin compound. As the photoconductive layer, an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms as an impurity is used.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とし不純物としてリン原子を含有するn型半導体
から成り、更に、窒素原子、炭素原子または酸素原子の
内少なくとも1種類を含有しなおり、前記表面層が、有
機スズ(Sn)化合物を少なくとも1種類含む溶液の乾
燥硬化物から成ることを特徴とする電子写真用感光体が
提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor in which a photoconductive layer and a surface layer are sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. It is made of an n-type semiconductor containing phosphorus atoms as impurities, and further does not contain at least one type of nitrogen atom, carbon atom, or oxygen atom, and the surface layer contains at least one type of organic tin (Sn) compound. An electrophotographic photoreceptor is provided that is made of a dried and cured product of a solution.

本発明の電子写真用感光体の表面層を形成するのに用い
られる有機スズ化合物としては、種々のものが考えられ
るが、特に好ましいのは、スズ錯体およびスズアルコキ
シドである。これらの好ましい例は、スズビスアセチル
アセトネート、スズテトラメトキシド、スズテトラエト
キシド、スズテトライソプロポキシド、スズテトラエト
キシド、スズテトラ−5ec −ブトキシドが挙げられ
る。
Although various organic tin compounds can be used to form the surface layer of the electrophotographic photoreceptor of the present invention, tin complexes and tin alkoxides are particularly preferred. Preferred examples of these include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, tin tetraisopropoxide, tin tetraethoxide, and tin tetra-5ec-butoxide.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機スズ化合物の1種または2種以上を適当な溶媒
に溶解した溶液を塗布する。また、この際、これらの有
機スズ化合物に有機ケイ素化合物を混合した溶液を用い
てもよい。この有機ケイ素化合物としては一般にシラン
カップリング剤と呼ばれている化合物が好適であり、例
えば、ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シラン、
T−グリシドキシプロピルトリメトキシシラン、γ−メ
タアクリロキシプロピルトリメトキシシラン、N−β(
アミノエチル)T−アミノプロピルトリメトキシシラン
、N−β(アミノエチル)γ−アミノプロピルメチルジ
メトキシシラン、T−クロロプロビルトリメトキシシラ
ン、γ−メルカプトプロピルトリメトキシシラン、r−
アミノプロピルトリエトキシシラン、メチルトリメトキ
シシラン、ジメチルジメトキシラン、トリメチルモノメ
゛トキシシラン、ジフェニルジメトキシシラン、ジフェ
ニルジェトキシシラン、モノフェニルトリメトキシシラ
ン等が挙げられる。このようなシランカップリング剤を
混合して用いる場合には、該シランカフプリング剤が全
固形物重量に対して5〜50%となるようにするのがよ
い。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above-mentioned organic tin compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotin compounds may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane,
T-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β(
(aminoethyl) T-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane, T-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, r-
Examples include aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxylane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane cuff pulling agent accounts for 5 to 50% of the total solid weight.

かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜
400℃の間の任意の温度に設定することができる。最
終的に得られる表面層の膜厚も任意に設定され得るが、
0.1〜10μmが好適である。
Thus, a solution containing an organotin compound and optionally an organosilicon compound is applied onto the photoconductive layer by methods such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing. An electrophotographic photoreceptor of the invention is obtained. Dry curing temperature is 100~
Any temperature between 400°C can be set. Although the thickness of the final surface layer can be set arbitrarily,
0.1 to 10 μm is suitable.

非晶質ケイ素を主体とする光導電層は、5IH4,5i
2Hs、513Ha、3i4H+o、等の水素ケイ素ガ
スの1種またはそれらの混合物を原料として、グロー放
電法、スパッタリング法、イオンブレーティング法、真
空蒸着法などの方法によって基板上に形成する。中でも
、プラズマCVD(Chemical Vapor D
eposition  )法によってシラン(S+H,
)ガス等をグロー放電分解する方法(グロー放電法)が
、膜中への水素の含有量の制御の点から好ましい。また
、この場合水素の含有を一層効率良く行なうために、プ
ラズマCVD装置内にシランガス等と同時に、別途に水
素(H2)ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is 5IH4,5i
It is formed on a substrate by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method using one type of hydrogen silicon gas such as 2Hs, 513Ha, 3i4H+o, or a mixture thereof as a raw material. Among them, plasma CVD (Chemical Vapor D)
Silane (S+H,
) A method of decomposing gas etc. by glow discharge (glow discharge method) is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶ケイ素を主体とし不純物とし
てリン原子を含有するn型半導体である。このリン原子
の添加には、通常、ホスフィン(PH3)ガスが原料と
して用いられ、0.01〜1003ppmのリン原子が
添加されることによってn型半導体の非晶質ケイ素が得
られる。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is an n-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing phosphorus atoms as impurities. For this addition of phosphorus atoms, phosphine (PH3) gas is usually used as a raw material, and amorphous silicon, which is an n-type semiconductor, is obtained by adding 0.01 to 1003 ppm of phosphorus atoms.

また、本発明に従う電子写真用感光体においては、更に
、炭素原子、窒素原子または酸素原子のうちの少なくと
も1種類を含有している。このような原子の含有は、特
に感光層膜の暗抵抗の増加、光感度の増加、更には、帯
電能(単位膜あたりの帯電電位)の増加の点から好まし
い。
Further, the electrophotographic photoreceptor according to the present invention further contains at least one type of carbon atom, nitrogen atom, or oxygen atom. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層にゲルマニウム(Ge)などの元素を
添加することも可能である。またノ10ゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength range. Furthermore, by adding atomic atoms, the dark resistance can be increased.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜30 MHz、放電時の真空度
は0.1〜5 Torr 、基板加熱温度はl OO〜
400℃である。しかして、非晶質ケイ素を主体とする
光導電層の膜厚は、1〜100μm1特に10〜50μ
mとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the degree of vacuum during discharge. is 0.1 to 5 Torr, and the substrate heating temperature is lOO~
The temperature is 400°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, especially 10 to 50 μm.
It is preferable to set it to m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1:〜 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250tに維持し、反応室内に100%シラン(S 
IH4)ガスを毎分120cc。
Comparative Example 1: ~ A cylindrical Aβ substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250 t, and 100% silane (S) was placed in the reaction chamber.
IH4) Gas at 120cc per minute.

水素希釈の300ppm ホスフィン(PH,)ガスを
毎分30cc、および100%エチレン(C2H−)ガ
スを毎分15cc、さらに100%水素(H2)ガスを
毎分75ccの範囲で流入させ、反応槽内を0.5To
rrの内圧に維持した後、13.56 M Hzの高周
波電力を投入して、グロー放電を生じせしめ、高周波電
力の出力を85Wに維持した。このようにして、円筒状
のAI基板上に厚さ25μmで非晶質ケイ素を主体とし
不純物としてリン、更に、炭素原子を含有するn型半導
体から成る光導電層を有する感光体を得た。
Hydrogen diluted 300ppm phosphine (PH,) gas was introduced at a rate of 30cc/min, 100% ethylene (C2H-) gas at a rate of 15cc/min, and 100% hydrogen (H2) gas was introduced at a rate of 75cc/min into the reaction tank. 0.5To
After maintaining the internal pressure at rr, high-frequency power of 13.56 MHz was applied to generate glow discharge, and the output of high-frequency power was maintained at 85W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus and carbon atoms as impurities on a cylindrical AI substrate.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。また、この感光体を3
0℃、85%RHの環境下で画質評価したところ、画像
の流れが観察された。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that could withstand practical use was not obtained. In addition, this photoreceptor was
When image quality was evaluated under an environment of 0° C. and 85% RH, image flow was observed.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体としリンおよび炭素を含有するn型半導体から
成る光導電層を有する感光体の上に、スズビスアセチル
アセトネート1重量部、メチルトリメトキシシラン1重
量部、メチルアルコール20重量部、イソプロピルアル
コール30重量部からなる溶液を浸漬塗布し、200℃
の炉中で1時間乾燥硬化し、0.2μ厚の表面層を有す
る感光体を得た。得られた表面層はセラミックスに似た
性質を持ち、非晶質ケイ素の優れた特性である、表面硬
度、耐摩耗性、耐熱性をほとんど損うことがなかった。
Example 1: On a photoreceptor having a photoconductive layer made of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus and carbon, which was produced by the same method and under the same conditions as Comparative Example 1, tin bisacetylacetate was applied. A solution consisting of 1 part by weight of Nate, 1 part by weight of methyltrimethoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of isopropyl alcohol was applied by dip coating, and the solution was heated at 200°C.
The photoreceptor was dried and cured for 1 hour in an oven to obtain a photoreceptor having a surface layer with a thickness of 0.2 μm. The obtained surface layer had properties similar to ceramics, and the excellent properties of amorphous silicon, such as surface hardness, wear resistance, and heat resistance, were hardly impaired.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。この
感光体を30℃、85%RHの環境下で画質評価を行な
ったが画像の流れはみられず高解像度を示した。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. The image quality of this photoreceptor was evaluated under an environment of 30° C. and 85% RH, but no image flow was observed, indicating high resolution.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A1基彼を設置し、基板温度を所定の温度であ
る250℃に、維持し、反応室内に100%ンラン(S
iH,)ガスを毎分120CC1水素希釈の300pp
m ホスフィン(Pi(3)ガスを毎分30cc、およ
び100%水素(H2)ガスを毎分90cc、さらに1
00%水素(H2)ガスを毎分1Qccで流入させ、反
応槽内をQ、5Torrの内圧を維持した後、13.5
6 M Hzの高周波電力を投入して、グロー放電を生
じせしめ、高周波電源の出力を8.5Wに維持した。こ
のようにして円筒状のAI基板上に、厚さ25μmで非
晶質ケイ素を主体として不純物としてリン、更に、窒素
を含有するn型半導体から成る光導電層を有する感光体
を得た。
Comparative Example 2: A cylindrical A1 was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at the predetermined temperature of 250°C, and 100% non-run (S) was carried out in the reaction chamber.
iH,) 300pp of gas diluted with 120CC1 hydrogen per minute
m phosphine (Pi(3) gas at 30 cc/min and 100% hydrogen (H2) gas at 90 cc/min, and 1
After introducing 00% hydrogen (H2) gas at a rate of 1 Qcc per minute and maintaining an internal pressure of Q and 5 Torr in the reaction tank, 13.5
High frequency power of 6 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 8.5 W. In this way, a photoreceptor was obtained on a cylindrical AI substrate, having a photoconductive layer having a thickness of 25 μm and consisting of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus and nitrogen as impurities.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式により画質評価を行なったところ、実用に
耐え1尋る画像濃度が得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, it was found that an image density that was acceptable for practical use could not be obtained.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、画1象の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, flow of one image was observed.

実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体としリン素を含有するp型半導体から成る光導
電層を有する感光体の上に、スズテトラインプロポキシ
ド2重量部、ジメチルジメトキシシラン1重量部、およ
びエチルアルコール40重量部からなる溶液を浸漬塗布
し、200℃で1時間乾燥硬化し、0.3μm厚の表面
層を有する感光体を得た。辱、られた表面層はセラミッ
クスに似た性質を持ち、非晶質ケイ素の優れた特性であ
る、表面硬度、耐摩耗性、耐熱性をほとんど損うことが
なかった。
Example 2: Tin tetrine propoxide was applied onto a photoreceptor having a photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing phosphorus, which was produced by the same method and under the same conditions as Comparative Example 2. A solution consisting of 2 parts by weight of dimethyldimethoxysilane, 1 part by weight of dimethyldimethoxysilane, and 40 parts by weight of ethyl alcohol was applied by dip coating, and dried and cured at 200° C. for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.3 μm. The treated surface layer had properties similar to ceramics, and the excellent properties of amorphous silicon, such as surface hardness, wear resistance, and heat resistance, were hardly impaired.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画(象濃度の低下はみられなかった。こ
の感光体を30℃、85%RHの環境下で画質評価を行
なったが画像の流れはみられず高解像度を示した。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor was evaluated for image quality in an environment of 30°C and 85% RH, but no image bleeding was observed. It showed high resolution.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Al基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H4)ガスを毎分12 Qcc。
Comparative Example 3: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H4) gas at 12 Qcc per minute.

水素希釈の100ppm ホスフィン(PH3)ガスを
毎分33cc、および、100%の酸素(02)ガスを
毎分l、Qcc、さらに100%水素(H2)ガスを毎
分39ccで流入させ、反応槽内をQ、5Torrの内
圧に維持した後、13.56 M Hzの高周波電力を
投入して、グロー放電を生じせしめ、高周波電源の出力
を85Wに維持した。このようにして円筒状のへβ基板
上に、厚さ25μmで非晶質ケイ素を主体とし不純物と
してリン、更に、酸素を含有するn型半導体から成る光
導電層を有する感光体を得た。
Hydrogen diluted 100 ppm phosphine (PH3) gas was introduced at 33 cc per minute, 100% oxygen (02) gas was introduced at 1, Qcc per minute, and 100% hydrogen (H2) gas was introduced at 39 cc per minute into the reaction tank. After maintaining Q at an internal pressure of 5 Torr, high frequency power of 13.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus and oxygen as impurities, on a cylindrical β substrate.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式により画質評価を行なったところ、実用に
耐え得る画像濃度が得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that could withstand practical use was not obtained.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、画像の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image smearing was observed.

実施例3: 比較例3と同一方法、同一条件で作成した非晶質ケイ素
を主体とし不純物としてリンおよび酸素を含有するn型
半導体から成る光導電層を有する感光体の・上に、スズ
テトラブトキシド2重量部、γ−アクリロキシプロピル
トリメトキシシラン1重量部、メチルアルコール20重
量部、エチルアルコール30重量部からなる溶液を浸漬
塗布し、200℃の中で1時間乾燥硬化して、0.2μ
m厚の表面層を有する感光体を得た。得られた表面層は
セラミックスに似た性質を持ち、非晶質ケイ素の優れた
特性である、表面硬度、耐摩耗性、耐熱性をほとんど損
うことがなかった。
Example 3: On a photoreceptor having a photoconductive layer made of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus and oxygen as impurities, which was prepared by the same method and under the same conditions as Comparative Example 3, tin tetra A solution consisting of 2 parts by weight of butoxide, 1 part by weight of γ-acryloxypropyltrimethoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of ethyl alcohol was applied by dip coating, dried and cured at 200° C. for 1 hour, and 0.05% by weight was applied. 2μ
A photoreceptor having a surface layer with a thickness of m was obtained. The obtained surface layer had properties similar to ceramics, and the excellent properties of amorphous silicon, such as surface hardness, wear resistance, and heat resistance, were hardly impaired.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage.

また、複写操作を5万回繰り返したが画1象濃度の低下
はみられなかった。この感光体を30℃、85%RHの
環境下で画質評価を行なったが画像の流れはみられず高
解像度を示した。
Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. The image quality of this photoreceptor was evaluated under an environment of 30° C. and 85% RH, but no image flow was observed, indicating high resolution.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. It has a high charge retention ability and can provide images of excellent quality regardless of the number of uses.

Claims (1)

【特許請求の範囲】 導電性基板上に光導電層および表面層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてリン原子を含有するn型半導体から
成り、更に、炭素原子、窒素原子または酸素原子のうち
少なくとも1種類を含有しており、前記表面層が、有機
スズ化合物を少なくとも1種類含む溶液の乾燥硬化物か
ら成ることを特徴とする電子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms and contains impurities. A dry cured product of a solution consisting of an n-type semiconductor containing phosphorus atoms, further containing at least one type of carbon atom, nitrogen atom, or oxygen atom, and the surface layer containing at least one type of organic tin compound. An electrophotographic photoreceptor comprising:
JP61117812A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117812A JPH0727252B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117812A JPH0727252B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273557A true JPS62273557A (en) 1987-11-27
JPH0727252B2 JPH0727252B2 (en) 1995-03-29

Family

ID=14720873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117812A Expired - Lifetime JPH0727252B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226651A (en) * 1989-01-03 1990-07-04 Xerox Corp Overcoat layer for electrophotographic member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62201457A (en) * 1986-02-28 1987-09-05 Sharp Corp Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62201457A (en) * 1986-02-28 1987-09-05 Sharp Corp Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226651A (en) * 1989-01-03 1990-07-04 Xerox Corp Overcoat layer for electrophotographic member
GB2226651B (en) * 1989-01-03 1993-01-06 Xerox Corp Electrophotographic imaging members

Also Published As

Publication number Publication date
JPH0727252B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS62273557A (en) Electrophotographic sensitive body
JPS62273547A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body
JPH0711713B2 (en) Electrophotographic photoconductor
JPS62273560A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62288855A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPH0721649B2 (en) Electrophotographic photoconductor
JPH0723964B2 (en) Electrophotographic photoconductor
JPS62273552A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62273551A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor