JPS62273553A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273553A
JPS62273553A JP11780886A JP11780886A JPS62273553A JP S62273553 A JPS62273553 A JP S62273553A JP 11780886 A JP11780886 A JP 11780886A JP 11780886 A JP11780886 A JP 11780886A JP S62273553 A JPS62273553 A JP S62273553A
Authority
JP
Japan
Prior art keywords
contg
amorphous silicon
intermediate layer
zirconium
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11780886A
Other languages
Japanese (ja)
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP11780886A priority Critical patent/JPS62273553A/en
Publication of JPS62273553A publication Critical patent/JPS62273553A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from a p-type semiconductor contg. an amorphous silicon contg. hydrogen atom as a main component, and also contg. boron atom as an impurity, and by constituting an intermediate layer from a dried curing material of a solution contg. at least one kind of an org. zirconium compd. CONSTITUTION:The intermediate layer is laminated on a conductive substrate, and the photoconductive layer composed of the amorphous silicon is coated on the intermediate layer. The dried curing material of the solution contg. at least one kind of the org. zirconium compd. is used as the intermediate layer. The p-type semiconductor comprising the amorphous silicon contg. hydrogen atom as the main component, and also contg. boron atom and at least one kind of carbon atom, nitrogen atom or oxygen atom as an impurity is used as the photoconductive layer. The further preferable org. zirconium compd. is a zirconium complex and a zirconium alkoxide. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと弥される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を溝る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかして
、従来より、感光層を構成する材料としてはセレンある
いはセレン合金、硫化カドミウム、酸化亜鉛等の無機感
光材料、あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光lを単層あるい:ま債、1にして用いられている。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer such as a toner,
This is a method in which a toner image is transferred and fixed onto transfer paper, and the copy is grooved. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer have been inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Photosensitive materials are known,
The photosensitive material is used in a single layer or in a single layer.

発明が解決しようとする問題点 しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
Problems to be Solved by the Invention However, these conventionally used photosensitive layers have problems in durability, heat resistance, photosensitivity, etc. that still need to be solved.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、/ラン
(SiH4)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
<、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響によっても変化しやすく、特に高温高湿環境では帯電
電位が大巾に低下する。更に、非晶質ケイ素の感光体は
、繰返し使用すると徐々に帯電電位が低下してしまう。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by a glow discharge decomposition method using SiH4 gas. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and is excellent in mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment. Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases.

この様な帯電電位の暗減衰の大きな感光体を用いて複写
物を作成すると、画像濃度が低くまた、中間調の再現性
に乏しい複写物となる。
If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雲囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the cloud surroundings of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の池の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
A further object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

問題点を解決するための手段 本発明者は、鋭意研究を行なった結果、導電性基板上に
、中間層を積層し、その上に、非晶質ケイ素から成る光
導電層を被覆し、該中間層、とじて、有機ジルコニウム
化合物を少なくとも1種類含有、する溶液の乾燥硬化物
を用いることによって上記目的が達成されることを見出
した。光導電層としては、水素原子を含有する非晶質ケ
イ素を主体とし、不純物としてホウ素原子を含有し、更
に、炭素原子、窒素原子または酸素原子のうちの少なく
とも1種類を含有するp型半導体を用いる。
Means for Solving the Problems As a result of extensive research, the inventor of the present invention laminated an intermediate layer on a conductive substrate, coated it with a photoconductive layer made of amorphous silicon, and It has been found that the above object can be achieved by using a dried and cured solution of an intermediate layer containing at least one type of organic zirconium compound. The photoconductive layer is a p-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms, containing boron atoms as impurities, and further containing at least one of carbon atoms, nitrogen atoms, or oxygen atoms. use

かくして、本発明に従えば、導電性基板上に中間層およ
び光導電層を順次噴石して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とし不純物としてホウ素原子を含有し、更に炭素
原子、窒素原子または酸素原子のうちの少なくとも1種
類を含有するp型半導体から成り、前記中間1が、有機
ジルコニウム化合物を少なくとも1種類含む溶液の乾燥
硬化物から成ることを特徴とする電子写真用:感光体が
提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor formed by sequentially forming an intermediate layer and a photoconductive layer on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. A dry cured product of a solution comprising a p-type semiconductor containing a boron atom as an impurity and further containing at least one type of carbon atom, nitrogen atom, or oxygen atom, the intermediate 1 containing at least one type of organic zirconium compound. A photoreceptor for electrophotography is provided, characterized in that the photoreceptor comprises:

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機ジルコニウム化合物としては、種々のものが
考えられるが、特に好ましいのは、ジルコニウム錯体お
よびジルコニウムアルコキシドである。これらの好まし
い例としては、ジルコニウムテトラキスアセチルアセト
ネート、ジルコニウムジブトキシビスアセチルアセトネ
ート、ジルコニウムトリプトキンアセチルアセトネート
、ジルコニウムトリフロロアセチルアセトネート、ジル
コニウムテトラ−n−プロポキサイド、ジルコニウムテ
トラ−イソ−プロポキサイドジルコニウム−n−ブトキ
サイド、ジルコニウムイソブトキサイド、等が挙げろれ
る。
Although various organic zirconium compounds can be used to form the intermediate layer of the electrophotographic photoreceptor of the present invention, particularly preferred are zirconium complexes and zirconium alkoxides. Preferred examples of these include zirconium tetrakisacetylacetonate, zirconium dibutoxybisacetylacetonate, zirconium tryptoquine acetylacetonate, zirconium trifluoroacetylacetonate, zirconium tetra-n-propoxide, zirconium tetra-iso-propoxide. Examples include zirconium-n-butoxide, zirconium isobutoxide, and the like.

本発明の電子写真用感光体を得るに轟っては、上記のご
とき有機ジルコニウム化合物の1種または2種以上を適
当な溶媒に溶解した溶液を塗布する。また、この際、こ
れらの有機ジルコニウム化合物に有機ケイ素化合物を混
合した溶液を用いてもよい。この有機ケイ素化合物とし
ては一般にシランカップリング剤と呼ばれている化合物
が好適であり、例えば、ビニルトリクロルンラン、ビニ
ルトリエトキンシラン、ビニルトリス(β−メトキシエ
トキシ)シラン、T−グリシドキシプロピルトリメトキ
ンシラン、T−メタアクリロキンプロピルトリメトキシ
シラン、N−β(アミノエチル)T−アミノプロピルト
リメトキシシラン、N−β(アミノエチル)T−アミノ
プロピルメチルジメトキシシラン、γ−クロロプロピル
トリメトキンシラン、γ−メルカプトプロピルトリメト
キシシラン、r−アミ/プロピルトリエトキシシラン、
メチルトリメトキシシラン、ジメチルジメトキシシラン
、トリメチルモノメトキシシラン、ジ゛  フェニルジ
メトキシシラン、ジフェニルジェトキシシラン、モノフ
ェニルトリメトキシシラン等が挙げられる。このような
シランカップリング剤を混合して用いる場合には、該シ
ランカップリング剤が全固形物重量に対して5〜50%
となるようにするのがよい。
To obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above organic zirconium compounds dissolved in a suitable solvent is applied. Further, at this time, a solution obtained by mixing these organic zirconium compounds with an organic silicon compound may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, and examples thereof include vinyltrichlorane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, and T-glycidoxypropyltrimethquine. Silane, T-methacryloquinepropyltrimethoxysilane, N-β(aminoethyl)T-aminopropyltrimethoxysilane, N-β(aminoethyl)T-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane , γ-mercaptopropyltrimethoxysilane, r-ami/propyltriethoxysilane,
Examples include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such a silane coupling agent is mixed and used, the silane coupling agent accounts for 5 to 50% of the total solid weight.
It is better to make it so that

かくして、有機ジルコニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、導電性基板上に
、スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗
布などの方法で塗布した後、乾燥硬化させ、その上に光
導電層を積層することによって本発明の電子写真用感光
体が(昇られる。
Thus, a solution containing an organozirconium compound and optionally an organosilicon compound is applied onto a conductive substrate by methods such as spray coating, dip coating, knife coating or roll coating, dried and cured, and then applied. The electrophotographic photoreceptor of the present invention is produced by laminating a photoconductive layer on the substrate.

乾燥硬化温度は100〜400℃の間の任意の温度に設
定することができる。最終的に(弄られる中間層の膜厚
も任意に設定され得るが、0.1〜10μmが好適であ
る。
The drying and curing temperature can be set at any temperature between 100 and 400°C. The thickness of the intermediate layer to be finally manipulated can also be set arbitrarily, but is preferably 0.1 to 10 μm.

非晶質ケイ素を主体とする光導電層は、SIHいS+2
)1s 、5r3Ha 、S+4)110%等の水素ケ
イ素ガスの1種またはそれらの混合物を原料として、グ
ロー放電法、スパッタリング法、イオンブレーティング
法、真空蒸着法などの方法によって中間層上に形成する
。中でも、プラグ? CV D (ChemicalV
apor Deposition)  法によりシラン
(SiH,)  ガス等をグロー放電分解する方法(グ
ロー放電法)が、膜中への水素の含有量の制御の点から
好ましい。
The photoconductive layer mainly composed of amorphous silicon is SIH S+2.
)1s, 5r3Ha, S+4) 110%, etc., or a mixture thereof, is used as a raw material and formed on the intermediate layer by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method. . Especially the plug? CV D (Chemical V
A method (glow discharge method) in which silane (SiH, ) gas, etc. is decomposed by glow discharge using an apor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film.

また、この場合水素の含有を−1効率良く行なうために
、プラズマCVD装置内にシランガス等と同時に、別途
に水素(H2)ガスを導入してもよい。また、膜成長速
度の点からは、5it14、S12)1gを用いるのが
好ましい。
Further, in this case, in order to contain hydrogen with -1 efficiency, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like. Furthermore, from the viewpoint of film growth rate, it is preferable to use 5it14, S12) 1g.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶質ケイ素を主体として不純物
としてホウ素原子を含有するp型半導体からなり、更に
、炭素原子、窒素原子または酸素原子のうちの少なくと
も1種類を含有している。このような原子の含有は、特
に感光1膜の暗抵抗の増加、光感度の増加、更には、帯
電能(単位膜厚あたりの帯電電位)の増加の点から好ま
しい。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is composed of a p-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing boron atoms as impurities, and further containing carbon atoms, nitrogen atoms or Contains at least one type of oxygen atom. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive film, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film thickness).

この非晶質ケイSg光層へのホウ素(B)原子の添加に
は通常ジボラン(BiHs)  ガスが原料とじて用い
られる。この場合Bli子の添加量は10〜1001]
111m の程度である。
Diborane (BiHs) gas is usually used as a raw material for adding boron (B) atoms to this amorphous silicon-Sg optical layer. In this case, the amount of Blicon added is 10 to 1001]
It is about 111m.

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
るのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズ7CV]去による非晶質ケイ素から成る光導電1響を
形成するのに有効な放電条件は、例えば、交流放電の場
合、周波数は通常0.1〜30!JHz、放電時の真空
度は0、1〜5 Torr、基板加熱温度は100〜4
00℃である。しかして、非晶質ケイ素を1体とする光
導電層の膜厚は、1〜100μm、特に10〜50μm
とするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus together with other gases. , a gaseous compound containing necessary elements may be introduced to perform glow discharge decomposition. As mentioned above, the effective discharge conditions for forming a photoconductive layer made of amorphous silicon by plasma removal are, for example, in the case of alternating current discharge, the frequency is usually 0.1 to 30! JHz, degree of vacuum during discharge is 0, 1 to 5 Torr, substrate heating temperature is 100 to 4
It is 00℃. Therefore, the film thickness of the photoconductive layer containing amorphous silicon is 1 to 100 μm, particularly 10 to 50 μm.
It is preferable that

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックンートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, metal such as aluminum, nickel, chromium, stainless steel, or brass, plastic or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)  ガスを毎分123cc、水素希釈のt o 
o Oppm ジボラン(LHg)ガスを毎分30cc
、および100%エチレン(C2H4)ガスを毎分15
cc、さらに100%水素(H2)ガスを毎分75cc
の範囲で流入させ、反応嗜内を0.5Torrの内圧に
維持した後、13.57MHz の高周波電力を投入し
て、グロー放電を生じぜしめ、高周波電源の出力を85
Wに維持した。このようにして、円筒状のAf基板上に
厚さ25μmの非晶質ケイ素を主体とし不純物としてホ
ウ素原子を含有し、更に水素と炭素を含むp型半導体か
ら成る光導電層を有する感光体を得た。
Comparative Example 1: A cylindrical Aβ substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 123 cc per minute, hydrogen dilution to
o Oppm diborane (LHg) gas at 30cc per minute
, and 100% ethylene (C2H4) gas at 15 min.
cc, and 75cc of 100% hydrogen (H2) gas per minute.
After maintaining the internal pressure in the reaction chamber at 0.5 Torr, 13.57 MHz high frequency power was applied to generate a glow discharge, and the output of the high frequency power supply was increased to 85 Torr.
I kept it at W. In this way, a photoreceptor having a 25 μm thick photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon, containing boron atoms as impurities, and further containing hydrogen and carbon was fabricated on a cylindrical Af substrate. Obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ・、実用に耐
え得る画像濃度は(尋られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, it was found that the image density was not sufficient for practical use.

実施例1: 比較例1と同じ形状の円筒状A42基板上に、ジルコニ
ウムアセチルアセトン1重量部、メチルアルコール50
重NB、n−ブチルアルコール20重量部からなる溶液
を浸漬塗布し、250℃の炉中で2時間乾燥して0.2
μm厚の中間層を設けた。
Example 1: On a cylindrical A42 substrate having the same shape as Comparative Example 1, 1 part by weight of zirconium acetylacetone and 50 parts by weight of methyl alcohol were added.
A solution consisting of heavy NB and 20 parts by weight of n-butyl alcohol was applied by dip coating, and dried in an oven at 250°C for 2 hours to give a 0.2
A μm thick intermediate layer was provided.

次に、この中間層上に、比較例1と同じ方法により、比
較例1と同じ内容の非晶質ケイ素を主とする光導電層を
、比較例1とほぼ同じ膜厚で設けた。
Next, on this intermediate layer, a photoconductive layer mainly made of amorphous silicon having the same content as in Comparative Example 1 was provided by the same method as in Comparative Example 1, and with almost the same thickness as in Comparative Example 1.

このようにして得られた光導電層はセラミックスに似た
性質を持ち、非晶質ケイ素の優れた特性である、表面硬
度、耐摩耗性、耐熱性をそのま\有していた。
The photoconductive layer thus obtained had properties similar to ceramics, and possessed the excellent properties of amorphous silicon, such as surface hardness, abrasion resistance, and heat resistance.

このようにして得られた。感光体を複写機に入れ、正の
コロナ帯電方式で画質評価したところ、初期時では実用
上問題のない画像濃度が得られた。また、複写操作を5
万回繰り返したが画像濃度の低下はみられなかった。
Obtained in this way. When the photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained. Also, the copy operation is
Although the process was repeated 10,000 times, no decrease in image density was observed.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基彼を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%ンラン(Si
H< )ガスを毎分120CC1水素希釈の1000p
pm ジボラン(82H6)ガスを毎分3Qcc、およ
び100%の窒素(N2)ガスを毎分90cc、さらに
100%水素(H2)ガスを毎分1Qccで流入させ、
反応槽内を0.5Torrの内圧に維持した後、13.
56MHzの高周211!2電力を投入して、グロー放
電を生じせしめ、高周波電源の出力を85Wに維持した
。二のようにして、円筒状のへ2基板上に、厚さ25μ
mで非晶質ケイ素を主体とし不純物としてホウ素、更に
、水素と窒素を含有するp型半導体から成る光導電層を
有する感光体を1尋だ。
Comparative Example 2: A cylindrical Aβ group was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silicon (Si) was placed in the reaction chamber.
H<) gas per minute at 120cc1000p of hydrogen dilution
pm Diborane (82H6) gas was introduced at 3Qcc per minute, 100% nitrogen (N2) gas was introduced at 90cc per minute, and 100% hydrogen (H2) gas was introduced at 1Qcc per minute.
After maintaining the internal pressure in the reaction tank at 0.5 Torr, 13.
A 56 MHz high frequency 211!2 power was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 85W. As shown in step 2, place a cylindrical plate on 2 substrates with a thickness of 25 μm.
A photoreceptor having a photoconductive layer consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron as impurities and hydrogen and nitrogen is 1 fathom.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画i11度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image i of 11 degrees that could withstand practical use was not obtained.

実施例2: 比較例2と同じ形状の円筒状Aβ基板上に、ジルコニウ
ムテトラブトキサイド1重量部、エチルアルコール10
0重量部かみなる溶液を浸漬塗布し、250℃の炉中で
2時間乾燥して0.2μm厚の中間層を設けた。次に、
この中間層上に、比較例2と同じ方法により、比較例2
と同じ内容の非晶質ケイ素を主体とする光導電1を、比
較例2とほぼ同じ膜厚で設けた。
Example 2: On a cylindrical Aβ substrate having the same shape as Comparative Example 2, 1 part by weight of zirconium tetrabutoxide and 10 parts by weight of ethyl alcohol were added.
A 0 part by weight solution was dip coated and dried in an oven at 250°C for 2 hours to provide a 0.2 μm thick intermediate layer. next,
Comparative Example 2 was applied onto this intermediate layer by the same method as Comparative Example 2.
A photoconductor 1 mainly composed of amorphous silicon having the same content as above was provided with approximately the same film thickness as Comparative Example 2.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回操り返したが画像濃度の低下はみられなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, even though the copying operation was repeated 50,000 times, no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状人β基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
Hl)ガスを毎分120CC1水素希釈の1000pp
m ジボラン(B2116)ガスを毎分30cc、およ
び100%の酸素(02)ガスを毎分1.Qcc、さら
に100%水素(H2)ガスを毎分89ccで流入させ
、反応槽内をO157orrの内圧に維持した後、13
.56 !、lHzの高周波電力を投入して、グロー放
電を生じせしめ、高周波電源の出力を85Wに維持した
。このようにして、円筒状のAj2基板上に、厚さ25
μmで非晶質ケイ素を主体とし不純物としてホウ素、更
に、水素と酸素を含有するp型半導体から成る光導電層
を有する感光体を得た。
Comparative Example 3: A cylindrical human β substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
Hl) gas per minute at 120cc1000pp of hydrogen dilution
m diborane (B2116) gas at 30 cc/min and 100% oxygen (02) gas at 1.0 cc/min. Qcc, and then 100% hydrogen (H2) gas was introduced at a rate of 89cc per minute to maintain the internal pressure of O157orr in the reaction tank, and then 13
.. 56! , lHz high frequency power was applied to generate glow discharge, and the output of the high frequency power supply was maintained at 85W. In this way, a thickness of 25 mm was placed on the cylindrical Aj2 substrate.
A photoreceptor was obtained having a photoconductive layer consisting of a p-type semiconductor consisting mainly of amorphous silicon and further containing hydrogen and oxygen as impurities.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained.

実施例3: 比較例3と同じ形状の円筒状Aβ基板上に、ジルコニウ
ムテトラブトキサイド1重量部、メチルトリメトキシシ
ラン1重I!!、部、エチルアルコール100ffi1
部、イソプロピルアルコール100重量部からなる溶液
を浸漬塗布し、250℃の炉中にそ2時間乾燥して0.
1μm厚の中間層を設けた。
Example 3: On a cylindrical Aβ substrate having the same shape as Comparative Example 3, 1 part by weight of zirconium tetrabutoxide and 1 part by weight of methyltrimethoxysilane were placed. ! , parts, ethyl alcohol 100ffi1
100 parts by weight of isopropyl alcohol was applied by dip coating, and dried in an oven at 250° C. for 2 hours to give a solution of 0.05 parts by weight.
A 1 μm thick intermediate layer was provided.

次に、この中間層上に、比較例3と同じ方法により比較
例3と同じ内容の非晶質ケイ素を主体とする光導電層を
比較例3とほぼ同じ膜厚で設;すた。
Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was formed by the same method as in Comparative Example 3 and having a thickness substantially the same as that in Comparative Example 3.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画1象濃度の低下はみられなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高殿誠的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受;すずに高い電荷保持力を有して、優れた品
質の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention maintains the excellent properties of a photoreceptor made of amorphous silicon, such as high strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. Tin has a high charge retention ability and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層および光導電層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてホウ素原子を含有するp型半導体か
ら成り、更に、炭素原子、窒素原子または酸素原子のう
ちの少なくとも1種類を含有しており、 前記中間層が、有機ジルコニウム化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms as an impurity. The intermediate layer is made of a p-type semiconductor containing a boron atom, and further contains at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer contains at least one organic zirconium compound.
1. A photoreceptor for electrophotography, characterized in that it is made of a dried and cured product of a solution containing various types of photoreceptors.
JP11780886A 1986-05-22 1986-05-22 Electrophotographic sensitive body Pending JPS62273553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780886A JPS62273553A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780886A JPS62273553A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62273553A true JPS62273553A (en) 1987-11-27

Family

ID=14720780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780886A Pending JPS62273553A (en) 1986-05-22 1986-05-22 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62273553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025759A1 (en) * 1989-08-16 1991-02-28 Fuji Xerox Co Ltd ELECTROPHOTOGRAPHIC PHOTORE RECEPTOR
US5443934A (en) * 1992-01-31 1995-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS57119359A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5833257A (en) * 1982-05-10 1983-02-26 Canon Inc Photoconductive member
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS57119359A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5833257A (en) * 1982-05-10 1983-02-26 Canon Inc Photoconductive member
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025759A1 (en) * 1989-08-16 1991-02-28 Fuji Xerox Co Ltd ELECTROPHOTOGRAPHIC PHOTORE RECEPTOR
US5443934A (en) * 1992-01-31 1995-08-22 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JPS62273553A (en) Electrophotographic sensitive body
JPS62273547A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62273556A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62273555A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62273551A (en) Electrophotographic sensitive body
JPS62273554A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62273564A (en) Electrophotographic sensitive body