JPS62145252A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62145252A
JPS62145252A JP28599885A JP28599885A JPS62145252A JP S62145252 A JPS62145252 A JP S62145252A JP 28599885 A JP28599885 A JP 28599885A JP 28599885 A JP28599885 A JP 28599885A JP S62145252 A JPS62145252 A JP S62145252A
Authority
JP
Japan
Prior art keywords
photoreceptor
intermediate layer
amorphous silicon
photoconductive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28599885A
Other languages
Japanese (ja)
Other versions
JPH0711714B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60285998A priority Critical patent/JPH0711714B2/en
Publication of JPS62145252A publication Critical patent/JPS62145252A/en
Publication of JPH0711714B2 publication Critical patent/JPH0711714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Abstract

PURPOSE:To obtain the titled body having a very small dark decay of the electrostatic potential by providing an intermediate layer between the electroconductive substrate and the photoconductive layer composed of a non- crystalline silicon, and by incorporating a dry cured material of a solution contg. an org. stannic compd. to the intermediate layer. CONSTITUTION:The photoconductive layer is composed of an i-type semiconductor having the non-crystalline silicon contg. hydrogen atom, as a main component. and at least one kind of a carbon atom, a nitrogen atom or an oxygen atom. The intermediate layer is composed of the dry cured material of the solution contg. the org. stannic compd. As the used org. stannic compd, stannic bisacetylacetonate, etc is examplified. The dry curing temp. of said compd. is 100-400 deg.C. The thickness of the film of the surface layer is preferable to be <=1mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着し。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called a toner,
Transfer the toner image to transfer paper and fix it.

て複写物を得る方法である。この電子写真法に用いられ
る感光体は、基本構成として導電性基板上に感光層を積
層して成る。しかして、従来より、感光層を構成する材
料としてはセレンあるいはセレン合金、硫化カドミウム
、酸化亜鉛等の無機感光材料、あるいは、ポリビニルカ
ルバゾール、トリニトロフルオレノン、ビスアゾ顔料、
フタロシアニン、ピラゾリン、ヒドラゾン等の有機感光
材料が知られており、感光層を単層あるいは積層にして
用いられている。しかしながら、従来より用いられてい
るこれらの感光層は、耐久性、耐熱性、光感度などにお
いて未だ解決すべき問題点を有している。
This method is used to obtain copies. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer include inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or polyvinylcarbazole, trinitrofluorenone, bisazo pigments, etc.
Organic photosensitive materials such as phthalocyanine, pyrazoline, and hydrazone are known, and are used as a single layer or a stack of photosensitive layers. However, these conventionally used photosensitive layers have problems that still need to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH2)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度にふいてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響によっても変化しやすく、特に高温高湿環境では帯電
電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon has an amorphous film of silicon formed on a conductive substrate using silane (SiH2) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板と、
非晶質ケイ素から成る光導電層との1に中間層を設ける
とともに、該中間層として、有機スズ化合物を少なくと
も1種類含有する溶液の乾燥硬化物を用いることによっ
て上記目的が達成されることを見出した。光導電層とし
ては、非晶質ケイ素を主体とするl型半導体であって、
更に、炭素原子、窒累原子または酸素原子のうちの少な
くとも1種類を含有したものを用いる。
Structure of the Invention As a result of extensive research, the present inventor discovered that a conductive substrate,
The above object can be achieved by providing an intermediate layer between the photoconductive layer and the photoconductive layer made of amorphous silicon, and using a dried and cured product of a solution containing at least one organic tin compound as the intermediate layer. I found it. The photoconductive layer is an l-type semiconductor mainly composed of amorphous silicon,
Further, a material containing at least one of carbon atoms, nitrogen atoms, and oxygen atoms is used.

かくして、本発明に従えば、導電性基板上に中間層及び
光導電層を順次積層して成る電子写真用感光体において
、前記光導電層が、水素原子を含有する非晶質ケイ素を
主体とするl型半導体から成り、さらに炭素原子、窒崇
原子または酸崇原子のうちの少なくとも1種類を含有し
ており、前記中間層が、有機スズ化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体が提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. The intermediate layer further contains at least one of carbon atoms, nitrogen atoms, and acid atoms, and the intermediate layer contains at least one organic tin compound.
Provided is an electrophotographic photoreceptor characterized by being made of a dried and cured product of a solution containing various types of electrophotographic photoreceptors.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機スズ化合物としては、スズビスアセチルアセ
トネート、スズテトラメトキサイド、スズテトラエトキ
サイド、スズテトライソプロポキサイド、スズテトラブ
トキサイド、スズテトラ−3ec −ブトキサイ、ド等
が挙げられる。
Examples of the organic tin compound used to form the intermediate layer of the electrophotographic photoreceptor of the present invention include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, tin tetraisopropoxide, and tin tetrabutoxide. , tin tetra-3ec-butoxy, and the like.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機スズ化合物の1種または2種以上を適当な溶媒
に溶解した溶液を塗布する。また、この際、これらの有
機スズ化合物に有機ケイ素化合物を混合した溶液を用い
てもよい。この有機ケイ素化合物としては一般にシラン
カップリング剤と呼ばれている化合物が好適であり、例
えば、ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シラン、
γ−グリシドキシプロピルトリメトキシシラン、T−メ
タアクリロキシプロピルトリメトキシシラン、N−β(
アミノエチル)r−アミノプロピルトリメトキシシラン
、N−β〈アミノエチル)T−アミノプロピルメチルジ
メトキシシラン、γ−クロロプロピルトリメトキシシラ
ン、T−メルカプトプロピルトリメトキシシラン、T−
アミノプロピルトリエトキシシラン、メチルトリメトキ
シシラン、ジメチルジ、°トキシラン、トリメチルモノ
メトキシシラン、ジフェニルジメトキシシラン、ジフェ
ニルジェトキシシラン、モノフェニルトリメトキシシラ
ン等が挙げられる。このようなシランカップリング剤を
混合して用いる場合には、該シランカップリング剤が全
固形物重量に対して5〜50%となるようにするのがよ
い。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above-mentioned organic tin compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotin compounds may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane,
γ-glycidoxypropyltrimethoxysilane, T-methacryloxypropyltrimethoxysilane, N-β(
(aminoethyl)r-aminopropyltrimethoxysilane, N-β(aminoethyl)T-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, T-mercaptopropyltrimethoxysilane, T-
Examples include aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldi, °toxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜
400 ℃の間の任意の温度に設定することができる。
Thus, a solution containing an organotin compound and optionally an organosilicon compound is applied onto the photoconductive layer by methods such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing. An electrophotographic photoreceptor of the invention is obtained. Dry curing temperature is 100~
Any temperature between 400°C can be set.

最終的に得られる表面層の膜厚も任意に設定され得るが
、0.1〜10μm、特に1μm以下が好適である。
Although the thickness of the surface layer finally obtained can be set arbitrarily, it is preferably 0.1 to 10 μm, particularly 1 μm or less.

非晶質ケイ素を主体とする光導電層は、S i II 
4.5i21(、,5izl(a、Si+[(+o、等
の水累ケイ累ガスの1種またはそれらの混合物を原料と
して、グロー放電法、スパッタリング法、イオンブレー
ティング法、真空蒸着法などの方法によって基板上に形
成する。中でも、プラズマCVD(Chemical 
Vapor Deposition  )法によってシ
ラン(SiH,)ガス等をグロー放電分解する方法(グ
ロー放電法)が、膜中への水素の含有量の制御の点から
好ましい。また、この場合水素の含有を一層効率良く行
なうために、プラズマCVD装置内にシランガス等と同
時に、別途に水素(H2)ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is S i II
4.5i21(,,5izl(a, Si+[(+o), etc., or a mixture thereof, can be used as a raw material for the glow discharge method, sputtering method, ion blating method, vacuum evaporation method, etc. It is formed on a substrate by a plasma CVD (Chemical CVD) method.
A method (glow discharge method) in which silane (SiH, ) gas or the like is decomposed by glow discharge using a vapor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

なお、この非晶質ケイ素を主体とする光導電層中には、
該層をより1型半導体にするように、微量のホウ1(B
)を添加することができる。このホウ素原子の添加には
通常ボロン(B2Ha)ガスが原料として用いられる。
In addition, in this photoconductive layer mainly composed of amorphous silicon,
In order to make the layer more of a type 1 semiconductor, a trace amount of boron 1 (B
) can be added. For this addition of boron atoms, boron (B2Ha) gas is usually used as a raw material.

この場合、ホウ素原子の添加量は10〜1100ppの
程度である。
In this case, the amount of boron atoms added is about 10 to 1100 pp.

また、本発明に従う電子写真用感光体においては、光導
電層が、水素原子を含有する非晶質ケイ素を主体とする
l型半導体から成り、更に、炭素原子、窒素原子または
酸素原子のうち少なくとも1種類を含有している。この
ような原子の含有は、特に感光層膜の暗抵抗の増加、光
感度の増加、更には、帯電能(単位膜厚あたりの帯電電
位)の増加の点から好ましい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer is made of an l-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms, and further includes at least one of carbon atoms, nitrogen atoms, and oxygen atoms. Contains one type. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film thickness).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(6c)などの元累
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (6c) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元来を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜30MHz、放電時の真空度は
O,l 〜5 Torr、基板加熱温度は100〜40
0℃である。しかして、非晶質ケイ素を主体とする光導
電層の膜厚は、1〜100μm1特に10〜50μmと
するのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the degree of vacuum during discharge is O,l ~5 Torr, substrate heating temperature 100~40
It is 0°C. Therefore, the thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 .mu.m, particularly 10 to 50 .mu.m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Afl基板を設置し、基板温度を所定の温度で
ある250℃に維持し、反応室内に100%シラン(S
iH,)ガスを毎分120CC1水素希釈の100pp
m ジボラン(B2H6)ガスを毎分20CG、100
%エチレン(C2)1.)ガスを毎分12cc、さらに
100%水素(B2)ガスを毎分880Cの範囲で流入
させ、反応槽内をQ、5Torrの内圧に維持した後、
13.56 M Hzの高周波電力を投入して、グロー
放電を生じせしめ、高周波電源の出力を85Wに維持し
た。このようにして、円筒状のAI基板上に厚さ25μ
mで非晶質ケイ素を主体とし不純物として炭素原子を含
有する1型半導体から成る光導電層を有する感光体を得
た。
Comparative Example 1: A cylindrical Afl substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (S) was placed in the reaction chamber.
iH,) gas per minute at 120cc100pp of hydrogen dilution
m diborane (B2H6) gas at 20CG/min, 100
% ethylene (C2)1. ) Gas was introduced at 12 cc per minute, and 100% hydrogen (B2) gas was introduced at a rate of 880 C per minute, and the internal pressure inside the reaction tank was maintained at Q, 5 Torr.
High frequency power of 13.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a thickness of 25 μm was placed on a cylindrical AI substrate.
A photoreceptor having a photoconductive layer made of a type 1 semiconductor mainly composed of amorphous silicon and containing carbon atoms as an impurity was obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, it gradually deteriorated. The image density decreased.

実施例1: 比較例1と同一の円筒状Atl基板に、スズトリスアセ
チルアセトネート1重量部、メチルトリナトキシシラン
1重量部、メチルアルコール20重量部、イソプロピル
アルコール30重量部から成る溶液を浸漬塗布し、25
0℃の炉中で2時間乾怪硬化し、0.2μm厚の中間層
を設けた。次に、この中間層上に、比較例1と同じ方法
により、比較例1と同じ内容の非晶質ケイ素を主体とす
る光導電層を比較例1とほぼ同じ膜厚で設けた。このよ
うにして得られた感光体を複写機に入れ、正のコロナ帯
電方式で画質評価したところ、初期時では実用上問題の
ない画像濃度が得られた。また、複写操作を5万回繰り
返したが画像濃度の低下はみられなかった。同時に負の
コロナ帯電方式で実施した複写試験も、正帯電方式の場
合と同様、良好な結果を与えた。
Example 1: A solution consisting of 1 part by weight of tin tris acetylacetonate, 1 part by weight of methyltrinatoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of isopropyl alcohol was applied by dip coating to the same cylindrical Atl substrate as in Comparative Example 1. 25
It was dry-hardened in an oven at 0° C. for 2 hours to form an intermediate layer with a thickness of 0.2 μm. Next, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 1 was provided with approximately the same thickness as in Comparative Example 1. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状へ1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H4)ガスを毎分12 Qcc。
Comparative Example 2: A substrate was installed in a cylindrical shape at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H4) gas at 12 Qcc per minute.

水素希釈の100ppm ジボラン(B、H,)ガスを
毎分20CC,100%窒素(N2)ガスを毎分85c
c、さらに100%水素(B2)ガスを毎分15ccの
範囲で流入させ、反応槽内をQ、5Torrの内圧に維
持した後、13.56 M Hzの高周波電力を投入し
て、グロー放電を生じせしめ、高周波電源の出力を85
Wに維持した。このようにして、円筒状のAβ基板上に
厚さ25μmで非晶質ケイ素を主体とし不純物として窒
素原子を含有するl型半導体から成る光導電層を有する
感光体を得た。このようにして得られた感光体を複写機
に入れ、正のコロナ帯電方式で画質を評価したところ、
初期時では実用上問題のない画像濃度が得られたが、複
写操作を繰り返すうちに徐々に画像濃度は低下した。
Hydrogen diluted 100ppm diborane (B, H,) gas at 20cc/min, 100% nitrogen (N2) gas at 85cc/min
c. Furthermore, 100% hydrogen (B2) gas was introduced at a rate of 15 cc per minute to maintain an internal pressure of Q, 5 Torr in the reaction tank, and then 13.56 MHz high frequency power was applied to generate glow discharge. The output of the high frequency power supply is 85
I kept it at W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an l-type semiconductor mainly composed of amorphous silicon and containing nitrogen atoms as impurities on a cylindrical Aβ substrate. The photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method.
At the initial stage, a practically acceptable image density was obtained, but as copying operations were repeated, the image density gradually decreased.

実施例2: 比較例2と同一の円筒状/l基板に、スズテトライソプ
ロポキシ2重量部、ジメチルシトキシシラン1重量部、
エチルアルコール40重量部から成る溶液を浸漬塗布し
、250℃の炉中で2時間乾燥硬化し、0.3μm厚の
中間層を設けた。次に、この中間層上に、比較例2と同
じ方法により、比較例2と同じ内容の非晶質ケイ素を主
体とする光導電層を比較例2とほぼ同じ膜厚で設けた。
Example 2: On the same cylindrical/l substrate as in Comparative Example 2, 2 parts by weight of tin tetraisopropoxy, 1 part by weight of dimethylcytoxysilane,
A solution consisting of 40 parts by weight of ethyl alcohol was applied by dip coating and dried and cured in an oven at 250° C. for 2 hours to provide an intermediate layer 0.3 μm thick. Next, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 2 was provided with approximately the same thickness as in Comparative Example 2.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。同時
に負のコロナ帯電方式で実施した複写試験も、正帯電方
式の場合と同様、良好な結果を与えた。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状/1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc。
Comparative Example 3: A cylindrical/1 substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 12 Qcc per minute.

水素希釈の100ppm ジボラン(B21(6)ガス
を毎分20CC1100%酸素(02)ガスを毎分1.
0cc、さらに100%水素(B2)ガスを毎分99c
cの範囲で流入させ、反応槽内を0,5Torrの内圧
に維持した後、13.56 M Hzの高周波電力を投
入して、グロー放電を生じせしめ、高周波電源の出力を
85Wに1.IF持した。このようにして、円筒状のΔ
β基板上に厚さ25μmで非晶質ケイ素を主体とし不純
物として炭諧原子を含有するl型半導体から成る光導電
層を有する感光体を得た。このようにして得られた感光
体を複写機に入れ、正のコロナ帯電方式で画質を評価し
たところ、初期時では実用上問題のない画像濃度がi等
られたが、複写操作を繰り返すうちに徐々に画像源一度
は低下した。
Hydrogen diluted 100ppm diborane (B21(6) gas at 20cc/min. 1100% oxygen (02) gas at 1.0cc/min.
0cc, and 100% hydrogen (B2) gas at 99c/min
After maintaining the internal pressure in the reaction tank at 0.5 Torr, a high frequency power of 13.56 MHz was applied to generate a glow discharge, and the output of the high frequency power supply was increased to 85 W by 1.5 Torr. I have an IF. In this way, the cylindrical Δ
A photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an l-type semiconductor mainly composed of amorphous silicon and containing carbon atoms as impurities on a β substrate. When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, the image density was found to be i, which was acceptable for practical use at the initial stage, but as copying operations were repeated, The image source gradually decreased once.

実施例3: 比較例3と同一の円筒状Aβ基板に、テトラブトキサイ
ドスズ2重量部、T−アクリロキシプロピルトリメトキ
シシラン1重量部、メチルアルコール20 m ”fL
 部、エチルアルコール30mff18’Eから成る溶
液を浸漬塗布し、250℃の炉中で2時間乾燥硬化し、
0.2μm厚の中間層を設けた。次に、この中間層上に
、比較例3と同じ方法により、比較例3と同じ内容の非
晶質ケイ素を主体とする光導電層を比較例3とほぼ同じ
膜厚で設けた。このようにして得られた感光体を複写機
に入れ、正のコロナ帯電方式で画質評価したところ、初
期時では実用上問題のない画像濃度が(耳られた。また
、複写1デ作を5万回繰り返したが画像濃度の低下はみ
られなかった。同時に負のコロナ帯電方式で実施した複
写試験も、正帯電方式の場合と同様、良好な結果を与え
た。
Example 3: 2 parts by weight of tin tetrabutoxide, 1 part by weight of T-acryloxypropyltrimethoxysilane, and 20 m''fL of methyl alcohol were added to the same cylindrical Aβ substrate as in Comparative Example 3.
A solution consisting of 30 mff18'E of ethyl alcohol was applied by dip coating, dried and cured in an oven at 250°C for 2 hours,
A 0.2 μm thick intermediate layer was provided. Next, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided with approximately the same thickness as in Comparative Example 3. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, it was found that the image density at the initial stage was not a problem for practical use. No decrease in image density was observed even after repeating this process 10,000 times.At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影ワを受けずに高い電荷保持力を有して、(優れた品
質の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. It has a high charge retention ability and can provide images of excellent quality without being affected by the number of uses.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層及び光導電層を順次積層して成る
電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とするi型半導体から成り、更に、炭素原子、窒素原
子または酸素原子のうち少なくとも1種類を含有してお
り、 前記中間層が、有機スズ化合物を少なくとも1種類含む
溶液の乾燥硬化物から成ることを特徴とする電子写真用
感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. type semiconductor, further containing at least one type of carbon atom, nitrogen atom, or oxygen atom, and characterized in that the intermediate layer is made of a dried and cured product of a solution containing at least one type of organic tin compound. A photoreceptor for electrophotography.
JP60285998A 1985-12-19 1985-12-19 Electrophotographic photoconductor Expired - Lifetime JPH0711714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285998A JPH0711714B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285998A JPH0711714B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62145252A true JPS62145252A (en) 1987-06-29
JPH0711714B2 JPH0711714B2 (en) 1995-02-08

Family

ID=17698684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285998A Expired - Lifetime JPH0711714B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0711714B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0711714B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH0721647B2 (en) Electrophotographic photoconductor
JPS62145252A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPS62145249A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPS62288855A (en) Electrophotographic sensitive body
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0711709B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPH0727249B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0727257B2 (en) Electrophotographic photoconductor
JPS62273548A (en) Electrophotographic sensitive body
JPH0723964B2 (en) Electrophotographic photoconductor