JPH0721647B2 - Electrophotographic photoconductor - Google Patents

Electrophotographic photoconductor

Info

Publication number
JPH0721647B2
JPH0721647B2 JP11780286A JP11780286A JPH0721647B2 JP H0721647 B2 JPH0721647 B2 JP H0721647B2 JP 11780286 A JP11780286 A JP 11780286A JP 11780286 A JP11780286 A JP 11780286A JP H0721647 B2 JPH0721647 B2 JP H0721647B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
photoconductor
photoconductive layer
gas
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11780286A
Other languages
Japanese (ja)
Other versions
JPS62273547A (en
Inventor
譲 福田
茂 八木
健一 唐木田
康令 奥川
泰男 盧
徳好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP11780286A priority Critical patent/JPH0721647B2/en
Publication of JPS62273547A publication Critical patent/JPS62273547A/en
Publication of JPH0721647B2 publication Critical patent/JPH0721647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
TECHNICAL FIELD The present invention relates to an electrophotographic photoconductor, and more particularly to an electrophotographic photoconductor using amorphous silicon in a photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかし
て、従来より、感光層を構成する材料としてはセレンあ
るいはセレン合金、硫化カドミウム、酸化亜鉛等の無機
感光材料、あるいは、ポリビニルカルバゾール、トリニ
トロフルオレノン、ビスアゾ顔料、フタロシニアン、ピ
ラゾリン、ヒドラゾン等の有機感光材料が知られてお
り、感光層を単層あるいは積層にして用いられている。
2. Description of the Related Art The electrophotographic method forms an electrostatic latent image on a photoconductor by charging it and exposing it to light, and after developing this latent image with a developer called toner,
In this method, a toner image is transferred onto a transfer paper and fixed to obtain a copy. The photoconductor used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive substrate. However, conventionally, as a material constituting the photosensitive layer, selenium or selenium alloy, cadmium sulfide, an inorganic photosensitive material such as zinc oxide, or polyvinylcarbazole, trinitrofluorenone, bisazo pigment, phthalocyanine, pyrazoline, hydrazone and the like organic material. Photosensitive materials are known and are used as a single layer or a laminated photosensitive layer.

発明が解決しようとする問題点 しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
Problems to be Solved by the Invention However, these conventionally used photosensitive layers still have problems to be solved in terms of durability, heat resistance, photosensitivity and the like.

近年、この感光層として非晶質ケイ素(アモルフアスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ素の非晶
質膜を導電性基板上に形成したものであって、非晶質ケ
イ素膜中に水素原子が組み込まれて光導電性を呈するも
のである。この非晶質ケイ素感光体は、感光層の表面硬
度が高く傷つきにくく、摩擦にも強く、耐熱性も高く、
機械的強度においてもすぐれている。更に、非晶質ケイ
素は、分光感度域が広く、高い光感度を有する如く感光
特性もすぐれている。しかし反面、非晶質ケイ素を用い
た感光体は、暗減衰が大きく、帯電しても十分な帯電電
位が得られないという欠点を有する。即ち、非晶質ケイ
素感光体を帯電し、像露光して静電潜像を形成し、次い
で現像する際、感光体上の表面電荷が像露光工程まで、
あるいは現像工程までの間に光照射を受けなかった部分
の電荷までも減衰してしまい、現像に必要な帯電電位が
得られない。この帯電電位の減衰は、環境条件の影響に
よっても変化しやすく、特に高温高湿環境では帯電電位
が大巾に低下する。更に、非晶質ケイ素の感光体は、繰
返し使用すると徐々に帯電電位が低下してしまう。この
様な帯電電位の暗減衰の大きな感光体を用いて複写物を
作成すると、画像濃度が低くまた、中間調の再現性に乏
しい複写物となる。
In recent years, photoreceptors using amorphous silicon (amorphous silicon) as the photosensitive layer have been known and various improvements have been attempted. A photoreceptor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. It has photoconductivity due to the incorporation of hydrogen atoms into it. This amorphous silicon photoreceptor has a high surface hardness of the photosensitive layer, is hard to be scratched, is resistant to friction, and has high heat resistance.
It also has excellent mechanical strength. Further, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity so as to have high photosensitivity. On the other hand, however, the photoconductor using amorphous silicon has a drawback that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when the amorphous silicon photoconductor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoconductor remains until the image exposure step.
Alternatively, even the electric charge of the portion which was not irradiated with light during the developing step is attenuated, and the charging potential required for the developing cannot be obtained. The decay of the charging potential is likely to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is drastically reduced. Furthermore, the charge potential of an amorphous silicon photoreceptor gradually decreases when it is repeatedly used. When a copy is made using such a photoreceptor having a large dark decay of the charging potential, the copy has low image density and poor halftone reproducibility.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにあ
る。
An object of the present invention is to provide an electrophotographic photoconductor that eliminates the above-mentioned drawbacks of the photoconductor using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, an object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoconductor in which the dark decay of the charging potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photosensitive member whose charging characteristics are not affected by changes in the atmosphere of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor having excellent image quality even if it is repeatedly used.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic characteristics such as mechanical strength, durability, heat resistance and photosensitivity.

問題点を解決するための手段 本発明者は、鋭意研究を行なった結果、導電性基板上
に、中間層を積層し、その上に、非晶質ケイ素から成る
光導電層を被覆し、該中間層として、有機チタニウム化
合物を少なくとも1種類含有する溶液の乾燥硬化物を用
いることによって上記目的が達成されることを見出し
た。光導電層としては、水素原子を含有する非晶質ケイ
素を主体とする半導体を用いる。
Means for Solving the Problems As a result of earnest research, the present inventor has laminated an intermediate layer on a conductive substrate and coating a photoconductive layer made of amorphous silicon on the intermediate layer. It has been found that the above object can be achieved by using, as the intermediate layer, a dried and cured product of a solution containing at least one organic titanium compound. As the photoconductive layer, a semiconductor mainly containing amorphous silicon containing hydrogen atoms is used.

かくして、本発明に従えば、導電性基板上に中間層およ
び光導電層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とする半導体から成り、前記中間層が、有機チタ
ニウム化合物を少なくとも1種類含む溶液の乾燥硬化物
から成ることを特徴とする電子写真用感光体が提供され
る。
Thus, according to the present invention, in the electrophotographic photosensitive member formed by sequentially laminating the intermediate layer and the photoconductive layer on the conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing a hydrogen atom. An electrophotographic photoreceptor is provided, which is made of a semiconductor, and the intermediate layer is a dried and cured product of a solution containing at least one organic titanium compound.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機チタニウム化合物としては、種々のものが考
えられるが、特に好ましいのは、チタニウム錯体および
チタニウムアルコキシドである。これらの好ましい例と
しては、 ジイソプロポキシ・チタンビス(アセチルアセトネー
ト)、 チタニウムを中心金属とするアセチルアセトナート多核
錯体、 ビス(アセチルアセトネート)チタンオキシド、 チタニウムテトラメトキサイド、チタニウムテトラエト
キサイド、チタニウムテトラ−n−プロポキサイド、チ
タニウムテトラ−イソ−プロポキサイド、チタニウムテ
トラブトキサイド、 チタニウムテトラ−イソ−ブトキサイド、 等が挙げられる。
Although various kinds of organic titanium compounds can be used for forming the intermediate layer of the electrophotographic photosensitive member of the present invention, titanium complexes and titanium alkoxides are particularly preferable. Preferred examples thereof include diisopropoxy titanium bis (acetylacetonate), polynuclear acetylacetonate having titanium as a central metal, bis (acetylacetonate) titanium oxide, titanium tetramethoxide, titanium tetraethoxide, titanium. And tetra-n-propoxide, titanium tetra-iso-propoxide, titanium tetrabutoxide, titanium tetra-iso-butoxide, and the like.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機チタニウム化合物の1種または2種以上を適当
な溶媒に溶解した溶液を塗布する。また、この際、これ
らの有機チタニウム化合物に有機ケイ素化合物を混合し
た溶液を用いてもよい。この有機ケイ素化合物としては
一般にシランカップリング剤と呼ばれている化合物が好
適であり、例えば、ビニルトリクロルシラン、ビニルト
リエトキシシラン、ビニルトリス(β−メトキシエトキ
シ)シラン、γ−グリシドキシプロピルトリメトキシシ
ラン、γ−メタアクリロキシプロピルトリメトキシシラ
ン、N−β(アミノエチル)γ−アミノプロピルトリメ
トキシシラン、N−β(アミノエチル)γ−アミノプロ
ピルメチルジメトキシシラン、γ−クロロプロピルメト
キシシラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、メチルト
リメトキシシラン、ジメチルジメトキシシラン、トリメ
チルモノメトキシシラン、ジフェニルジメトキシシラ
ン、ジフェニルジエトキシシラン、モノフェニルトリメ
トキシシラン等が挙げられる。このようなシランカップ
リング剤を混合して用いる場合には、該シランカップリ
ング剤が全固形物重量に対して5〜50%となるようにす
るのがよい。
In obtaining the electrophotographic photoreceptor of the present invention, a solution prepared by dissolving one or more of the above organic titanium compounds in a suitable solvent is applied. At this time, a solution obtained by mixing these organic titanium compounds with an organic silicon compound may be used. A compound generally called a silane coupling agent is suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and γ-glycidoxypropyltrimethoxy. Silane, γ-methacryloxypropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropylmethoxysilane, γ -Mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, monophenylto Silane and the like. When such a silane coupling agent is mixed and used, it is preferable that the silane coupling agent accounts for 5 to 50% of the total solid weight.

かくして、有機チタニウム化合物、場合によっては更に
有機ケイ素化合物を含有する溶液を、導電性基板上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾燥硬化させ、その上に光導
電層を積層することによって本発明の電子写真用感光体
が得られる。乾燥硬化温度は100〜400℃の間の任意の温
度に設定することができる。最終的に得られる中間層の
膜厚も任意に設定され得るが、0.1〜10μmが好適であ
る。
Thus, a solution containing an organotitanium compound, and optionally an organosilicon compound, is placed on the conductive substrate.
The electrophotographic photoreceptor of the present invention can be obtained by applying by a method such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing and laminating a photoconductive layer thereon. The dry curing temperature can be set to any temperature between 100 and 400 ° C. The thickness of the finally obtained intermediate layer may be set arbitrarily, but 0.1 to 10 μm is preferable.

非晶質ケイ素を主体とする光導電層は、SiH4、Si2H6、Si3
H8、Si4H10、等の水素ケイ素ガスの1種またはそれらの
混合物を原料として、グロー放電法、スパッタリング
法、イオンプレーティング法、真空蒸着法などの方法に
よって中間層上に形成する。中でも、プラズマCVD(Che
mical Vapor Deposition)法によりシラン(SiH4)ガス
等をグロー放電分解する方法(グロー放電法)が、膜中
への水素の含有量の制御の点から好ましい。また、この
場合水素の含有を一層効率良く行なうために、プラズマ
CVD装置内にシランガス等と同時に、別途に水素(H2
ガスを導入してもよい。また、膜成長速度の点からは、
SiH4、Si2H6を用いるのが好ましい。
The photoconductive layer mainly composed of amorphous silicon is composed of SiH 4 , Si 2 H 6 , and Si 3
It is formed on the intermediate layer by a method such as a glow discharge method, a sputtering method, an ion plating method, or a vacuum deposition method using one kind of hydrogen silicon gas such as H 8 or Si 4 H 10 or a mixture thereof as a raw material. Among them, plasma CVD (Che
A method of decomposing silane (SiH 4 ) gas and the like by glow discharge (glow discharge method) by a mical vapor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, plasma
Separately hydrogen (H 2 ) in the CVD device at the same time as silane gas, etc.
Gas may be introduced. In terms of film growth rate,
It is preferable to use SiH 4 and Si 2 H 6 .

本発明の電子写真用感光体の光導電層として用いるの
は、水素原子が含有する非晶質ケイ素を主体とする半導
体である。
What is used as the photoconductive layer of the electrophotographic photoreceptor of the present invention is a semiconductor mainly composed of amorphous silicon containing hydrogen atoms.

また非晶質ケイ素感光層膜の暗抵抗の制御あるいは帯電
極性の制御を目的として上記ガス中にジボラン(B2H6
ガスあるいはホスフィン(PH3)ガスを混入させ光導電
層中へホウ素(B)あるいは。リン(P)などの不純物
元素の添加を行なうことができる。
Diborane (B 2 H 6 ) was added to the above gas for the purpose of controlling the dark resistance or charging polarity of the amorphous silicon photosensitive layer film.
Gas or phosphine (PH 3 ) gas mixed into the photoconductive layer for boron (B) or. An impurity element such as phosphorus (P) can be added.

またさらに、感光層膜の暗抵抗の増加、光感度の増加あ
るいは帯電能(単位膜厚あたりの帯電電位)の増加を目
的として感光層膜中にハロゲン原子、炭素原子、酸素原
子、窒素原子などを含有させてもよい。
In addition, halogen atoms, carbon atoms, oxygen atoms, nitrogen atoms, etc. in the photosensitive layer film are used for the purpose of increasing the dark resistance of the photosensitive layer film, increasing the photosensitivity or increasing the charging ability (charging potential per unit film thickness). May be included.

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素を
添加することも可能である。またハロゲン原子を添加す
ることによって、暗抵抗の増加等を図ることもできる。
Further, an element such as germanium (Ge) can be added to the photoconductive layer film for the purpose of increasing the sensitivity of the photoconductor in the long wavelength region. In addition, dark resistance can be increased by adding a halogen atom.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素化
ケイ素ガス、更に所望に応じて水素ガスを用い、それら
のガスと共に、必要な元素を含むガス状化合物を導入し
てグロー放電分解を行なえばよい。以上のようにプラズ
マCVD法による非晶質ケイ素から成る光導電層を形成す
るのに有効な放電条件は、例えば、交流放電の場合、周
波数は通常0.1〜30MHz、放電時の真空度は0.1〜5Torr、
基板加熱温度は100〜400℃であるい。しかして、非晶質
ケイ素を主体とする光導電層の膜厚は、1〜100μm、
特に10〜50μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photosensitive member of the present invention, in the plasma CVD apparatus, a silicon hydride gas as the main raw material, further using hydrogen gas as desired, together with those gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing a necessary element. The discharge conditions effective for forming the photoconductive layer made of amorphous silicon by the plasma CVD method as described above are, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum degree at the time of discharge is 0.1 to 30 MHz. 5Torr,
The substrate heating temperature is 100 ~ 400 ℃. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm,
In particular, the thickness is preferably 10 to 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or a paper which has been made conductive can be used. In addition, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, and an endless belt shape.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
Examples Next, the electrophotographic photoreceptor of the present invention will be further described with reference to Comparative Examples and Examples of the present invention.

比較例1; 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、さらに100%水素(H2)ガスを毎分90ccの範囲
で流入させ、反応槽内を0.5Torrの内圧に維持した後、1
3.56MHzの高周波電力を投入して、グロー放電を生じせ
しめ、高周波電源の出力を85Wに維持した。このように
して、円筒状のAl基板上に厚さ25μmの非晶質ケイ素を
主体とし水素と微量のホウ素を含む高抵抗でいわゆるi
型半導体から成る光導電層を有する感光体を得た。
Comparative Example 1; A cylindrical Al substrate was placed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining the temperature at 0 ° C, 100% silane (SiH 4 ) gas at 120 cc / min, 100 ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 20 cc / min, and 100% hydrogen (H 2 ) gas at 100 ° C. Flow in the range of 90 cc per minute and maintain the internal pressure of the reaction tank at 0.5 Torr.
High-frequency power of 3.56MHz was applied to cause glow discharge, and the output of the high-frequency power supply was maintained at 85W. Thus, the amorphous silicon having a thickness of 25 μm is mainly formed on the cylindrical Al substrate, and it has a high resistance including hydrogen and a trace amount of boron.
Thus, a photoconductor having a photoconductive layer made of a type semiconductor was obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。
The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased.

実施例1: 比較例1と同じ形状の円筒状Al基板上に、ジイソプロポ
キシチタンビス(アセチルアセトネート)1重量部、n
−ブタノール20重量部からなる溶液を浸漬塗布し、250
℃の炉中で2時間乾燥して0.4μm厚の中間層を設け
た。次に、この中間層上に、比較例1と同じ方法によ
り、比較例1と同じ内容の非晶質ケイ素を主とする光導
電層を、比較例1とほぼ同じ膜厚で設けた。このように
して得られた光導電層はセラミックに似た性質を持ち、
非晶質珪素の優れた特性である、表面硬度、耐摩耗性、
耐熱性をそのまゝ有していた。
Example 1: On a cylindrical Al substrate having the same shape as in Comparative Example 1, 1 part by weight of diisopropoxytitanium bis (acetylacetonate), n
-Dip-coat a solution consisting of 20 parts by weight of butanol and
It was dried in an oven at 0 ° C. for 2 hours to provide an intermediate layer having a thickness of 0.4 μm. Then, on this intermediate layer, a photoconductive layer mainly containing amorphous silicon and having the same content as in Comparative Example 1 was provided by the same method as in Comparative Example 1 to have a film thickness substantially the same as in Comparative Example 1. The photoconductive layer thus obtained has properties similar to ceramics,
The excellent characteristics of amorphous silicon, surface hardness, wear resistance,
It had heat resistance as it was.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。同時
に、負のコロナ帯電方式で実施した複写試験も、正帯電
方式の場合と同様、良好な結果を与えた。
The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の500ppmジボラン(B2H6)ガスを毎
分30cc、さらに100%水素(H2)ガスを毎分80ccで流入
させ、反応槽内を0.5Torrの内圧に維持した後、13.56MH
zの高周波電力を投入して、グロー放電を生じせしめ、
高周波電源の出力を85Wに維持した。このようにして円
筒状のAl基板上に、厚さ25μmの非晶質ケイ素を主体と
し水素とホウ素を含むp型半導体から成る光導電層を有
する感光体を得た。
Comparative Example 2: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintain at 0 ° C, 100% silane (SiH 4 ) gas at 120 cc / min, 500ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 30 cc / min, and 100% hydrogen (H 2 ) gas at every minute. The flow rate was 80 cc, and the internal pressure of the reaction tank was maintained at 0.5 Torr.
Turn on high frequency power of z to cause glow discharge,
The output of the high frequency power supply was maintained at 85W. In this way, a photoconductor having a photoconductive layer composed of a p-type semiconductor mainly containing amorphous silicon and having a thickness of 25 μm on a cylindrical Al substrate was obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。
The image thus obtained was put in a copying machine and image quality was evaluated by a positive corona charging method. As a result, an image density that could be practically used was not obtained.

実施例2: 比較例2と同じ形状の円筒状Al基板上に、〔チタニウム
テトラエトキサイド〕1重量部、イソプロピルアルコー
ル30重量部からなる溶液を浸漬塗布し、250℃の炉中で
2時間乾燥して0.3μm厚の中間層を設けた。次に、こ
の中間層上に、比較例2と同じ方法により、比較例2と
同じ内容の非晶質ケイ素を主体とする光導電層を、比較
例2とほぼ同じ膜厚で設けた。
Example 2 A solution of 1 part by weight of [titanium tetraethoxide] and 30 parts by weight of isopropyl alcohol was dip-coated on a cylindrical Al substrate having the same shape as in Comparative Example 2 and dried in a furnace at 250 ° C. for 2 hours. Then, an intermediate layer having a thickness of 0.3 μm was provided. Next, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer containing amorphous silicon as a main component and having the same content as in Comparative Example 2 was provided with a film thickness substantially the same as in Comparative Example 2.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の300ppmホスフィン(PH3)ガスを毎
分30cc、さらに100%水素(H2)ガスを毎分80ccで流入
させ、反応槽内を0.5Torrの内圧に維持した後、13.56MH
zの高周波電力を投入して、グロー放電を生じせしめ、
高周波電源の出力を85Wに維持した。このようにして円
筒状のAl基板上に、厚さ25μmで非晶質ケイ素を主体と
し水素とリンを含むn型半導体から成る光導電層を有す
る感光体を得た。
Comparative Example 3: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining at 0 ℃, 100cc silane (SiH 4 ) gas 120cc / min, 300ppm phosphine (PH 3 ) gas diluted with hydrogen 30cc / min, and 100% hydrogen (H 2 ) gas 80cc / min in the reaction chamber. Flowed in to maintain an internal pressure of 0.5 Torr in the reaction chamber, and then 13.56 MH
Turn on high frequency power of z to cause glow discharge,
The output of the high frequency power supply was maintained at 85W. Thus, a photoconductor having a thickness of 25 μm and having a photoconductive layer made of an n-type semiconductor mainly containing amorphous silicon and containing hydrogen and phosphorus was obtained on a cylindrical Al substrate.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。
The image thus obtained was put into a copying machine and image quality was evaluated by a negative corona charging method. As a result, an image density that could withstand practical use was not obtained.

実施例3: 比較例3と同じ形状の円筒状Al基板上に、〔チタニウム
テトラブトキサイド〕1重量部、γ−アクリロキシプロ
ピルトリメトキシシラン1重量部、メチルアルコール10
重量部、イソプロピルアルコール20重量部からなる溶液
を浸漬塗布し、250℃の炉中にて2時間乾燥して0.3μm
厚の中間層を設けた。次に、この中間層上に、比較例3
と同じ方法により比較例3と同じ内容の非晶質ケイ素を
主体とする光導電層を比較例3とほぼ同じ膜厚で設け
た。
Example 3: On a cylindrical Al substrate having the same shape as in Comparative Example 3, 1 part by weight of [titanium tetrabutoxide], 1 part by weight of γ-acryloxypropyltrimethoxysilane and 10 parts of methyl alcohol were used.
A solution consisting of 20 parts by weight of isopropyl alcohol and 30 parts by weight of the solution is applied by dipping, and dried in an oven at 250 ° C for 2 hours to give a thickness of 0.3 μm.
A thick intermediate layer was provided. Next, on this intermediate layer, Comparative Example 3
A photoconductive layer mainly composed of amorphous silicon and having the same content as in Comparative Example 3 was provided in the same thickness as in Comparative Example 3 by the same method as in.

このようにして得られた感光体を複写機に入れ、府のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
The photoconductor thus obtained was placed in a copying machine and subjected to image quality evaluation by a corona charging system of the prefecture. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素から成る感
光体の優れた特性である高機械的強度、高耐久性、高耐
熱、高光感度を保持し、しかも、外部環境や使用回数の
影響を受けずに高い電荷保持力を有して、優れた品質の
画像を供することができる。
EFFECT OF THE INVENTION The electrophotographic photoreceptor of the present invention retains the excellent characteristics of the photoreceptor made of amorphous silicon, that is, high mechanical strength, high durability, high heat resistance, and high photosensitivity. It has a high charge retention power without being affected by the number of times of use and can provide an image of excellent quality.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 康令 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 盧 泰男 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 高橋 徳好 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (56)参考文献 特開 昭59−223439(JP,A) 特開 昭59−223441(JP,A) 特開 昭58−93062(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Okugawa 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Xerox Co., Ltd. Takematsu Plant (72) Inventor Yasuo Ro, 1600 Takematsu, Minamiashigara, Kanagawa Fuji Xerox Co., Ltd. Takematsu Inside the factory (72) Inventor Tokuyoshi Takahashi 1600 Takematsu, Minamiashigara City, Kanagawa Fuji Xerox Co., Ltd. Takematsu Factory (56) References JP 59-223439 (JP, A) JP 59-223441 (JP, A) JP-A-58-93062 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に中間層および光導電層を順
次積層して成る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とする半導体から成り、 前記中間層が、有機チタニウム化合物を少なくとも1種
類含む溶液の乾燥硬化物から成ることを特徴とする電子
写真用感光体。
1. An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is formed of a semiconductor mainly containing amorphous silicon containing hydrogen atoms. The electrophotographic photoreceptor, wherein the intermediate layer is formed of a dried and cured product of a solution containing at least one organic titanium compound.
JP11780286A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0721647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780286A JPH0721647B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780286A JPH0721647B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273547A JPS62273547A (en) 1987-11-27
JPH0721647B2 true JPH0721647B2 (en) 1995-03-08

Family

ID=14720639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780286A Expired - Lifetime JPH0721647B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0721647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109514B2 (en) * 1987-10-30 1995-11-22 富士写真フイルム株式会社 Electrophotographic photoreceptor
JPH0519516A (en) * 1991-07-10 1993-01-29 Fuji Xerox Co Ltd Electrophotographic sensitive body
EP0671663B1 (en) * 1994-03-02 1998-08-12 Konica Corporation Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS62273547A (en) 1987-11-27

Similar Documents

Publication Publication Date Title
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPH0727253B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0711713B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPH0721649B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0727248B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPH0711711B2 (en) Electrophotographic photoconductor
JPH0711708B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0711709B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPS62273553A (en) Electrophotographic sensitive body
JPH0727249B2 (en) Electrophotographic photoconductor
JPH0727259B2 (en) Electrophotographic photoconductor
JPS62273548A (en) Electrophotographic sensitive body