JPH0727254B2 - Electrophotographic photoconductor - Google Patents
Electrophotographic photoconductorInfo
- Publication number
- JPH0727254B2 JPH0727254B2 JP61117815A JP11781586A JPH0727254B2 JP H0727254 B2 JPH0727254 B2 JP H0727254B2 JP 61117815 A JP61117815 A JP 61117815A JP 11781586 A JP11781586 A JP 11781586A JP H0727254 B2 JPH0727254 B2 JP H0727254B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous silicon
- photoconductor
- photoconductive layer
- tin
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14704—Cover layers comprising inorganic material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/0433—Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。TECHNICAL FIELD The present invention relates to an electrophotographic photoconductor, and more particularly to an electrophotographic photoconductor using amorphous silicon in a photosensitive layer.
従来技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像を現像剤で現像後、転写紙にトナー像
を転写し定着して複写物を得る方法として知られてい
る。この電子写真法に用いられる感光層は、基本構成と
して導電性基板上に感光層を積層して成る。しかして、
従来より、感光体を構成する材料としてはセレンあるい
はセレン合金、硫化カドミウム、酸化亜鉛等の無機感光
材料、あるいは、ポリビニルカルバゾール、トリニトロ
フルオレノン、ビスアゾ顔料、フタロシアニン、ピラゾ
リン、ヒドラゾン等の有機感光材料が知られており、感
光層を単層あるいは積層にして用いられている。しかし
ながら、従来より用いられているこれらの感光層は、耐
久性、耐熱性、光感度などにおいて未だ解決すべき問題
点を有している。2. Description of the Related Art The electrophotographic method is a method for obtaining a copy by forming an electrostatic latent image on a photoconductor by charging and imagewise exposing it, developing the latent image with a developer, and then transferring and fixing the toner image on a transfer paper. Are known. The photosensitive layer used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive substrate. Then,
Conventionally, selenium or a selenium alloy, cadmium sulfide, an inorganic photosensitive material such as zinc oxide, or an organic photosensitive material such as polyvinylcarbazole, trinitrofluorenone, a bisazo pigment, a phthalocyanine, a pyrazoline, or a hydrazone has been used as a material constituting the photosensitive member. It is known and is used as a single layer or a laminate of photosensitive layers. However, these conventionally used photosensitive layers still have problems to be solved in terms of durability, heat resistance and photosensitivity.
近年、この感光層として非晶質ケイ素(アモルフアスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ素の非晶
質膜を導電性基板上に形成したものであって、非晶質ケ
イ素膜中に水素原子が組み込まれて光導電性を呈するも
のである。この非晶質ケイ素感光体は、感光層の表面硬
度が高く傷つきにくく、摩耗にも強く、耐熱性も高く、
機械的強度においてもすぐれている。更に、非晶質ケイ
素は、分光感度域が広く、高い光感度を有する如く感光
特性もすぐれている。しかし反面、非晶質ケイ素を用い
た感光体は、暗減衰が大きく、帯電しても十分な帯電電
位が得られないという欠点を有する。即ち、非晶質ケイ
素感光体を帯電し、像露光して静電潜像を形成し、次い
で現像する際、感光体上の表面電荷が像露光工程まで、
あるいは現像工程までの間に光照射を受けなかった部分
の電荷までも減衰してしまい、現像に必要な帯電電位が
得られない。この帯電電位の減衰は、環境条件の影響に
よっても変化しやすく、特に高温高湿環境では帯電電位
が大巾に低下する。更に、非晶質ケイ素の感光体は、繰
返し使用すると徐々に帯電電位が低下してしまう。この
様な帯電電位の暗減衰の大きな感光体を用いて複写物を
作成すると、画像濃度が低くまた、中間調の再現性に乏
しい複写物となる。In recent years, photoreceptors using amorphous silicon (amorphous silicon) as the photosensitive layer have been known and various improvements have been attempted. A photoreceptor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. It has photoconductivity due to the incorporation of hydrogen atoms into it. This amorphous silicon photoreceptor has a high surface hardness of the photosensitive layer, is hard to be scratched, is resistant to abrasion, and has high heat resistance.
It also has excellent mechanical strength. Further, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity so as to have high photosensitivity. On the other hand, however, the photoconductor using amorphous silicon has a drawback that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when the amorphous silicon photoconductor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoconductor remains until the image exposure step.
Alternatively, even the electric charge of the portion which was not irradiated with light during the developing step is attenuated, and the charging potential required for the developing cannot be obtained. The decay of the charging potential is likely to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is drastically reduced. Furthermore, the charge potential of an amorphous silicon photoreceptor gradually decreases when it is repeatedly used. When a copy is made using such a photoreceptor having a large dark decay of the charging potential, the copy has low image density and poor halftone reproducibility.
発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにあ
る。OBJECT OF THE INVENTION It is an object of the present invention to provide an electrophotographic photosensitive member which solves the above-mentioned drawbacks of the photosensitive member using amorphous silicon.
更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。Furthermore, an object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoconductor in which the dark decay of the charging potential is extremely small.
本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。Another object of the present invention is to provide an electrophotographic photosensitive member whose charging characteristics are not affected by changes in the atmosphere of the external environment.
また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。Another object of the present invention is to provide an electrophotographic photoreceptor having excellent image quality even if it is repeatedly used.
更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic characteristics such as mechanical strength, durability, heat resistance and photosensitivity.
発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板上
に、非晶質ケイ素から成る光導電層を被覆し、更に、そ
の上に表面層を積層すると共に、該表面層として、スズ
のアセチルアセトネート錯体またはスズのアルコキシド
を少なくとも1種類含有する溶液の乾燥硬化物を用いる
ことによって上記目的が達成されることを見出した。光
導電層としては、非晶質ケイ素を主体とする半導体を用
いる。As a result of earnest research, the present inventor has coated a photoconductive layer made of amorphous silicon on a conductive substrate, and further laminated a surface layer on the photoconductive layer. It has been found that the above object can be achieved by using a dry-cured product of a solution containing at least one tin acetylacetonate complex or tin alkoxide. A semiconductor mainly containing amorphous silicon is used as the photoconductive layer.
かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とする半導体から成り、前記表面層が、スズのア
セチルアセトネート錯体またはスズのアルコキシドを少
なくとも1種類含む溶液の乾燥硬化物から成ることを特
徴とする電子写真用感光体が提供される。Thus, according to the present invention, in the electrophotographic photosensitive member formed by sequentially stacking the photoconductive layer and the surface layer on the conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms. An electrophotographic photosensitive member is provided, which is made of a semiconductor, and the surface layer is a dried and cured product of a solution containing at least one tin acetylacetonate complex or tin alkoxide.
本発明の電子写真用感光体の表面層を形成するのに用い
られるスズのアセチルアセトネート錯体またはスズのア
ルコキシドの好ましい例としては、スズビスアセチルア
セトネート、スズテトラメトキシド、スズテトラエトキ
シド、スズテトライソプロポキシド、スズテトラブトキ
シド、スズテトラ−Sec−ブトキシドが挙げられる。Preferred examples of the tin acetylacetonate complex or tin alkoxide used for forming the surface layer of the electrophotographic photoreceptor of the present invention include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, Examples include tin tetraisopropoxide, tin tetrabutoxide, and tin tetra-Sec-butoxide.
本発明の電子写真用感光体を得るに当っては、上記のご
とき特定の有機スズ化合物の1種または2種以上を適当
な溶媒に溶解した溶液を塗布する。また、この際、これ
らの有機スズ化合物に有機ケイ素化合物を混合した溶液
を用いてもよい。この有機ケイ素化合物としては一般に
シランカップリング剤と呼ばれている化合物が好適であ
り、例えば、ビニルトリクロルシラン、ビニルトリエト
キシシラン、ビニルトリス(β−メトキシエトキシ)シ
ラン、γ−グリシドキシプロピルトリメトキシシラン、
γ−メタアクリロキシプロピルトリメトキシシラン、N
−β(アミノエチル)γ−アミノプロピルトリメトキシ
シラン、N−β(アミノエチル)γ−アミノプロピルメ
チルジメトキシシラン、γ−クロロプロピルトリメトキ
シシラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、メチルト
リメトキシシラン、ジメチルジメトキシラン、トリメチ
ルモノメトキシシラン、ジフェニルジメトキシシラン、
ジフェニルジエトキシシラン、モノフェニルトリメトキ
シシラン等が挙げられる。このようなシランカップリン
グ剤を混合して用いる場合には、該シランカップリング
剤が全固形物重量に対して5〜50%となるようにするの
がよい。In obtaining the electrophotographic photoreceptor of the present invention, a solution prepared by dissolving one or more of the above specific organotin compounds in a suitable solvent is applied. At this time, a solution obtained by mixing these organotin compounds with an organosilicon compound may be used. A compound generally called a silane coupling agent is suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and γ-glycidoxypropyltrimethoxy. Silane,
γ-methacryloxypropyltrimethoxysilane, N
-Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane Ethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane,
Examples thereof include diphenyldiethoxysilane and monophenyltrimethoxysilane. When such a silane coupling agent is mixed and used, it is preferable that the silane coupling agent accounts for 5 to 50% of the total solid weight.
かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜400
℃の間の任意の温度に設定することができる。最終的に
得られる表面層の膜厚も任意に設定され得るが、0.7〜1
0μmが好適である。Thus, a solution containing an organotin compound, and optionally an organosilicon compound, is applied onto the photoconductive layer by a method such as spray coating, dip coating, knife coating or roll coating, and then dried and cured to form a solution. The electrophotographic photoreceptor of the invention can be obtained. Dry hardening temperature is 100 ~ 400
It can be set to any temperature between ° C. The film thickness of the finally obtained surface layer can also be set arbitrarily, but 0.7 to 1
0 μm is preferable.
非晶質ケイ素を主体とする光導電層は、SiH4、Si2H6、S
i3H8、Si4H10、等の水素化ケイ素ガスの1種またはそれ
らの混合物を原料として、グロー放電法、スパッタリン
グ法、イオンプレーテイング法、真空蒸着法などの方法
によって基板上に形成する。中でも、プラズマCVD(Che
mical Vapor Vapon Deposition)法によってシラン(Si
H4)ガス等をグロー放電分解する方法(グロー放電法)
が:膜中への水素の含有量の制御の点から好ましい。ま
た、この場合水素の含有を一層効率良く行なうために、
プラズマCVD装置内にシランガス等と同時に、別途に水
素(H2)ガスを導入してもよい。The photoconductive layer mainly composed of amorphous silicon is composed of SiH 4 , Si 2 H 6 , and S.
Formed on a substrate by a glow discharge method, a sputtering method, an ion plating method, a vacuum deposition method or the like using one kind of a silicon hydride gas such as i 3 H 8 or Si 4 H 10 or a mixture thereof as a raw material. To do. Among them, plasma CVD (Che
Silane (Si
H 4 ) Method for glow discharge decomposition of gases (glow discharge method)
A: It is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen,
Hydrogen (H 2 ) gas may be separately introduced into the plasma CVD device at the same time as the silane gas or the like.
本発明の電子写真用感光体の光導電層として用いるの
は、水素原子を含有する非晶質ケイ素を主体とする半導
体であり、、この非晶質ケイ素光導電体層の暗抵抗の制
御あるいは帯電極性の制御を目的として上記ガス中にジ
ボラン(B2H6)ガスあるいはホスフィン(PH3)ガスを
混入させ光導電層中へホウ素(B)あるいはリン(P)
などの不純物元素の添加を行なうことができる。What is used as the photoconductive layer of the electrophotographic photoreceptor of the present invention is a semiconductor mainly composed of amorphous silicon containing a hydrogen atom, and the dark resistance of the amorphous silicon photoconductive layer is controlled or Diborane (B 2 H 6 ) gas or phosphine (PH 3 ) gas is mixed into the above gas for the purpose of controlling the charging polarity, and boron (B) or phosphorus (P) is added to the photoconductive layer.
Impurity elements such as can be added.
また、光導電層には、炭素原子、窒素原子または酸素原
子の内少なくとも一種類を含有させてよく、このような
原子の含有は、特に感光層膜の暗抵抗の増加、光感度の
増加、更には、帯電能(単位膜あたりの帯電電位)の増
加の点から好ましい。更に、感光体の長波長域の感度を
増加させることを目的として、光導電層にゲルマニウム
(Ge)などの元素を添加することも可能である。またハ
ロゲン原子を添加することによって、暗抵抗の増加等を
図ることもできる。Further, the photoconductive layer may contain at least one kind of carbon atom, nitrogen atom or oxygen atom, and the inclusion of such an atom particularly increases the dark resistance of the photosensitive layer film, increases the photosensitivity, Furthermore, it is preferable from the viewpoint of increasing the charging ability (charging potential per unit film). Further, an element such as germanium (Ge) can be added to the photoconductive layer for the purpose of increasing the sensitivity of the photoconductor in the long wavelength region. In addition, dark resistance can be increased by adding a halogen atom.
かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素化
ケイ素ガス、更に所望に応じて水素ガスを用い、それら
のガスと共に、必要な元素を含むガス状化合物を導入し
てグロー放電分解を行なえばよい。以上のようにプラズ
マCVD法による非晶質ケイ素から成る光導電層を形成す
るのに有効な放電条件は、例えば、交流放電の場合、周
波数は通常0.1〜30MHz、放電時の真空度は0.1〜5Torr、
基板加熱温度は100〜400℃である。しかして、非晶質ケ
イ素を主体とする光導電層の膜厚は、1〜100μm、特
に10〜50μmとするのが好適である。Thus, in order to prepare the photoconductive layer of the electrophotographic photosensitive member of the present invention, in the plasma CVD apparatus, a silicon hydride gas as the main raw material, further using hydrogen gas as desired, together with those gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing a necessary element. The discharge conditions effective for forming the photoconductive layer made of amorphous silicon by the plasma CVD method as described above are, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum degree at the time of discharge is 0.1 to 30 MHz. 5Torr,
The substrate heating temperature is 100 to 400 ° C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 μm, particularly 10 to 50 μm.
導電性基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or a paper which has been made conductive can be used. In addition, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, and an endless belt shape.
実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。Examples Next, the electrophotographic photoreceptor of the present invention will be further described with reference to Comparative Examples and Examples of the present invention.
比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、さらに100%水素(H2)ガスを毎分90ccの範囲
で流入させ、反応槽内を0.5Torrの内圧に維持した後、1
3.56MHzの高周波電力を投入して、グロー放電を生じせ
しめ、高周波電源の出力を85Wに維持した。このように
して、円筒状のAl基板上に厚さ25μmで非晶質ケイ素を
主体とし不純物として微量のホウ素原子を含有する、高
暗抵抗のi型半導体から成る光導電層を有する感光体を
得た。Comparative Example 1: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining the temperature at 0 ° C, 100% silane (SiH 4 ) gas at 120 cc / min, 100 ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 20 cc / min, and 100% hydrogen (H 2 ) gas at 100 ° C. Flow in the range of 90 cc per minute and maintain the internal pressure of the reaction tank at 0.5 Torr.
High-frequency power of 3.56MHz was applied to cause glow discharge, and the output of the high-frequency power supply was maintained at 85W. In this way, a photoreceptor having a photoconductive layer composed of an i-type semiconductor with a high dark resistance, which has a thickness of 25 μm as a main component and which contains a small amount of boron atoms as impurities, is formed on a cylindrical Al substrate. Obtained.
このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。また、この感光体
を30℃、85%RHの環境下で画質評価したところ、初期時
より画像の流れが観察された。The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.
実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし微量のホウ素を含有するi型半導体から成
る光導電層を有する感光体の上に、スズビスアセチルア
セトネート1重量部、メチルトリメトキシシラン1重量
部、メチルアルコール20重量部、イソプロピルアルコー
ル30重量部からなる溶液を浸漬塗布し、200℃の炉中で
1時間乾燥硬化し、0.2μ厚の表面層を有する感光体を
得た。得られた表面層はセラミックスに似た性質を持
ち、非晶質ケイ素の優れた特性である、表面硬度、耐摩
耗性、耐熱性をほとんど損うことがなかった。Example 1: On a photoconductor having a photoconductive layer made of an i-type semiconductor containing amorphous silicon as a main component and containing a trace amount of boron, the tin bisacetylacetoacetate was prepared by the same method and under the same conditions as in Comparative Example 1. 1 part by weight of nate, 1 part by weight of methyltrimethoxysilane, 20 parts by weight of methyl alcohol, 30 parts by weight of isopropyl alcohol is applied by dip coating, dried and hardened in an oven at 200 ° C. for 1 hour, and a surface layer of 0.2 μ thickness To obtain a photoconductor having The obtained surface layer had properties similar to those of ceramics, and the surface hardness, wear resistance, and heat resistance, which were the excellent characteristics of amorphous silicon, were hardly impaired.
このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。また、複写操作を
5万回繰り返したが画像濃度の低下はみられなかった。
この感光体を30℃、85%RHの環境下で画質評価を行なっ
たが画像の流れはみられず高解像度を示した。同時に、
負のコロナ帯電方式で実施した複写試験も、正帯電方式
の場合と同様、良好な結果を与えた。The photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.
The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown. at the same time,
The copy test performed with the negative corona charging method also gave good results, as with the positive charging method.
比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の500ppmジボラン(B2H6)ガスを毎
分30cc、および100%水素(H2)ガスを毎分80ccで流入
させ、反応槽内を0.5Torrの内圧を維持した後、13.56MH
zの高周波電力を投入して、グロー放電を生じせしめ、
高周波電源の出力を85Wに維持した。このようにして円
筒状のAl基板上に、厚さ25μmで非晶質ケイ素を主体と
して不純物としてホウ素を含有するp型半導体から成る
光導電層を有する感光体を得た。Comparative Example 2: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintain at 0 ° C., 100% silane (SiH 4 ) gas at 120 cc / min, 500 ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 30 cc / min, and 100% hydrogen (H 2 ) gas at every minute in the reaction chamber. The flow rate was 80 cc, and after maintaining an internal pressure of 0.5 Torr in the reactor, 13.56 MH
Turn on high frequency power of z to cause glow discharge,
The output of the high frequency power supply was maintained at 85W. Thus, a photoreceptor having a photoconductive layer made of a p-type semiconductor having a thickness of 25 μm and containing amorphous silicon as a main component and boron as an impurity was obtained on a cylindrical Al substrate.
このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに、徐々に画像濃度は低下した。また、この感光
体を30℃、85%RHの環境下で画質評価したところ、初期
時より画像の流れが観察された。When the photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a positive corona charging method, an image density practically no problem was obtained at the initial stage, but during repeated copying operations, The image density gradually decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.
実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体としホウ素を含有するp型半導体から成る光導
電層を有する感光体の上に、スズテトラプロポキシド2
重量部、ジメチルジメトキシシラン1重量部、およびエ
チルアルコール40重量部からなる溶液を浸漬塗布し、20
0℃で1時間乾燥硬化し、0.3μm厚の表面層を有する感
光体を得た。得られた表面層はセラミックスに似た性質
を持ち、非晶質ケイ素の優れた特性である、表面硬度、
耐摩耗性、耐熱性をほとんど損うことがなかった。Example 2: A tin tetrapropoxide 2 was formed on a photoconductor having a photoconductive layer made of a p-type semiconductor containing amorphous silicon as a main component and containing boron, which was prepared under the same method and under the same conditions as in Comparative Example 2.
20 parts by weight, a solution consisting of 1 part by weight of dimethyldimethoxysilane, and 40 parts by weight of ethyl alcohol is applied by dip coating.
It was dried and cured at 0 ° C. for 1 hour to obtain a photoreceptor having a surface layer having a thickness of 0.3 μm. The obtained surface layer has properties similar to ceramics, which is an excellent characteristic of amorphous silicon, that is, surface hardness,
There was almost no loss of wear resistance and heat resistance.
このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。また、複写操作を
5万回繰り返したが画像濃度の低下はみられなかった。
この感光体を30℃、85%RHの環境下で画質評価を行なっ
たが画像の流れはみられず高解像度を示した。The photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.
The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown.
比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmホスフィン(PH3)ガスを毎
分30cc、さらに100%水素(H2)ガスを毎分80ccで流入
させ、反応槽内を0.5Torrの内圧に維持した後、13.56MH
zの高周波電力を投入して、グロー放電を生じせしめ、
高周波電源の出力を85Wに維持した。このようにして円
筒状のAl基板上に、厚さ25μmで非晶質ケイ素を主体と
し不純物としてリンを含有するn型半導体から成る光導
電層を有する感光体を得た。Comparative Example 3: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintain at 0 ℃, 100cc silane (SiH 4 ) gas 120cc / min, 100ppm phosphine (PH 3 ) gas diluted with hydrogen 30cc / min, and 100% hydrogen (H 2 ) gas 80cc / min in the reaction chamber. Flowed in to maintain an internal pressure of 0.5 Torr in the reaction chamber, and then 13.56 MH
Turn on high frequency power of z to cause glow discharge,
The output of the high frequency power supply was maintained at 85W. In this way, a photoreceptor having a photoconductive layer made of an n-type semiconductor having a thickness of 25 μm and containing amorphous silicon as a main component and containing phosphorus as an impurity was obtained on a cylindrical Al substrate.
このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質評価を行なったところ、初期時では
実用上問題のない画像濃度が得られたが、複写操作を繰
り返すうちに徐々に画像濃度は低下した。また、この感
光体を30℃、85%RHの環境下で画質評価したところ、初
期時より画像の流れが観察された。The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a negative corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The image density gradually decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.
実施例3: 比較例3と同一方法、同一条件で作成した非晶質ケイ素
を主体としリンを含有するn型半導体から成る光導電層
を有する感光体の上に、スズテトラブトキシド2重量
部、γ−アクリロキシプロピルトリメトキシシラン1重
量部、メチルアルコール20重量部、エチルアルコール30
重量部からなる溶液を浸漬塗布し、200℃で1時間乾燥
硬化して、0.2μm厚の表面層を有する感光体を得た。
得られた表面層はセラミックスに似た性質を持ち、非晶
質ケイ素の優れた特性である、表面硬度、耐摩耗性、耐
熱性をほとんど損うことがなかった。Example 3: 2 parts by weight of tin tetrabutoxide was formed on a photoconductor having a photoconductive layer made of an n-type semiconductor containing amorphous silicon as a main component and containing phosphorus, which was prepared under the same method and conditions as in Comparative Example 3. γ-acryloxypropyltrimethoxysilane 1 part by weight, methyl alcohol 20 parts by weight, ethyl alcohol 30
A solution of 1 part by weight was applied by dip coating and dried and cured at 200 ° C. for 1 hour to obtain a photoreceptor having a surface layer having a thickness of 0.2 μm.
The obtained surface layer had properties similar to those of ceramics, and the surface hardness, wear resistance, and heat resistance, which were the excellent characteristics of amorphous silicon, were hardly impaired.
このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。また、複写操作を
5万回繰り返したが画像濃度の低下はみられなかった。
この感光体を30℃、85%RHの環境下で画質評価を行なっ
たが画像の流れはみられず高解像度を示した。The photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a negative corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.
The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown.
発明の効果 本発明の電子写真用感光体は、非晶質ケイ素から成る感
光体の優れた特性である高機械的強度、高耐久性、高耐
熱、高光感度を保持し、しかも、外部環境や使用回数の
影響を受けずに高い電荷保持力を有して、優れた品質の
画像を供することができる。EFFECT OF THE INVENTION The electrophotographic photoreceptor of the present invention retains the excellent characteristics of the photoreceptor made of amorphous silicon, that is, high mechanical strength, high durability, high heat resistance, and high photosensitivity. It has a high charge retention power without being affected by the number of times of use and can provide an image of excellent quality.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 康令 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 盧 泰男 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 高橋 徳好 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (56)参考文献 特開 昭59−223444(JP,A) 特開 昭59−223446(JP,A) 特開 昭59−102240(JP,A) 特開 昭62−201457(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Okugawa 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Xerox Co., Ltd. Takematsu Plant (72) Inventor Yasuo Ro, 1600 Takematsu, Minamiashigara, Kanagawa Fuji Xerox Co., Ltd. Takematsu Inside the factory (72) Inventor Tokuyoshi Takahashi 1600 Takematsu, Minamiashigara City, Kanagawa Fuji Xerox Co., Ltd. Takematsu Factory (56) Reference JP 59-223444 (JP, A) JP 59-223446 (JP, A) JP-A-59-102240 (JP, A) JP-A-62-201457 (JP, A)
Claims (1)
次積層して成る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とする半導体で成り、前記表面層が、スズのアセチル
アセトネート錯体またはスズのアルコキシドを少なくと
も1種類含む溶液の乾燥硬化物から成ることを特徴とす
る電子写真用感光体。1. A photoconductor for electrophotography comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is a semiconductor mainly containing amorphous silicon containing hydrogen atoms. The electrophotographic photoreceptor, wherein the surface layer is formed of a dried and cured product of a solution containing at least one tin acetylacetonate complex or tin alkoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61117815A JPH0727254B2 (en) | 1986-05-22 | 1986-05-22 | Electrophotographic photoconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61117815A JPH0727254B2 (en) | 1986-05-22 | 1986-05-22 | Electrophotographic photoconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62273560A JPS62273560A (en) | 1987-11-27 |
JPH0727254B2 true JPH0727254B2 (en) | 1995-03-29 |
Family
ID=14720942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61117815A Expired - Lifetime JPH0727254B2 (en) | 1986-05-22 | 1986-05-22 | Electrophotographic photoconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727254B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895783A (en) * | 1989-01-03 | 1990-01-23 | Xerox Corporation | Overcoated electrophotographic photoreceptor contains metal acetyl acetonate in polymer layer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102240A (en) * | 1982-12-04 | 1984-06-13 | Konishiroku Photo Ind Co Ltd | Photosensitive body and its manufacture |
JPS59223446A (en) * | 1983-06-03 | 1984-12-15 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
JPS59223444A (en) * | 1983-06-03 | 1984-12-15 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
JPS62201457A (en) * | 1986-02-28 | 1987-09-05 | Sharp Corp | Electrophotographic sensitive body |
-
1986
- 1986-05-22 JP JP61117815A patent/JPH0727254B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62273560A (en) | 1987-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0721647B2 (en) | Electrophotographic photoconductor | |
JPH0727254B2 (en) | Electrophotographic photoconductor | |
JPH0727253B2 (en) | Electrophotographic photoconductor | |
JPH0727255B2 (en) | Electrophotographic photoconductor | |
JPH0711713B2 (en) | Electrophotographic photoconductor | |
JPH0727252B2 (en) | Electrophotographic photoconductor | |
JPH0711707B2 (en) | Electrophotographic photoconductor | |
JPH0711712B2 (en) | Electrophotographic photoconductor | |
JPH0727258B2 (en) | Electrophotographic photoconductor | |
JPH0727256B2 (en) | Electrophotographic photoconductor | |
JPH0727259B2 (en) | Electrophotographic photoconductor | |
JPH0727251B2 (en) | Electrophotographic photoconductor | |
JPH0711711B2 (en) | Electrophotographic photoconductor | |
JPH0711710B2 (en) | Electrophotographic photoconductor | |
JPH0721649B2 (en) | Electrophotographic photoconductor | |
JPH0721648B2 (en) | Electrophotographic photoconductor | |
JPH0727249B2 (en) | Electrophotographic photoconductor | |
JPH0711714B2 (en) | Electrophotographic photoconductor | |
JPH0711709B2 (en) | Electrophotographic photoconductor | |
JPH0721650B2 (en) | Electrophotographic photoconductor | |
JPS62273549A (en) | Electrophotographic sensitive body | |
JPH0723964B2 (en) | Electrophotographic photoconductor | |
JPH0711708B2 (en) | Electrophotographic photoconductor | |
JPS62273561A (en) | Electrophotographic sensitive body | |
JPH0727248B2 (en) | Electrophotographic photoconductor |