JPH0727256B2 - Electrophotographic photoconductor - Google Patents

Electrophotographic photoconductor

Info

Publication number
JPH0727256B2
JPH0727256B2 JP61117818A JP11781886A JPH0727256B2 JP H0727256 B2 JPH0727256 B2 JP H0727256B2 JP 61117818 A JP61117818 A JP 61117818A JP 11781886 A JP11781886 A JP 11781886A JP H0727256 B2 JPH0727256 B2 JP H0727256B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
photoconductor
titanium
photoreceptor
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61117818A
Other languages
Japanese (ja)
Other versions
JPS62273563A (en
Inventor
譲 福田
茂 八木
健一 唐木田
康令 奥川
泰男 盧
徳好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117818A priority Critical patent/JPH0727256B2/en
Publication of JPS62273563A publication Critical patent/JPS62273563A/en
Publication of JPH0727256B2 publication Critical patent/JPH0727256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
Description: TECHNICAL FIELD The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor using amorphous silicon in a photosensitive layer.

(従来の技術) 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかし
て、従来より、感光層を構成する材料としてはセレンあ
るいはセレン合金、硫化カドミウム、酸化亜鉛等の無機
感光材料、あるいは、ポリビニルカルバゾール、トリニ
トロフルオレノン、ビスアゾ顔料、フタロシアニン、ピ
ラゾリン、ヒドラゾン等の有機感光材料が知られてお
り、感光層を単層あるいは積層にして用いられている。
しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
(Prior Art) In electrophotography, an electrostatic latent image is formed on a photoconductor by charging and imagewise exposure, and after developing the latent image with a developer called toner,
In this method, a toner image is transferred onto a transfer paper and fixed to obtain a copy. The photoconductor used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive substrate. However, conventionally, as a material for forming the photosensitive layer, an inorganic photosensitive material such as selenium or selenium alloy, cadmium sulfide, or zinc oxide, or an organic material such as polyvinylcarbazole, trinitrofluorenone, bisazo pigment, phthalocyanine, pyrazoline, or hydrazone. Photosensitive materials are known and are used as a single layer or a laminated photosensitive layer.
However, these conventionally used photosensitive layers still have problems to be solved in terms of durability, heat resistance and photosensitivity.

(発明が解決しようとする問題点) 近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ素の非晶
質膜を導電性基板上に形成したものであって、非晶質ケ
イ素膜中に水素原子が組み込まれて光導電性を呈するも
のである。この非晶質ケイ素感光体は、感光層の表面硬
度が高く傷つきにくく、摩耗にも強く、耐熱性も高く、
機械的強度においてもすぐれている。更に、非晶質ケイ
素は、分光感度域が広く、高い光感度を有する如く感光
特性もすぐれている。しかし反面、非晶質ケイ素を用い
た感光体は、暗減衰が大きく、帯電しても十分な帯電電
位が得られないという欠点を有する。即ち、非晶質ケイ
素感光体を帯電し、像露光して静電潜像を形成し、次い
で現像する際、感光体上の表面電荷が像露光工程まで、
あるいは現像工程までの間に光照射を受けなかった部分
の電荷までも減衰してしまい、現像に必要な帯電電位が
得られない。この帯電電位の減衰は、環境条件の影響に
よっても変化しやすく、特に高温高湿環境では帯電電位
が大巾に低下する。更に、非晶質ケイ素の感光体は、繰
返し使用すると徐々に帯電電位が低下してしまう。この
様な帯電電位の暗減衰の大きな感光体を用いて複写物を
作成すると、画像濃度が低くまた、中間調の再現性に乏
しい複写物となる。
(Problems to be Solved by the Invention) In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various improvements have been attempted. A photoreceptor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. It has photoconductivity due to the incorporation of hydrogen atoms into it. This amorphous silicon photoreceptor has a high surface hardness of the photosensitive layer, is hard to be scratched, is resistant to abrasion, and has high heat resistance.
It also has excellent mechanical strength. Further, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity so as to have high photosensitivity. On the other hand, however, the photoconductor using amorphous silicon has a drawback that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when the amorphous silicon photoconductor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoconductor remains until the image exposure step.
Alternatively, even the electric charge of the portion which was not irradiated with light during the developing step is attenuated, and the charging potential required for the developing cannot be obtained. The decay of the charging potential is likely to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is drastically reduced. Furthermore, the charge potential of an amorphous silicon photoreceptor gradually decreases when it is repeatedly used. When a copy is made using such a photoreceptor having a large dark decay of the charging potential, the copy has low image density and poor halftone reproducibility.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにあ
る。
An object of the present invention is to provide an electrophotographic photoconductor that eliminates the above-mentioned drawbacks of the photoconductor using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, an object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoconductor in which the dark decay of the charging potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photosensitive member whose charging characteristics are not affected by changes in the atmosphere of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor having excellent image quality even if it is repeatedly used.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、感光度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic characteristics such as mechanical strength, durability, heat resistance and photosensitivity.

(問題点を解決するための手段及び作用) 本発明者は、鋭意研究を行なった結果、導電性基板上
に、非晶質ケイ素から成る光導電層を被覆し、更に、そ
の上に表面層を積層すると共に、該表面層として、チタ
ンのアセチルアセトナト錯体またはチタンのアルコキサ
イドを少なくとも1種類含有する溶液の乾燥硬化物を用
いることによって上記目的が達成されることを見出し
た。光導電層としては、非晶質ケイ素を主体とする半導
体を用いる。
(Means and Actions for Solving Problems) As a result of intensive studies, the present inventor has coated a photoconductive layer made of amorphous silicon on a conductive substrate, and further provided a surface layer on the photoconductive layer. It was found that the above-mentioned object can be achieved by laminating and using a dry-cured product of a solution containing at least one acetylacetonato complex of titanium or alkoxide of titanium as the surface layer. A semiconductor mainly containing amorphous silicon is used as the photoconductive layer.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とする半導体から成り、前記表面層が、チタンの
アセチルアセトナト錯体またはチタンのアルコキサイド
を少なくとも1種類含む溶液の乾燥硬化物から成ること
を特徴とする電子写真用感光体が提供される。
Thus, according to the present invention, in the electrophotographic photosensitive member formed by sequentially stacking the photoconductive layer and the surface layer on the conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms. An electrophotographic photoreceptor is provided which is composed of a semiconductor, and the surface layer is a dry-cured product of a solution containing at least one acetylacetonato complex of titanium or alkoxide of titanium.

本発明の電子写真用感光体の表面層を形成するのに用い
られるチタンのアセチルアセトナト錯体またはチタンの
アルコキサイドの好ましい例としては、ジイソプロポキ
シチタンビス(アセチルアセトネート)、チタニウムを
中心金属とするアセチルアセトナート多核錯体、ビス
(アセチルアセトネート)チタンオキシド、チタニウム
テトラメトキシド、チタニウムテトラエトキシド、チタ
ニウムテトラ−n−プロポキシド、チタニウムテトライ
ソプロポキシド、チタニウムテトラブトキシド、チタニ
ウムテトライソブトキシド、等を挙げることができる。
Preferred examples of the titanium acetylacetonato complex or titanium alkoxide used for forming the surface layer of the electrophotographic photoreceptor of the present invention include diisopropoxytitanium bis (acetylacetonate) and titanium as the central metal. Acetylacetonate polynuclear complex, bis (acetylacetonate) titanium oxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetraisobutoxide, etc. Can be mentioned.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機チタン化合物の1種または2種以上を適当な溶
媒に溶解した溶液を塗布する。また、この際、これらの
有機チタン化合物に有機ケイ素化合物を混合した溶液を
用いてもよい。この有機ケイ素化合物としては一般にシ
ランカップリング剤と呼ばれている化合物が好適であ
り、例えば、ビニルトリクロルシラン、ビニルトリエト
キシシラン、ビニルトリス(β−メトキシエトキシ)シ
ラン、γ−グリシドキシプロピルトリメトキシシラン、
γ−メタアクリロキシプロピルトリメトキシシラン、N
−β(アミノエチル)γ−アミノプロピルトリメトキシ
シラン、N−β(アミノエチル)γ−アミノプロピルメ
チルジメトキシシラン、γ−クロロプロピルトリメトキ
シシラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、メチルト
リメトキシシラン、ジメチルジメトキシシラン、トリメ
チルモノメトキシシラン、ジフェニルジメトキシシラ
ン、ジフェニルジエトキシシラン、モノフェニルトリメ
トキシシラン等が挙げられる。このようなシランカップ
リング剤を混合して用いる場合には、該シランカップリ
ング剤が全固形物重量に対して5〜50%となるようにす
るのがよい。
To obtain the electrophotographic photoreceptor of the present invention, a solution prepared by dissolving one or more of the above-mentioned organic titanium compounds in a suitable solvent is applied. At this time, a solution obtained by mixing these organotitanium compounds with an organosilicon compound may be used. A compound generally called a silane coupling agent is suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and γ-glycidoxypropyltrimethoxy. Silane,
γ-methacryloxypropyltrimethoxysilane, N
-Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane Examples thereof include ethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane and monophenyltrimethoxysilane. When such a silane coupling agent is mixed and used, it is preferable that the silane coupling agent accounts for 5 to 50% of the total solid weight.

かくして、有機チタン化合物、場合によっては更に有機
ケイ素化合物を含有する溶液を、光導電層上に、スプレ
ー塗布、浸漬塗布、ナイフ塗布またはロール塗布などの
方法で塗布した後、乾燥硬化させることによって本発明
の電子写真用感光体が得られる。乾燥硬化温度は100〜4
00℃の間の任意の温度に設定することができる。最終的
に得られる表面層の膜厚も任意に設定され得るが、0.1
〜10μm、特に1μm以下が好適である。
Thus, a solution containing an organotitanium compound, and optionally an organosilicon compound, is applied onto the photoconductive layer by a method such as spray coating, dip coating, knife coating or roll coating, and then dried and cured to form a solution. The electrophotographic photoreceptor of the invention can be obtained. Dry hardening temperature is 100 ~ 4
It can be set to any temperature between 00 ° C. The thickness of the finally obtained surface layer can be set arbitrarily, but 0.1
-10 μm, especially 1 μm or less is preferable.

非晶質ケイ素を主体とする光導電層は、SiH4、Si2H6、S
i3H8、Si4H10、等の水素化ケイ素ガスの1種またはそれ
らの混合物を原料として、グロー放電法、スパッタリン
グ法、イオンプレーティング法、真空蒸着法などの方法
によって基板上に形成する。中でも、プラズマCVD(Che
mical Vapor Deposition)法によりシラン(SiH4)ガス
等をグロー放電分解する方法(グロー放電法)が、膜中
への水素の含有量の制御の点から好ましい。また、この
場合水素の含有を一層効率良く行なうために、プラズマ
CVD装置内にシランガス等と同時に、別途に水素(H2
ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is composed of SiH 4 , Si 2 H 6 , and S.
Formed on the substrate by glow discharge method, sputtering method, ion plating method, vacuum deposition method, etc., using one kind of silicon hydride gas such as i 3 H 8 or Si 4 H 10 or a mixture thereof as a raw material. To do. Among them, plasma CVD (Che
A method of decomposing silane (SiH 4 ) gas and the like by glow discharge (glow discharge method) by a mical vapor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, plasma
Separately hydrogen (H 2 ) in the CVD device at the same time as silane gas, etc.
Gas may be introduced.

本発明の電子写真用感光体の光導電層として用いるの
は、水素原子を含有する非晶質ケイ素を主体とする半導
体であるが、不純物としてホウ素原子またはリン原子を
含有させて、n型、完全なi型またはp型半導体とする
ことができる。このホウ素原子の添加には、通常、ジボ
ラン(B2H6)ガスが原料として用いられ、0.01〜1原子
%の程度添加されることによりp型半導体10-3〜10-2
子%の程度添加されることによって完全なi型半導体の
非晶質ケイ素が得られる。リン原子の添加には、通常、
ホスフィン(PH3)ガスが原料として用いられ、10-6〜1
0-1原子%の程度添加されることによってn型半導体の
非晶質ケイ素が得られる。なお、導電型制御用不純物を
含有しないものも本発明の光導電層であるが、ホウ素原
子を含有せしめない場合、非晶質ケイ素がわずかにn型
傾向を示すi型であることはよく知られている。
What is used as the photoconductive layer of the electrophotographic photoreceptor of the present invention is a semiconductor mainly composed of amorphous silicon containing a hydrogen atom, but containing a boron atom or a phosphorus atom as an impurity to form an n-type, It can be a complete i-type or p-type semiconductor. Diborane (B 2 H 6 ) gas is usually used as a raw material for the addition of the boron atom, and the p-type semiconductor is added to the p-type semiconductor in the range of 10 −3 to 10 −2 at %. When added, complete i-type semiconductor amorphous silicon is obtained. The addition of phosphorus atoms is usually
Phosphine (PH 3 ) gas is used as a raw material, 10 -6 ~ 1
Amorphous silicon, which is an n-type semiconductor, is obtained by adding about 0 -1 atomic%. The photoconductive layer of the present invention does not contain impurities for controlling the conductivity type, but it is well known that the amorphous silicon is i-type which shows a slight n-type tendency when boron atoms are not included. Has been.

また、感光層膜の暗抵抗の増加、光感度の増加あるいは
帯電能(単位膜厚あたりの帯電電位)の増加を目的とし
て感光層膜中にハロゲン原子などを含有させてもよい。
Further, a halogen atom or the like may be contained in the photosensitive layer film for the purpose of increasing the dark resistance of the photosensitive layer film, increasing the photosensitivity or increasing the charging ability (charging potential per unit film thickness).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素を
添加することも可能である。
Further, an element such as germanium (Ge) may be added to the photoconductive layer film for the purpose of increasing the sensitivity of the photoconductor in the long wavelength region.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素化
ケイ素ガス、更に所望に応じて水素ガスを用い、それら
のガスと共に、必要な元素を含むガス状化合物を導入し
てグロー放電分解を行なえばよい。以上のようにプラズ
マCVD法による非晶質ケイ素から成る光導電層を形成す
るのに有効な放電条件は、例えば、交流放電の場合、周
波数は通常0.1〜30MHz、放電時の真空度は0.1〜5Torr、
基板加熱温度は100〜400℃である。しかして、非晶質ケ
イ素を主体とする光導電層の膜厚は、1〜100μm、特
に10〜50μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photosensitive member of the present invention, in the plasma CVD apparatus, a silicon hydride gas as the main raw material, further using hydrogen gas as desired, together with those gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing a necessary element. The discharge conditions effective for forming the photoconductive layer made of amorphous silicon by the plasma CVD method as described above are, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum degree at the time of discharge is 0.1 to 30 MHz. 5Torr,
The substrate heating temperature is 100 to 400 ° C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 μm, particularly 10 to 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or a paper which has been made conductive can be used. In addition, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, and an endless belt shape.

(実施例) 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
(Example) Next, the electrophotographic photoreceptor of the present invention will be further described with reference to Comparative Examples and Examples of the present invention.

比較例1; 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、さらに100%水素(H2)ガスを毎分90ccの範囲
で流入させ、反応槽内を0.5Torrの内圧に維持した後、1
3.57MHzの高周波電力を投入して、グロー放電を生じせ
しめ、高周波電源の出力を85Wに維持した。このように
して、円筒状のAl基板上に厚さ25μmの非晶質ケイ素を
主体とし不純物としてホウ素原子を含有するi型半導体
から成る光導電層を有する感光体を得た。このようにし
て得られた感光体を複写機に入れ、正のコロナ帯電方式
で画質を評価したところ、初期時では実用上問題のない
画像濃度が得られたが、複写操作を繰り返すうちに徐々
に画像濃度は低下した。また、この感光体を30℃、85%
RHの環境下で画質評価したところ、初期時より画像の流
れが観察された。
Comparative Example 1; A cylindrical Al substrate was placed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining the temperature at 0 ° C, 100% silane (SiH 4 ) gas at 120 cc / min, 100 ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 20 cc / min, and 100% hydrogen (H 2 ) gas at 100 ° C. Flow in the range of 90 cc per minute and maintain the internal pressure of the reaction tank at 0.5 Torr.
High-frequency power of 3.57MHz was applied to cause glow discharge, and the output of the high-frequency power supply was maintained at 85W. Thus, a photoreceptor having a photoconductive layer made of an i-type semiconductor having a thickness of 25 μm as a main component and containing amorphous silicon and containing boron atoms as impurities was obtained on a cylindrical Al substrate. The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased. In addition, this photoreceptor is 30 ℃, 85%
When the image quality was evaluated under the RH environment, the flow of images was observed from the beginning.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素を含有するi型半導体
から成る光導電層を有する感光体の上に、ジイソプロポ
キシチタンビス(アセチルアセトネート)1重量部、n
−ブチルアルコール20重量部からなる溶液を塗布し、20
0℃の炉中で1時間乾燥硬化し、0.1μ厚の表面層を有す
る感光体を得た。このようにして得られた表面層はセラ
ミックスに似た性質を持ち、非晶質珪素の優れた特性で
ある、表面硬度、耐摩耗性、耐熱性をほとんど損うこと
がなかった。
Example 1: Diisopropoxytitanium bis was formed on a photoreceptor having a photoconductive layer made of an i-type semiconductor containing amorphous silicon as a main component and boron as an impurity, which was prepared under the same method and under the same conditions as in Comparative Example 1. (Acetylacetonate) 1 part by weight, n
-Apply a solution consisting of 20 parts by weight of butyl alcohol,
It was dried and hardened in an oven at 0 ° C. for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.1 μm. The surface layer thus obtained had properties similar to those of ceramics, and almost did not impair the surface hardness, wear resistance, and heat resistance, which are excellent characteristics of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、85%
RHの環境下で画質評価を行なったが画像の流れはみられ
ず高解像度を示した。同時に負のコロナ帯電方式で実施
した複写試験も、正帯電方式の場合と同様、良好な結果
を与えた。
When this photoreceptor was placed in a copying machine and the image quality was evaluated by a positive corona charging method, an image density that was practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. This photoconductor is 30 ℃, 85%
The image quality was evaluated under the RH environment, but no image flow was observed and the resolution was high. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例2; 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の500ppmジボラン(B2H6)ガスを毎
分20cc、さらに100%水素(H2)ガスを毎分80ccの範囲
で流入させ、反応槽内を0.5Torrの内圧に維持した後、1
3.56MHzの高周波電源を投入して、グロー放電を生じせ
しめ、高周波電源の出力を85Wに維持した。このように
して、円筒状のAl基板上に厚さ25μmの非晶質ケイ素を
主体とし不純物としてホウ素原子を含有するp型半導体
から成る光導電層を有する感光体を得た。このようにし
て得られた感光体を複写機に入れ、正のコロナ帯電方式
で画質を評価したところ、初期時では実用上問題のない
画像濃度が得られたが、複写操作を繰り返すうちに徐々
に画像濃度は低下した。また、この感光体を30℃、85%
RHの環境下で画質評価したところ、初期時より画像の流
れが観察された。
Comparative Example 2; A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining the temperature at 0 ° C, 100% silane (SiH 4 ) gas in the reaction chamber at 120cc per minute, 500ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 20cc per minute, and 100% hydrogen (H 2 ) gas at every minute Flow in the range of 80 cc / min and maintain the internal pressure of the reaction tank at 0.5 Torr.
A 3.56MHz high frequency power supply was turned on to cause glow discharge, and the output of the high frequency power supply was maintained at 85W. In this way, a photoconductor having a photoconductive layer made of a p-type semiconductor having a thickness of 25 μm as a main component and containing amorphous silicon and containing boron atoms as impurities was obtained on a cylindrical Al substrate. The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased. In addition, this photoreceptor is 30 ℃, 85%
When the image quality was evaluated under the RH environment, the flow of images was observed from the beginning.

実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素を含有するp型半導体
から成る光導電層を有する感光体の上に、チタニウムテ
トラエトキサイド1重量部、イソプロピルアルコール30
重量部からなる溶液を塗布し、200℃の炉中で1時間乾
燥硬化し、0.3μ厚の表面層を有する感光体を得た。こ
のようにして得られた表面層はセラミックスに似た性質
を持ち、非晶質珪素の優れた特性である、表面硬度、耐
摩耗性、耐熱性をほとんど損うことがなかった。
Example 2: A titanium tetraethoxide was formed on a photoconductor having a photoconductive layer made of a p-type semiconductor containing amorphous silicon as a main component and containing boron as an impurity, which was prepared by the same method and under the same conditions as in Comparative Example 2. 1 part by weight, isopropyl alcohol 30
A solution of 1 part by weight was applied and dried and hardened in an oven at 200 ° C. for 1 hour to obtain a photoreceptor having a surface layer of 0.3 μm thick. The surface layer thus obtained had properties similar to those of ceramics, and almost did not impair the surface hardness, wear resistance, and heat resistance, which are excellent characteristics of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、85%
RHの環境下で画質評価を行なったが画像の流れはみられ
ず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated by a positive corona charging method, an image density that was practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. This photoconductor is 30 ℃, 85%
The image quality was evaluated under the RH environment, but no image flow was observed and the resolution was high.

比較例3; 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の300ppmホスフィン(B2H6)ガスを
毎分30cc、さらに100%水素(H2)ガスを毎分80ccの範
囲で流入させ、反応槽内を0.5Torrの内圧に維持した
後、13.56MHzの高周波電源を投入して、グロー放電を生
じせしめ、高周波電源の出力を85Wに維持した。このよ
うにして、円筒状のAl基板上に厚さ25μmの非晶質ケイ
素を主体とし不純物としてリン原子を含有するn型半導
体から成る光導電層を有する感光体を得た。このように
して得られた感光体を複写機に入れ、負のコロナ帯電方
式で画質を評価したところ、初期時では実用上問題のな
い画像濃度が得られたが、複写操作を繰り返すうちに徐
々に画像濃度は低下した。また、この感光体を30℃、85
%RHの環境下で画質評価したところ、初期時より画像の
流れが観察された。
Comparative Example 3; A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining the temperature at 0 ° C, 100% silane (SiH 4 ) gas at 120 cc / min, 300 ppm phosphine (B 2 H 6 ) gas diluted with hydrogen at 30 cc / min, and 100% hydrogen (H 2 ) gas at 100 ° C. The flow rate was 80 cc, and the internal pressure of the reactor was maintained at 0.5 Torr. Then, a 13.56 MHz high frequency power supply was turned on to cause glow discharge, and the output of the high frequency power supply was maintained at 85 W. In this way, a photoconductor having a photoconductive layer made of an n-type semiconductor having a thickness of 25 μm as a main component and containing amorphous silicon as the impurity on a cylindrical Al substrate was obtained. The image thus obtained was placed in a copying machine and the image quality was evaluated by a negative corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The image density decreased. In addition, this photoreceptor is
When the image quality was evaluated under the environment of% RH, the image flow was observed from the initial stage.

実施例3: 比較例3と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてリン原子を含有するn型半導
体から成る光導電層を有する感光体の上に、チタニウム
テトラブトキサイド1重量部、γ−アクリロギンプロピ
ルトリメトキシシラン1重量部、メチルアルコール10重
量部、イソプロピルアルコール20重量部から成る溶液を
塗布し、200℃の炉内で1時間乾燥硬化し、0.3μ厚の表
面層を有する感光体を得た。このようにして得られた表
面層はセラミックスに似た性質を持ち、非晶質珪素の優
れた特性である、表面硬度、耐摩耗性、耐熱性をほとん
ど損うことがなかった。
Example 3: A titanium tetrabutoxide film was formed on a photoconductor having a photoconductive layer made of an n-type semiconductor containing amorphous silicon as a main component and containing a phosphorus atom as an impurity, prepared in the same manner and under the same conditions as in Comparative Example 3. A solution consisting of 1 part by weight of side, 1 part by weight of γ-acrylogin propyltrimethoxysilane, 10 parts by weight of methyl alcohol, and 20 parts by weight of isopropyl alcohol is applied, dried and hardened in an oven at 200 ° C for 1 hour, and has a thickness of 0.3μ. A photoconductor having a surface layer of The surface layer thus obtained had properties similar to those of ceramics, and almost did not impair the surface hardness, wear resistance, and heat resistance, which are excellent characteristics of amorphous silicon.

この感光体を複写機に入れ、負のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、85%
RHの環境下で画質評価を行なったが画像の流れはみられ
ず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated by a negative corona charging method, an image density that was practically no problem was obtained at the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. This photoconductor is 30 ℃, 85%
The image quality was evaluated under the RH environment, but no image flow was observed and the resolution was high.

(発明の効果) 本発明の電子写真用感光体は、非晶質ケイ素から成る感
光体の優れた特性である高機械的強度、高耐久性、高耐
熱、高光感度を保持し、しかも、外部環境や使用回数の
影響を受けずに高い電荷保持力を有して、優れた品質の
画像を供することができる。
(Effects of the Invention) The electrophotographic photoreceptor of the present invention retains the excellent characteristics of the photoreceptor made of amorphous silicon, that is, high mechanical strength, high durability, high heat resistance and high photosensitivity, and It has a high charge retention ability without being affected by the environment and the number of times of use, and can provide an image of excellent quality.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 康令 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 盧 泰男 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 高橋 徳好 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (56)参考文献 特開 昭59−223444(JP,A) 特開 昭59−223446(JP,A) 特開 昭59−102240(JP,A) 特開 昭59−102247(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Okugawa 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Xerox Co., Ltd. Takematsu Plant (72) Inventor Yasuo Ro, 1600 Takematsu, Minamiashigara, Kanagawa Fuji Xerox Co., Ltd. Takematsu Inside the factory (72) Inventor Tokuyoshi Takahashi 1600 Takematsu, Minamiashigara City, Kanagawa Fuji Xerox Co., Ltd. Takematsu Factory (56) Reference JP 59-223444 (JP, A) JP 59-223446 (JP, A) JP-A-59-102240 (JP, A) JP-A-59-102247 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に光導電層および表面層を順
次積層して成る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とする半導体から成り、 前記表面層が、チタンのアセチルアセトナト錯体または
チタンのアルコキサイドを少なくとも1種類含む溶液の
乾燥硬化物から成ることを特徴とする電子写真用感光
体。
1. A photoconductor for electrophotography comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is formed of a semiconductor mainly containing amorphous silicon containing hydrogen atoms. The electrophotographic photoreceptor, wherein the surface layer comprises a dry-cured product of a solution containing at least one acetylacetonato complex of titanium or alkoxide of titanium.
JP61117818A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117818A JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117818A JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273563A JPS62273563A (en) 1987-11-27
JPH0727256B2 true JPH0727256B2 (en) 1995-03-29

Family

ID=14721014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117818A Expired - Lifetime JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727256B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS62273563A (en) 1987-11-27

Similar Documents

Publication Publication Date Title
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0727253B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPH0711713B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPH0727249B2 (en) Electrophotographic photoconductor
JPH0727248B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPH0727259B2 (en) Electrophotographic photoconductor
JPH0721649B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPH0711711B2 (en) Electrophotographic photoconductor
JPH0723964B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPH0711709B2 (en) Electrophotographic photoconductor
JPH0727257B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPS62273568A (en) Electrophotographic sensitive body