JPS62273563A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273563A
JPS62273563A JP11781886A JP11781886A JPS62273563A JP S62273563 A JPS62273563 A JP S62273563A JP 11781886 A JP11781886 A JP 11781886A JP 11781886 A JP11781886 A JP 11781886A JP S62273563 A JPS62273563 A JP S62273563A
Authority
JP
Japan
Prior art keywords
amorphous silicon
titanium
photoconductive layer
photoreceptor
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11781886A
Other languages
Japanese (ja)
Other versions
JPH0727256B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117818A priority Critical patent/JPH0727256B2/en
Publication of JPS62273563A publication Critical patent/JPS62273563A/en
Publication of JPH0727256B2 publication Critical patent/JPH0727256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from a semiconductor comprising an amorphous silicon contg. hydrogen atom as a main component, and by constituting a surface layer from a dried curing material of a solution contg. at least one kind of an org. titanium compd. CONSTITUTION:The photoconductive layer composed of the amorphous silicon is coated on a conductive substrate, and the surface layer is laminated on the photoconductive layer. The dried curing material of the solution contg. at least one kind of the org. titanium compd. is used as the surface layer. The p-type semiconductor contg. the amorphous silicon as the main component, and boron atom as an impurity is used as the photoconductive layer. The further preferable org. titanium compd. is a titanium complex and titanium alkoxide. The org. titanium compd. is preferably exemplified diisopropoxytitanium bis(acetyl acetonate), etc. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrophotographic photoreceptor, and particularly relates to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer. .

(従来の技術) 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかして
、従来より、感光層を構成する材料としてはセレンある
いはセレン合金、硫化カドミウム、酸化亜鉛等の無機感
光材料、あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光層を単層あるいは螢層にして用いられている。しか
しながら、従来より用いられているこれらの感光層は、
耐久性、耐熱性、光感度などにおいて未だ解決すべき問
題点を有している。
(Prior Art) In electrophotography, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called a toner,
This is a method of transferring and fixing a toner image onto transfer paper to obtain a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer have been inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Photosensitive materials are known,
The photosensitive layer is used as a single layer or a firefly layer. However, these conventionally used photosensitive layers are
There are still problems to be solved in terms of durability, heat resistance, photosensitivity, etc.

(発明が解決しようとする問題点) 近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)  ガスをグロー放電分解法等によりケイ
素の非晶質膜を導電性基板上に形成したものであって、
非晶質ケイ素膜中に水素原子が組み込まれて光導電性を
呈するものである。この非晶質ケイ素感光体は、感光層
の表面硬度が高く傷つきに<<、摩耗にも強く、耐熱性
も高く、機械的強度においてもすぐれている。更に、非
晶質ケイ素は、分光感度域が広く、高い光感度を有する
如く感光特性もすぐれている。しかし反面、非晶質ケイ
素を用いた感光体は、暗減衰が大きく、帯電しても十分
な帯電電位が得られるという欠点を有する。即ち、非晶
質ケイ素感光体を帯電し、像露光して静電潜像を形成し
、次いで現像する際、感光体上の表面電荷が像露光工程
まで、あるいは現像工程までの間に光照射を受けなかっ
た部分の電荷までも減衰してしまい、現像に必要な帯電
電位が得られない。この帯電電位の減衰は、環境条件の
影響によっても変化しやすく、特に高温高湿環境では帯
電電位が大巾に低下する。更に、非晶質ケイ素の感光体
は、繰返し使用すると徐々に帯電電位が低下してしまう
。この様な帯電電位の暗減衰の大きな感光体を用いて複
写物を作成すると、画像濃度が低くまた、中間調の再現
性に乏しい複写物となる。
(Problems to be Solved by the Invention) In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate using silane (SiH4) gas using a glow discharge decomposition method or the like.
Hydrogen atoms are incorporated into the amorphous silicon film to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor is not irradiated with light until the imagewise exposure step or the development step. Even the charge on the parts that are not affected is attenuated, making it impossible to obtain the charging potential necessary for development. This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment. Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雪囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the snow surrounding the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、感光度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

(問題点を解決するための手段及び作用)本発明者は、
鋭意研究を行なった結果、導電性基板上に、非晶質ケイ
素から成る光導電層を被覆し、更に、その上に表面層を
積層すると共に、該表面層として、有機チタン化合物を
少なくとも1種類含有する溶液の乾燥硬化物を用いるこ
とによって上記目的が達成されることを見出した。光導
電層としては、非晶質ケイ素を主体とし、不純物として
ホウ素原子を含有するp型半導体を用いる。
(Means and effects for solving the problem) The present inventor:
As a result of intensive research, we found that a photoconductive layer made of amorphous silicon was coated on a conductive substrate, a surface layer was further laminated thereon, and at least one kind of organic titanium compound was used as the surface layer. It has been found that the above object can be achieved by using a dry and cured product of the solution containing the present invention. As the photoconductive layer, a p-type semiconductor mainly composed of amorphous silicon and containing boron atoms as an impurity is used.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とし、不純物としてホウ素原子を含有するp型半
導体から成り、前記表面層が、有機チタン化合物を少な
くとも1種類含む溶液の乾燥硬化物から成ることを特徴
とする電子写真用感光体が提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor in which a photoconductive layer and a surface layer are sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. Provided is an electrophotographic photoreceptor comprising a p-type semiconductor containing boron atoms as an impurity, the surface layer comprising a dried and cured product of a solution containing at least one organic titanium compound.

本発明の電子写真用感光体の表面層を形成するのに用い
られる有機チタン化合物としては、種々のものが考えら
れるが、特に好ましいのは、錯体およびチタンアルコキ
シドである。有機チタン化合物の好ましい例としては、
ジイソプロポキンチタンビス(アセチルアセトネート)
、ポリチタンアセチルアセトネート、ビス(アセチルア
セトネート)チタンオキシド、チタニウムテトラメトキ
シド、チタニウムテトラエトキシド、チタニウムテトラ
−n−プロポキシド、チタニウムテトライソプロポキシ
ド、チタニウムテトラブトキシド、チタニウムテトライ
ソブトキンド、等を挙げることができる。
Although various organic titanium compounds can be used to form the surface layer of the electrophotographic photoreceptor of the present invention, complexes and titanium alkoxides are particularly preferred. Preferred examples of organic titanium compounds include:
Diisopropoquine titanium bis(acetylacetonate)
, polytitanium acetylacetonate, bis(acetylacetonate) titanium oxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetraisobutokind, etc. can be mentioned.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機チタン化合物の11または2種以上を適当な溶
媒に溶解した溶液を塗布する。また、この際、これらの
有機チタン化合物に有機ケイ素化合物を混合した溶液を
用いてもよい。二の有機ケイ素化合物としては一般にシ
ランカップリング剤と呼ばれている化合物が好適であり
、例えば、ビニルトリクロルシラン、ビニルトリエトキ
シシラン、ビニルトリス(β−メトキシエトキシ)シラ
ン、T−グリシドキシプロピルトリメトキシシラン、γ
−メタアクリロキシプロピルトリメトキシシラン、N−
β(アミノエチル)T−アミノプロピルトリメトキシシ
ラン、N−β(アミノエチル)T−アミノプロピルメチ
ルジメトキシシラン、γ−タロロプロピルトリメトキシ
シラン、γ−メルカプトプロピルトリメトキシシラン、
T−アミノプロピルトリエトキシシラン、メチルトリメ
トキシシラン、ジメチルジメトキシシラン、トリメチル
モノメ°トキシシラン、ジフェニルジメトキシシラン、
ジフェニルジェトキシシラン、モノフェニルトリメトキ
シシラン等が挙げられる。このようなシランカップリン
グ剤を混合して用いる場合には、該シランカップリング
剤が全固形物重量に対して5〜50%となるようにする
のがよい。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of 11 or more of the above organic titanium compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotitanium compounds may be used. As the second organosilicon compound, compounds generally called silane coupling agents are suitable, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, T-glycidoxypropyltrisilane, etc. Methoxysilane, γ
-methacryloxypropyltrimethoxysilane, N-
β (aminoethyl) T-aminopropyltrimethoxysilane, N-β (aminoethyl) T-aminopropylmethyldimethoxysilane, γ-talolopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane,
T-aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane,
Examples include diphenyljethoxysilane and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機ジルコニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、光導電層上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾燥硬化させることによって
本発明の電子写真用感光体が1弄られる。乾燥硬化温度
は100〜400℃の間の任意の温度に設定することが
できる。最終的に得られる表面層の膜厚も任意に設定さ
れ得るが、0.1〜10μm、特に1μm以下が好適で
ある。
Thus, a solution containing an organozirconium compound and optionally an organosilicon compound is applied onto the photoconductive layer.
The electrophotographic photoreceptor of the present invention is processed by coating by spray coating, dip coating, knife coating, roll coating, or the like, followed by drying and curing. The drying and curing temperature can be set at any temperature between 100 and 400°C. Although the thickness of the surface layer finally obtained can be set arbitrarily, it is preferably 0.1 to 10 μm, particularly 1 μm or less.

非晶質ケイ素を主体とする光導電層は、SiH,,5I
2H6、S+J= 、51481゜、等の水素ケイ素ガ
スの1種またはそれらの混合物を原料として、グロー放
電法、スパッタリング法、イオンブレーティング法、真
空蒸着法などの方法によって基板上に形成する。中でも
、ブラダ7 CV D (ChemicalVapor
 Deposition )法によりシラン(5iH4
)ガス等をグロー放電分解する方法(グロー放電法)が
、膜中への水素の含有量の制御の点から好ましい。
The photoconductive layer mainly composed of amorphous silicon is SiH, 5I
Using one type of hydrogen silicon gas such as 2H6, S+J= , 51481°, or a mixture thereof as a raw material, it is formed on a substrate by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method. Among them, Bladder 7 CV D (Chemical Vapor
Silane (5iH4
) A method of decomposing gas etc. by glow discharge (glow discharge method) is preferable from the viewpoint of controlling the hydrogen content in the film.

また、この場合水素の含有を一層効率良く行なうために
、プラズマCVD装置内にシランガス等と同時に、別途
に水素(B2)ガスを導入してもよい。
Further, in this case, in order to more efficiently contain hydrogen, hydrogen (B2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶質ケイ素を主体とする半導体
であるが、不純物としてホウ素原子またはリン原子を含
有させて、n型、完全な1型またはn型半導体とするこ
とができる。このホウ素原子の添加には、通常、ジボラ
ン(B2H8)ガスが原料として用いられ、0.01〜
l原子%の程度添加されることによりn型半導体、10
−3〜10−2原子%の程度添加されることによって完
全なl型半導体の非晶質ケイ素が得られる。リン原子の
添加には、通常、ホスフィン(PH3)  ガスが原料
として用いられ、10−6〜10−1原子%の程度添加
されることによってn型半導体の非晶質ケイ素が得られ
る。なお、導電型制御用不純物を含有しないものも本発
明の光導電層であるが、ホウ素原子を含有せしめない場
合、非晶質ケイ素がわずかにn型傾向を示すn型である
ことはよく知られている。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is a semiconductor mainly composed of amorphous silicon containing hydrogen atoms. It can be a complete 1-type or n-type semiconductor. For this addition of boron atoms, diborane (B2H8) gas is usually used as a raw material, and 0.01~
n-type semiconductor by adding about l atomic %, 10
By adding about -3 to 10-2 atomic percent, amorphous silicon, which is a complete l-type semiconductor, can be obtained. For the addition of phosphorus atoms, phosphine (PH3) gas is usually used as a raw material, and amorphous silicon, which is an n-type semiconductor, is obtained by adding phosphorus atoms in an amount of 10-6 to 10-1 atomic percent. Although the photoconductive layer of the present invention does not contain impurities for controlling the conductivity type, it is well known that when it does not contain boron atoms, amorphous silicon is n-type with a slight tendency to be n-type. It is being

また、感光層膜の暗抵抗の増加、光感度の増加あるいは
帯電能(単位膜厚あたりの帯電電位)の増加を目的とし
て感光層膜中にハロゲン原子などを含有させてもよい。
Furthermore, halogen atoms or the like may be contained in the photosensitive layer for the purpose of increasing the dark resistance, photosensitivity, or chargeability (charging potential per unit thickness) of the photosensitive layer.

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜30MHz 、放電時の真空度
はQ、 l 〜5 Torr 、基板加熱温度は101
13〜400℃である。しかして、非晶質ケイ素を主体
とする光導電層の膜厚は、1〜100μm、特に10〜
50μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the degree of vacuum during discharge is Q, l ~ 5 Torr, substrate heating temperature is 101
The temperature is 13-400°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, particularly 10 to 100 μm.
The thickness is preferably 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

(実施例) 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
(Example) Next, the electrophotographic photoreceptor of the present invention will be further described with reference to comparative examples and examples of the present invention.

比較例1; 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Al基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120c3水素希釈のloOppm 
ジボラン(BJg)ガスを毎分20cc、さらに100
%水素(H2)ガスを毎分9(Leeの範囲で流入させ
、反応槽内を0.5Torrの内圧に維持した後、13
.57M)Izの高周波電源を投入して、グロー放電を
生じせしめ、高周波電源の出力を85Wに維持した。こ
のようにして、円筒状の屈基板上に厚さ25μmの非晶
質ケイ素を主体とし不純物としてホウ素原子を含有する
1型半導体から成る光導電層を有する感光体を得た。こ
のようにして得られた感光体を複写機に入れ、正のコロ
ナ帯電方式で画質を評価したところ、初期時では実用上
問題のない画像濃度が得られたが、複写操作を繰り返す
うちに徐々に画像濃度は低下した。
Comparative Example 1: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas per minute with loOppm of hydrogen dilution of 120c3
20cc of diborane (BJg) gas per minute, then 100cc of diborane (BJg) gas per minute.
% hydrogen (H2) gas was introduced at a rate of 9 (Lee) per minute, and the internal pressure inside the reaction tank was maintained at 0.5 Torr.
.. A high frequency power source of 57M) Iz was turned on to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor was obtained having a 25 μm thick photoconductive layer made of a type 1 semiconductor mainly composed of amorphous silicon and containing boron atoms as impurities on a cylindrical flexible substrate. When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, it gradually deteriorated. The image density decreased.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、初期時より画像の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image flow was observed from the initial stage.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素を含有する1型半導体
から成る光導電層を有する感光体の上に、ジイソプロポ
キシチクンヒ゛ス(アセチルアセ)ネート)1重量部、
n−ブチルアルコール20重量部からなる溶液を塗布し
、200℃の炉中で1時間乾燥硬化し、0.4μ厚の表
面層を有する感光体を得た。このようにして得られた表
面層はセラミックスに似た性質を持ち、非晶質珪素の優
れた特性である、表面硬度、耐摩耗性、耐熱性をほとん
ど損うことがなかった。
Example 1: On a photoreceptor having a photoconductive layer made of a type 1 semiconductor mainly composed of amorphous silicon and containing boron as an impurity, which was prepared by the same method and under the same conditions as Comparative Example 1, diisopropoxychipone was applied. 1 part by weight of acetylacenate),
A solution consisting of 20 parts by weight of n-butyl alcohol was applied and dried and cured in an oven at 200°C for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.4 μm. The surface layer thus obtained had properties similar to ceramics, with almost no loss in surface hardness, wear resistance, and heat resistance, which are the excellent properties of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、8
5%RHの環境下で画質評価を行なったが画像の流れは
みられず高解像度を示した。同時に負のコロナ帯電方式
で実施した複写試験も、正帯電方式の場合と同様、良好
な結果を与えた。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor was heated at 30℃, 8
Image quality was evaluated under an environment of 5% RH, but no image flow was observed, indicating high resolution. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例2; 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状麿基板を設置し、基板温度を所定の温度である
250℃に維持し、反応室内に100%シラン(SiH
,)ガスを毎分120 cc、水素希釈の500ppm
 ジボラン(82H6)ガスを毎分20cc、さらに1
00%水素(H2)ガスを毎分80ccの範囲で流入さ
せ、反応槽内を0.5 Torrの内圧に維持した後、
13.56MHzの高周波電源を投入して、グロー放電
を生じせしめ、高周波電源の出力を85Wに維持した。
Comparative Example 2: A cylindrical substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (SiH) was placed in the reaction chamber.
,) 120 cc/min of gas, 500 ppm of hydrogen dilution
Diborane (82H6) gas at 20cc/min, and 1
After flowing 00% hydrogen (H2) gas at a rate of 80 cc per minute and maintaining the internal pressure in the reaction tank at 0.5 Torr,
A high frequency power source of 13.56 MHz was turned on to generate glow discharge, and the output of the high frequency power source was maintained at 85 W.

このようにして、円筒状の准基板上に厚さ25μmの非
晶質ケイ素を主体とし不純物としてホウ素原子を含有す
るp型半導体から成る光導電層を有する感光体を得た。
In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron atoms as impurities on a cylindrical quasi-substrate.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。また、この感光体
を30℃、85%RHの環境下で画質評価したところ、
初期時より画像の流れが観察された。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, it gradually deteriorated. The image density decreased. Furthermore, when we evaluated the image quality of this photoreceptor under an environment of 30°C and 85% RH, we found that
Image flow was observed from the beginning.

実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素を含有するp型半導体
から成る光導電層を有する感光体の上に、テトラエチル
オルソチタネート1重量部、イソプロピルアルコール3
0重量部からなる溶液を塗布し、200℃の炉中で1時
間乾燥硬化し、0.3μ厚の表面層を有する感光体を得
た。このようにして得られた表面層はセラミックスに似
た性質を持ち、非晶質珪素の優れた特性である、表面硬
度、耐摩耗性、耐熱性をほとんど損うことがなかった。
Example 2: Tetraethyl orthotitanate 1 was deposited on a photoreceptor having a photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing boron as an impurity, which was produced by the same method and under the same conditions as Comparative Example 2. Parts by weight, isopropyl alcohol 3
A solution consisting of 0 parts by weight was applied and dried and cured in an oven at 200° C. for 1 hour to obtain a photoreceptor having a surface layer with a thickness of 0.3 μm. The surface layer thus obtained had properties similar to ceramics, with almost no loss in surface hardness, wear resistance, and heat resistance, which are the excellent properties of amorphous silicon.

この感光体を複写機に入れ、正のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、8
5%RHの環境下で画質評価を行なったが画像の流れは
みられず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor was heated at 30℃, 8
Image quality was evaluated under an environment of 5% RH, but no image flow was observed, indicating high resolution.

比較例3; 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状准基板を設置し、基板温度を所定の温度である
250℃に維持し、反応室内に100%シラン(5IH
4)ガスを毎分120cc、水素希釈の300ppm 
ホスフィン(PH3)  ガスを毎分30cc、さらに
100%水素(H2)ガスを毎分80ccの範囲で流入
させ、反応槽内をQ、 5 Torrの内圧に維持した
後、13.56MHzの高周波電源を投入して、グロー
放電を生じせしめ、高周波電源の出力を85Wに維持し
た。このようにして、円筒状の届基板上に厚さ25μm
の非晶質ケイ素を主体とし不純物としてリン原子を含有
するn型半導体から成る光導電層を有する感光体を得た
Comparative Example 3: A cylindrical quasi-substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (5IH) was placed in the reaction chamber.
4) 120cc of gas per minute, 300ppm of hydrogen dilution
Phosphine (PH3) gas was introduced at a rate of 30 cc per minute, and 100% hydrogen (H2) gas was introduced at a rate of 80 cc per minute to maintain the internal pressure in the reaction tank at Q, 5 Torr, then a 13.56 MHz high frequency power source was applied. The output of the high frequency power source was maintained at 85W by turning on the battery to generate a glow discharge. In this way, a thickness of 25 μm was placed on a cylindrical substrate.
A photoreceptor having a photoconductive layer made of an n-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms as an impurity was obtained.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が1尋られたが、複写操作を繰り
返すうちに徐々に画像濃度は低下した。また、この感光
体を30℃、85%RHの環境下で画質評価したところ
、初期時より画像の流れが観察された。
When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a negative corona charging method, the image density was found to be 100%, which was acceptable for practical use at the initial stage, but as copying operations were repeated, Image density gradually decreased. Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image flow was observed from the initial stage.

実施例3: 比較例3と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素を含有するn型半導体
から成る光導電層を有する感光体の上に、テトラブチル
オルソチタネート1重量部、T−アクリロギンプロピル
トリメトキシシラン1重18’B、メチルアルコール1
0重量部、イソプロピルアルコール20重量部からなる
溶液を塗布し、200℃の炉中で1時間乾燥硬化し、0
.3μ厚の表面層を有する感光体を得た。このようにし
て得られた表面層はセラミックスに似た性質を持ち、非
晶質珪素の優れた特性である、表面硬度、耐摩耗性、耐
熱性をほとんど損うことがなかった。
Example 3: Tetrabutyl orthotitanate was deposited on a photoreceptor having a photoconductive layer made of an n-type semiconductor mainly composed of amorphous silicon and containing boron as an impurity, which was produced by the same method and under the same conditions as Comparative Example 3. 1 part by weight, 1 part T-acrylogine propyltrimethoxysilane 18'B, 1 part methyl alcohol
A solution consisting of 0 parts by weight and 20 parts by weight of isopropyl alcohol was applied and dried and cured in an oven at 200°C for 1 hour.
.. A photoreceptor having a surface layer with a thickness of 3 μm was obtained. The surface layer thus obtained had properties similar to ceramics, with almost no loss in surface hardness, wear resistance, and heat resistance, which are the excellent properties of amorphous silicon.

この感光体を複写機に入れ、負のコロナ帯電方式で画質
評価したところ、初期時では実用上問題のない画像濃度
が得られた。また、複写操作を5万回繰り返したが画像
濃度の低下はみられなかった。この感光体を30℃、8
5%RHの環境下で画質評価を行なったが画像の流れは
みられず高解像度を示した。
When this photoreceptor was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. This photoreceptor was heated at 30℃, 8
Image quality was evaluated under an environment of 5% RH, but no image flow was observed, indicating high resolution.

(発明の効果) 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
(Effects of the Invention) The electrophotographic photoreceptor of the present invention maintains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and furthermore, It has a high charge retention ability without being affected by the external environment or the number of times it is used, and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に光導電層および表面層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とする半導体から成り、 前記表面層が、有機チタン化合物を少なくとも1種類含
む溶液の乾燥硬化物から成ることを特徴とする電子写真
感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is a semiconductor mainly composed of amorphous silicon containing hydrogen atoms. An electrophotographic photoreceptor comprising: the surface layer comprising a dried and cured product of a solution containing at least one organic titanium compound.
JP61117818A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117818A JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117818A JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273563A true JPS62273563A (en) 1987-11-27
JPH0727256B2 JPH0727256B2 (en) 1995-03-29

Family

ID=14721014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117818A Expired - Lifetime JPH0727256B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727256B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0727256B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS62273547A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62273551A (en) Electrophotographic sensitive body
JPH0711707B2 (en) Electrophotographic photoconductor
JPS62273559A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPS62273554A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPS62145249A (en) Electrophotographic sensitive body