JPS62145249A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62145249A
JPS62145249A JP28599585A JP28599585A JPS62145249A JP S62145249 A JPS62145249 A JP S62145249A JP 28599585 A JP28599585 A JP 28599585A JP 28599585 A JP28599585 A JP 28599585A JP S62145249 A JPS62145249 A JP S62145249A
Authority
JP
Japan
Prior art keywords
stannic
compd
org
photoconductive layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28599585A
Other languages
Japanese (ja)
Other versions
JPH0711711B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60285995A priority Critical patent/JPH0711711B2/en
Publication of JPS62145249A publication Critical patent/JPS62145249A/en
Publication of JPH0711711B2 publication Critical patent/JPH0711711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Abstract

PURPOSE:To obtain the titled body having a very small dark decay of the electrostatic potential by providing an intermediate layer between the electroconductive substrate and the photoconductive layer composed of a non- crystalline silicon, and by incorporating a dry cured material of a solution contg. an org. stannic compd. to the intermediate layer. CONSTITUTION:The photoconductive layer is composed of a semiconductor having the non-crystalline silicon contg. hydrogen atom, as a main component. The intermediate layer is composed of the dry cured material of the solution contg. the org. stannic compd. As the used org. stannic compd, stannic bisacetylacetonate, etc., is examplified. The solution of the org. stannic compd, optionally, adding the org. silicon comd, is coated on the photoconductive layer by means of a various kinds of the coating method such as a spray coating, a dipping coating, a knife coating or a roll coating, followed by drying and curing it. The dry curing temp. of said compd. is 100-400 deg.C. The thickness of the film of the surface layer is preferable to be <=1mum.

Description

【発明の詳細な説明】 ZtU1犯1立! 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
[Detailed description of the invention] ZtU 1 crime 1 stand! The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかして
、従来より、感光体を構成する材料としてはセレンある
いはセレン合金、硫化カドミウム、酸化亜鉛等の無機感
光材料、あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光層を単層あるいは積層にして用いられている。しか
しながら、従来より用いられているこれらの感光層は、
耐久性、耐熱性、光感度などにおいて未だ解決すべき問
題点を有している。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called a toner,
This is a method of transferring and fixing a toner image onto transfer paper to obtain a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting photoreceptors have been inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Photosensitive materials are known,
The photosensitive layer is used as a single layer or as a stack. However, these conventionally used photosensitive layers are
There are still problems to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ票の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響によっても変化しやすく、特に高温高湿環境では帯電
電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is made by forming an amorphous film of silicon on a conductive substrate using silane (SiH4) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板と非
晶質ケイ素から成る光導電層との間に中間層を設けると
ともに、咳中間層として、有機スズ化合物を少なくとも
1種類含有する溶液の乾燥硬化物を用いることによって
上記目的が達成されることを見出した。光導電層として
は、非晶質ケイ素を主体とする半導体を用いる。
Structure of the Invention As a result of extensive research, the inventor of the present invention has provided an intermediate layer between a conductive substrate and a photoconductive layer made of amorphous silicon, and has provided an intermediate layer containing at least one type of organic tin compound as the intermediate layer. It has been found that the above object can be achieved by using a dry and cured product of the solution containing the present invention. As the photoconductive layer, a semiconductor mainly composed of amorphous silicon is used.

かくして、本発明に従えば、導電性基板上に中間層及び
光導電層を順次積層して成る電子写真用感光体に右いて
、前記光導電層が、水素原子を含有する非晶質ケイ素を
主体とする半導体から成り、前記中間層が、有機スズ化
合物を少なくとも1種頚含む溶液の乾燥硬化物から成る
ことを特徴とする電子写真用感光体が提供される。
Thus, according to the present invention, there is provided an electrophotographic photoreceptor in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, and the photoconductive layer is made of amorphous silicon containing hydrogen atoms. There is provided an electrophotographic photoreceptor which is mainly made of a semiconductor, and wherein the intermediate layer is made of a dried and cured product of a solution containing at least one organic tin compound.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機スズ化合物としては、スズビスアセチルアセ
トネート、スズテトラメトキサイド、スズテトラエトキ
サイド、スズテトラ・−り方プロポキサイド、スズテト
ラブトキサイド、スズテ′トラー3ec−ブトキサイド
等が挙げられる。
Examples of the organic tin compound used to form the intermediate layer of the electrophotographic photoreceptor of the present invention include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, tin tetrapropoxide, and tin tetrabutoxide. Examples include side, tin ester, 3ec-butoxide, and the like.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機スズ化合物の1種または2種以上を適当な溶媒
に溶解した溶液を塗布する。また、この際、これらの有
機スズ化合物に有機ケイ素化合物を混合した溶液を用い
てもよい。この有機ケイ素化合物としては一般にシラン
カップリング剤と呼ばれている化合物が好適であり、例
えば、ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シラン、
T−グリシドキシプロピルトリメトキシシラン、T−メ
タアクリロキシプロピルトリメトキシシラン、N−β(
アミノエチル)T−アミノプロピルトリメトキシシラン
、N−β(アミンエチル)γ−アミノプロピルメチルジ
メトキシシラン、T−クロロプロピルトリメトキシシラ
ン、γ−メルカプトプロピルトリメトキシシラン、T−
アミノプロピルトリエトキシシラン、メチルトリメトキ
シシラン、ジメチルジメトキシラン、トリメチルモノメ
トキシシラン、ジフェニルジメトキシシラン、ジフェニ
ルジェトキシシラン、モノフェニルトリメトキシシラン
等が挙げられる。このようなシランカップリング剤を混
合して用いる場合には、該シランカップリング剤が全固
形物重量に対して5〜50%となるようにするのがよい
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above-mentioned organic tin compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotin compounds may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane,
T-glycidoxypropyltrimethoxysilane, T-methacryloxypropyltrimethoxysilane, N-β(
Aminoethyl) T-aminopropyltrimethoxysilane, N-β(amineethyl)γ-aminopropylmethyldimethoxysilane, T-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, T-
Examples include aminopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxylane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜
400 ℃の間の任意の温度に設定することができる。
Thus, a solution containing an organotin compound and optionally an organosilicon compound is applied onto the photoconductive layer by methods such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing. An electrophotographic photoreceptor of the invention is obtained. Dry curing temperature is 100~
Any temperature between 400°C can be set.

最終的に得られる表面層の膜厚も任意に設定され得るが
、0.1〜10μm1特に1μm以下が好適である。
The thickness of the surface layer finally obtained can also be set arbitrarily, but a thickness of 0.1 to 10 .mu.m, particularly 1 .mu.m or less, is suitable.

非晶質ケイ素を主体とする光導電層は、Sin、、51
2H6,513H1l、Si<H+。、等の水素ケイ素
ガスの1種またはそれらの混合物を原料として、グロー
放電法、スパッタリング法、イオンブレーティング法、
真空蒸着法などの方法によって基板上に形成する。中で
も、プラズマCVD(Che+n1cal Vapor
 Deposition  )法によってシラン(Si
H<)ガス等をグロー放電分解する方法(グロー放電法
)が、膜中への水素の含有量の制御の点から好ましい。
The photoconductive layer mainly composed of amorphous silicon is Sin, 51
2H6, 513H1l, Si<H+. , etc. or a mixture thereof as a raw material, glow discharge method, sputtering method, ion blating method,
It is formed on a substrate by a method such as a vacuum evaporation method. Among them, plasma CVD (Che+n1cal Vapor
Silane (Si
A method of decomposing H<) gas and the like by glow discharge (glow discharge method) is preferable from the viewpoint of controlling the hydrogen content in the film.

また、この場合水素の含有を一層効率良く行なうために
、プラズマCVD装置内にシランガス等と同時に、別途
に水素(H2)ガスを導入してもよい。
Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

また非晶質ケイ素感光層膜の暗抵抗の制御あるいは帯電
極性の制御を目的として上記ガス中にジボラン(B、H
,)ガスあるいはホスフィン(PH3)ガスを混入させ
光導電層中へホウ素(B)あるいはリン(P)などの不
純物元素の添加を行なうことができる。
In addition, diborane (B, H,
, ) gas or phosphine (PH3) gas to add an impurity element such as boron (B) or phosphorus (P) into the photoconductive layer.

また、本発明に従う電子写真用感光体においては、光導
電層が、水素原子を含有する非晶質ケイ素を主体とする
半導体から成るが、更に、炭素原子、窒素原子または酸
素原子のうち少なくとも1種類を含有させてもよい。こ
のような原子の含有は、特に感光層膜の暗抵抗の増加、
光感度の増加、更には、帯電能(単位膜あたりの帯電電
位)の増加の点から好ましい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer is made of a semiconductor mainly composed of amorphous silicon containing hydrogen atoms, and further includes at least one of carbon atoms, nitrogen atoms, and oxygen atoms. types may be included. The inclusion of such atoms increases the dark resistance of the photosensitive layer, and
This is preferable from the viewpoint of increasing photosensitivity and further increasing charging ability (charging potential per unit film).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層にゲルマニウム(Ge)などの元素を
添加することも可能である。またハロゲン原子を添加す
ることによって、暗抵抗の増加等を図ることもできる。
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜33MHz、放電時の真空度は
0.1〜5Torr、基板加熱温度は100〜400℃
である。しかして、非晶質ケイ素を主体とする光導電層
の膜厚は、1〜100μm1特に10〜50μmとする
のが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 33 MHz, and the degree of vacuum during discharge is 0.1-5 Torr, substrate heating temperature 100-400℃
It is. Therefore, the thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 .mu.m, particularly 10 to 50 .mu.m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

】11例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
[Example 11] Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120CG。
Comparative Example 1: A cylindrical Aβ substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 120 CG per minute.

水素希釈の100ppm ジボラン(B2H6)ガスを
毎分2Qcc、さらに100%水素(H2)ガスを毎分
9Qccの範囲で流入させ、反応槽内をQ、5Torr
の内圧に維持した後、13.56MHzの高周波電力を
投入して、グロー放電を生じせしめ、高周波電源の出力
を85Wに維持した。このようにして、円筒状のAl基
板上に厚さ25μmで非晶質ケイ素を主体とし不純物と
して水素原子と微量のホウ素原子を含有するいわゆるl
型半導体から成る光導電層を有する感光体を得た。この
ようにして得られた感光体を複写機に入れ、正のコロナ
放電方式で画質を評価したところ、初期時では実用上問
題のない画像濃度が得られたが、複写操作を繰り返すう
ちに徐々に画像濃度は低下した。
100ppm diborane (B2H6) gas diluted with hydrogen was introduced at 2 Qcc per minute, and 100% hydrogen (H2) gas was introduced at a rate of 9 Qcc per minute, and the inside of the reaction tank was heated to Q, 5 Torr.
After maintaining the internal pressure at , 13.56 MHz high frequency power was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, a so-called lubricant with a thickness of 25 μm and mainly composed of amorphous silicon and containing hydrogen atoms and trace amounts of boron atoms as impurities was deposited on a cylindrical Al substrate.
A photoreceptor having a photoconductive layer made of a type semiconductor was obtained. When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona discharge method, an image density that was acceptable for practical use was initially obtained, but as copying operations were repeated, the image quality gradually deteriorated. The image density decreased.

実施例1: 比較例1と同一の円筒状A1基板に、スズビスアセチル
アセトネート1重量部、メチルトリナトキシシラン1重
量部、メチルアルコール20重量部、イソプロピルアル
コール30重量部から成る溶液を浸漬塗布し、250℃
の炉中で2時間乾燥硬化し、0.2μm厚の中間層を設
けた。次に、この中間層上に、比較例1と同じ方法によ
り、比較例1と同じ内容の非晶質ケイ素を主体とする光
導電層を比較例1とほぼ同じ膜厚で設けた。このように
して得られた感光体を複写機に入れ、正のコロナ帯電方
式で画質評価したところ、初期時では実用上問題のない
画像濃度が得られた。また、複写操作を5万回繰り返し
たが画像濃度の低下はみられなかった。同時に負のコロ
ナ帯電方式で実施した複写試験も、正帯電方式の場合と
同様、良好な結果を与えた。
Example 1: A solution consisting of 1 part by weight of tin bisacetylacetonate, 1 part by weight of methyltrinatoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of isopropyl alcohol was applied by dip coating to the same cylindrical A1 substrate as in Comparative Example 1. and 250℃
The mixture was dried and cured for 2 hours in an oven to provide an intermediate layer with a thickness of 0.2 μm. Next, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 1 was provided with approximately the same thickness as in Comparative Example 1. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. At the same time, copying tests conducted using the negative corona charging method also gave good results, similar to those using the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状AI基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(S 
i H4)ガスを毎分120cc。
Comparative Example 2: A cylindrical AI substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (S) was placed in the reaction chamber.
i H4) 120cc of gas per minute.

水素希釈の500ppm ジボラン(B2H6)ガスを
毎分30cc、さらに100%水素(H2)ガスを毎分
80ccの範囲で流入させ、反応槽内をQ、5Torr
の内圧に維持した後、13.56 M Hzの高周波電
力を投入して、グロー放電を生じせ°しめ、高周波電源
の出力を85Wに維持した。このようにして、円筒状の
Al基板上に厚さ25μmで非晶質ケイ素を主体とし不
純物として水素原子とホウ素原子を含有するp型半導体
から成る光導電層を有する感光体を得た。このようにし
て得られた感光体を複写機に入れ、正のコロナ帯電方式
で画質を評価したところ、実用に耐え得る画像濃度が得
られなかった。
500 ppm diborane (B2H6) gas diluted with hydrogen was introduced at a rate of 30 cc per minute, and 100% hydrogen (H2) gas was introduced at a rate of 80 cc per minute, and the inside of the reaction tank was maintained at Q, 5 Torr.
After maintaining the internal pressure at , 13.56 MHz high frequency power was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing hydrogen atoms and boron atoms as impurities on a cylindrical Al substrate. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density sufficient for practical use was not obtained.

実施例2: 比較例2と同一の円筒状へ1基板に、スズテトライソプ
ロポキシ2重量部、ジメチルジメトキシシラン1重量部
、エチルアルコール40重量部から成る溶液を浸漬塗布
し、250℃の炉中で2時間乾燥硬化し、0.3μm厚
の中間層を設けた。次に、この中間層上に、比較例2と
同じ方法により、比較例2と同じ内容の非晶質ケイ素を
主体とする光導電層を比較例2とほぼ同じ膜厚で設けた
。このようにして得られた感光体を複写機に入れ、正の
コロナ帯電方式で画質評価したところ、初期時では実用
上問題のない画像濃度が得られた。また、複写操作を5
万回繰り返したが画像濃度の低下はみられなかった。
Example 2: A solution consisting of 2 parts by weight of tintetraisopropoxy, 1 part by weight of dimethyldimethoxysilane, and 40 parts by weight of ethyl alcohol was applied onto one cylindrical substrate in the same cylindrical shape as in Comparative Example 2 by dip coating, and the solution was placed in an oven at 250°C. After drying and curing for 2 hours, an intermediate layer having a thickness of 0.3 μm was provided. Next, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 2 was provided with approximately the same thickness as in Comparative Example 2. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Also, the copy operation is
Although the process was repeated 10,000 times, no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状へ1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120cc、水素希釈の300ppm
 ホスフィン(PH,)ガスを毎分39cc、さらに1
00%水素(H2)ガスを毎分80ccの範囲で流入さ
せ、反応槽内を0.5Torrの内圧に維持した後、1
3.56MHzの高周波電力を投入して、グロー放電を
生じせしめ、高周波電源の出力を85Wに維持した。こ
のようにして、円筒状のAIl基板上に厚さ25μmで
非晶質ケイ素を主体とし不純物として水素原子とリン原
子を含有するN型半導体から成る光導電層を有する感光
体を得た。このようにして得られた感光体を複写機に入
れ、正のコロナ帯電方式で画質を評価したところ、実用
に耐え得る画像濃度が1弄られなかった。
Comparative Example 3: A substrate was installed in a cylindrical shape at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 120cc/min, 300ppm diluted with hydrogen
39cc of phosphine (PH,) gas per minute, and 1
00% hydrogen (H2) gas was introduced at a rate of 80 cc per minute, and the internal pressure inside the reaction tank was maintained at 0.5 Torr.
High frequency power of 3.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an N-type semiconductor mainly composed of amorphous silicon and containing hydrogen atoms and phosphorus atoms as impurities on a cylindrical Al substrate. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, there was no difference in image density that could be used for practical use.

実施例3: 比較例3と同一の円筒状All基板に、スズテトラブト
キサイド2重量部、T−アクリロキシプロピルトリメト
キシシラン1重量部、メチルアルコール20重量部、エ
チルアルコール30重量部から成る溶液を浸漬塗布し、
250℃の炉中で2時間乾燥硬化し、0.2μm厚の中
間層を設けた。次に、この中間層上に、比較例3と同じ
方法により、比較例3と同じ内容の非晶質ケイ素を主体
とする光導電層を比較例3とほぼ同じ膜厚で設けた。こ
のようにして得られた感光体を複写機に入れ、°正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
Example 3: A solution consisting of 2 parts by weight of tin tetrabutoxide, 1 part by weight of T-acryloxypropyltrimethoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of ethyl alcohol was placed on the same cylindrical Al substrate as in Comparative Example 3. Apply by dipping,
It was dried and cured in an oven at 250° C. for 2 hours to provide an intermediate layer with a thickness of 0.2 μm. Next, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided with approximately the same thickness as in Comparative Example 3. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影皆を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. It has a high charge retention ability and can provide images of excellent quality without being affected by the number of uses.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層及び光導電層を順次積層して成る
電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とする半導体で成り、 前記中間層が、有機スズ化合物を少なくとも1種類含む
溶液の乾燥硬化物から成ることを特徴とする電子写真用
感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is a semiconductor mainly composed of amorphous silicon containing hydrogen atoms. An electrophotographic photoreceptor comprising: the intermediate layer comprising a dried and cured product of a solution containing at least one type of organic tin compound.
JP60285995A 1985-12-19 1985-12-19 Electrophotographic photoconductor Expired - Lifetime JPH0711711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285995A JPH0711711B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285995A JPH0711711B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62145249A true JPS62145249A (en) 1987-06-29
JPH0711711B2 JPH0711711B2 (en) 1995-02-08

Family

ID=17698645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285995A Expired - Lifetime JPH0711711B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0711711B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0711711B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH0721647B2 (en) Electrophotographic photoconductor
JPS62145249A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPH0711709B2 (en) Electrophotographic photoconductor
JPS62288855A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPS62273559A (en) Electrophotographic sensitive body
JPH0711708B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor