JPS62273558A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273558A
JPS62273558A JP11781386A JP11781386A JPS62273558A JP S62273558 A JPS62273558 A JP S62273558A JP 11781386 A JP11781386 A JP 11781386A JP 11781386 A JP11781386 A JP 11781386A JP S62273558 A JPS62273558 A JP S62273558A
Authority
JP
Japan
Prior art keywords
stannic
amorphous silicon
photoconductive layer
photoreceptor
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11781386A
Other languages
Japanese (ja)
Other versions
JPH0727253B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117813A priority Critical patent/JPH0727253B2/en
Publication of JPS62273558A publication Critical patent/JPS62273558A/en
Publication of JPH0727253B2 publication Critical patent/JPH0727253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from a p-type semiconductor which contains an amorphous silicon contg. hydrogen atom as a main component, and boron atom as an impurity, and by constituting a surface layer from a dried curing material of a solution contg. at least one kind of an org. stannic compd. CONSTITUTION:The photoconductive layer composed of the amorphous silicon is coated on a conductive substrate, and the surface layer is laminated on the photoconductive layer. The dried curing material of the solution contg. at least one kind of the org. stannic compd. is used as the surface layer. The p-type semiconductor comprising the amorphous silicon as the main component, and boron atom as the impurity is used as the photoconductive layer. The further preferable org. stannic compd. is a stannic complex and a stannic alkoxide. At the time of obtaining the titled body, one or >=2 kinds of the org. stannic compds. are dissolved a suitable solvent and the obtd. solution is coated on the substrate. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像を現像剤で現像後、転写紙にトナー像
を転写し定着して複写物を得る方法として知られている
。この電子写真法に用いられる感光体は、基本構成とし
て導電性基板上に感光層を積層して成る。しかして、従
来より、感光層を構成する材料としてはセレンあるいは
セレン合金、硫化カドミウム、酸化亜鉛等の無機感光材
料、あるいは、ポリビニルカルバゾール、トリニトロフ
ルオレノン、ビスアゾ顔料、フタロシアニン、ピラゾリ
ン、ヒドラゾン等の有機感光材料が知られており、感光
層を単層あるいは積層にして用いられている。しかしな
がら、従来より用いられているこれらの感光層は、耐久
性、耐熱性、光感度などにおいて未だ解決すべき問題点
を有している。
Conventional electrophotography is a method in which an electrostatic latent image is formed by charging a photoreceptor and image exposure, and after developing this latent image with a developer, the toner image is transferred and fixed onto a transfer paper to obtain a copy. Are known. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer have been inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or organic photosensitive materials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, pyrazoline, and hydrazone. Photosensitive materials are known, and are used with a single layer or a stack of photosensitive layers. However, these conventionally used photosensitive layers have problems that still need to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH,)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、環境条件の影
響によっても変化しやすく、特に高温高湿環境では帯電
電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate using silane (SiH) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雲囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the cloud surroundings of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板上に
、非晶質ケイ素から成る光導電層を被覆し、更に、その
上に表面層を積層すると共に、該表面層として、有機ス
ズ化合物を少なくとも1!1類含有する溶液の乾燥硬化
物を用いることによって上記目的が達成されることを見
出した。光導電層としては、非晶質ケイ素を主体とし、
不純物としてホウ素原子を含有するp型半導体を用いる
Structure of the Invention As a result of extensive research, the present inventor coated a photoconductive layer made of amorphous silicon on a conductive substrate, further laminated a surface layer thereon, and as the surface layer. It has been found that the above object can be achieved by using a dried and cured product of a solution containing at least 1!1 types of organic tin compounds. The photoconductive layer is mainly made of amorphous silicon,
A p-type semiconductor containing boron atoms as an impurity is used.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とし不純物としてリン原子を含有するp型半導体
から成り、更に、炭素原子、窒素原子または酸素原子の
内生なくとも11を含有しなおり、前記表面層が、有機
スズ(Sn)化合物を少なくとも1種類含む溶液の乾燥
硬化物から成ることを特徴とする電子写真用感光体が提
供される。
Thus, according to the present invention, in an electrophotographic photoreceptor in which a photoconductive layer and a surface layer are sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. The surface layer is made of a p-type semiconductor containing phosphorus atoms as impurities, and further contains at least 11 endogenous carbon atoms, nitrogen atoms, or oxygen atoms, and the surface layer contains at least one type of organic tin (Sn) compound. Provided is an electrophotographic photoreceptor comprising a dried and cured product of a solution containing:

本発明の電子写真用感光体の表面層を形成するのに用い
られる有機スズ化合物としては、種々のものが考えられ
るが、特に好ましいのは、スズ錯体およびスズアルコキ
シドである。これらの好ましい例としては、スズビスア
セチルアセトネート、スズテトラメトキシド、スズテト
ラエトキシド、スズテトライソプロポキシド、スズテト
ラブトキシド、スズテトラ−5ec −ブトキシドが挙
げられる。
Although various organic tin compounds can be used to form the surface layer of the electrophotographic photoreceptor of the present invention, tin complexes and tin alkoxides are particularly preferred. Preferred examples of these include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, tin tetraisopropoxide, tin tetrabutoxide, and tin tetra-5ec-butoxide.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機スズ化合物の1種または2種以上を適当な溶媒
に溶解した溶液を塗布する。また、この際、これらの有
機スズ化合物に有機ケイ素化合物を混合した溶液を用い
てもよい。この有機ケイ素化合物としては一般にシラン
カップリング剤と呼ばれている化合物が好適であり、例
えば、ビニルトリクロルシラン、ビニルトリエトキシシ
ラン、ビニルトリス(β−メトキシエトキシ)シラン、
γ−グリシドキシプロピルトリメトキシシラン、γ−メ
タアクリロキシプロピルトリメトキシシラン、N−β(
アミノエチル〉T−アミノプロピルトリメトキシシラン
、N−β(アミノエチル)γ−アミノプロピルメチルジ
メトキシシラン、γ−クロロプロピルトリメトキシシラ
ン、γ−メルカプトプロピルトリメトキシシラン、γ−
アミンプロピルトリエトキシシラン、メチルトリメトキ
シシラン、ジメチルジメトキシラン、トリメチルモノメ
トキシシラン、ジフェニルジメトキシシラン、ジフェニ
ルジェトキシシラン、モノフェニルトリメトキシシラン
等が挙げられる。このようなシランカップリング剤を混
合して用いる場合には、該シランカップリング剤が全固
形物重量に対して5〜50%となるようにするのがよい
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above-mentioned organic tin compounds dissolved in a suitable solvent is coated. Further, at this time, a solution in which an organosilicon compound is mixed with these organotin compounds may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane,
γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β(
Aminoethyl>T-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-
Examples include aminepropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxylane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜
400℃の間の任意の温度に設定することができる。最
終的に1与られる表面層の膜厚も任意に設定され得るが
、0.1〜10μm1特に1μm以下が好適である。
Thus, a solution containing an organotin compound and optionally an organosilicon compound is applied onto the photoconductive layer by methods such as spray coating, dip coating, knife coating or roll coating, followed by drying and curing. An electrophotographic photoreceptor of the invention is obtained. Dry curing temperature is 100~
Any temperature between 400°C can be set. Although the final thickness of the surface layer can be set arbitrarily, it is preferably 0.1 to 10 μm, particularly 1 μm or less.

非晶質ケイ素を主体とする光導電層は、SiH,,5I
2H6、S +3Hs、 S i<H+o、等の水素ケ
イ素ガスの1種またはそれらの混合物を原料として、グ
ロー放電法、スパッタリング法、イオンブレーティング
法、真空蒸着法などの方法によって基板上に形成する。
The photoconductive layer mainly composed of amorphous silicon is SiH, 5I
Formed on a substrate by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method using one type of hydrogen silicon gas such as 2H6, S +3Hs, Si<H+o, or a mixture thereof as a raw material. .

中でも、プラズマCVD(Chemical Vapo
r Deposition )法によってシラ(SiH
,)ガス等をグロー放電分解する方法(グロー放電法)
が、膜中への水素の含有量の制御の点から好ましい。ま
た、この場合水素の含有を一層効率良く行なうために、
プラズマCVD装置内にシランガス等と同時に、別途に
水素(H2)ガスを導入してもよい。
Among them, plasma CVD (Chemical Vapo
sila (SiH) by the
,) Method of decomposing gas etc. by glow discharge (glow discharge method)
is preferable from the viewpoint of controlling the hydrogen content in the film. In this case, in order to more efficiently contain hydrogen,
Hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含をする非晶質ケイ素を主体とし不純物と
してホウ素原子を含有するp型半導体である。このホウ
素原子の添加には、通常、ジボラン(B2Hs)ガスが
原料として用いられ、0、011原子%の程度添加され
ることによってp型半導体の非晶質ケイ素が1与られる
The photoconductive layer of the electrophotographic photoreceptor of the present invention is a p-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing boron atoms as impurities. For this addition of boron atoms, diborane (B2Hs) gas is usually used as a raw material, and by adding 0.011 atomic % of boron atoms, 1 amorphous silicon, which is a p-type semiconductor, is provided.

また、本発明に従う電子写真用感光体においては、光導
電層が、更に、炭素原子、窒素原子または酸素原子のう
ちの少なくとも1種類を含有している。このような原子
の含有は、特に感光層膜の暗抵抗の増加、光感度の増加
、更には、帯電能(単位膜あたりの帯電電位)の増加の
点から好ましい。
Furthermore, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer further contains at least one of carbon atoms, nitrogen atoms, and oxygen atoms. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層にゲルマニウム(Ge)などの元素を
添加することも可能である。またハロゲン原子を添加す
ることによって、暗抵抗の増加等を図ることもできる。
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength range. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解を行なえばよい。以上のようにプラ
ズマCVD法による非晶質ケイ素から成る光導電層を形
成するのに有効な放電条件は、例えば、交流放電の場合
、周波数は通常0.1〜3.OMHz、放電時の真空度
はQ、 l 〜5Torr、基板加熱温度は100〜4
00℃である。しかして、非晶質ケイ素を主体とする光
導電層の膜厚は、1〜100μm、特に10〜50μm
とするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of alternating current discharge, the frequency is usually 0.1 to 3. OMHz, degree of vacuum during discharge is Q, l~5 Torr, substrate heating temperature is 100~4
It is 00℃. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, particularly 10 to 50 μm.
It is preferable that

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120CC1水素希釈の1000pp
m シボラフ CB2 H6)ガスを毎分30cc、1
00%エチレン(C2H,)ガスを毎分15cc、さら
に100%水素(H2)ガスを毎分75ccの範囲で流
入させ、反応槽内を0.5Torrの内圧に維持した後
、13.56 M Hzの高周波電力を投入して、グロ
ー放電を生じせしめ、高周波電源の出力を85Wに維持
した。このようにして、円筒状のAI!基板上に厚さ2
5μmで非晶質ケイ素を主体とし不純物とし不純物とし
てホウ素原子更には炭素原子を含有するp型半導体から
成る光導電層を有する感光体を得た。
Comparative Example 1: A cylindrical Aβ substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas per minute at 120cc1000pp of hydrogen dilution
m Shiboraf CB2 H6) gas at 30cc/min, 1
00% ethylene (C2H,) gas was introduced at a rate of 15 cc per minute, and 100% hydrogen (H2) gas was introduced at a rate of 75 cc per minute, and the internal pressure inside the reaction tank was maintained at 0.5 Torr. high-frequency power was applied to generate glow discharge, and the output of the high-frequency power source was maintained at 85W. In this way, the cylindrical AI! Thickness 2 on the board
A photoreceptor was obtained having a photoconductive layer having a thickness of 5 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron atoms and carbon atoms as impurities.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。また、この感光体を3
0℃、85%RHの環境下で画質評価したところ、画像
の流れが観察された。
When the photoreceptor thus obtained was placed in a copying machine and image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained. In addition, this photoreceptor was
When image quality was evaluated under an environment of 0° C. and 85% RH, image flow was observed.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし不純物としてホウ素と炭素を含有するp型
半導体から成る光導電層を有する感光体の上に、スズビ
スアセチルアセトネート1重量部、メチルトリメトキシ
シラン1重量部、メチルアルコール20重量部、インプ
ロピルアルコール30重量部からなる溶液を浸漬塗布し
、250℃の炉中で2時間乾燥硬化し、0.2μ厚の中
間層を形成した。次に、この中間層上に、比較例1と同
じ方法により、比較例1と同じ内容の非晶質ケイ素を主
体とする光導電層を、比較例1とほぼ同じ膜厚で設けた
Example 1: On a photoreceptor having a photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing boron and carbon as impurities, which was produced by the same method and under the same conditions as Comparative Example 1, tin bis was applied. A solution consisting of 1 part by weight of acetylacetonate, 1 part by weight of methyltrimethoxysilane, 20 parts by weight of methyl alcohol, and 30 parts by weight of inpropyl alcohol was applied by dip coating, and dried and cured in an oven at 250°C for 2 hours to give a 0.2μ A thick intermediate layer was formed. Next, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 1 was provided with approximately the same thickness as in Comparative Example 1.

このようにして得られた感光体を複写機1こ入れ、正の
コロナ帯電方式により画質評価したところ、初期時では
実用上問題のない画像濃度が得られた。
When the thus obtained photoreceptor was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was satisfactory for practical use was obtained at the initial stage.

また、複写操作を5万回繰り返したが画fi 1度の低
下はみられなかった。この感光体を30℃、85%RH
の環境下で画質評価を行なったが画像の流れはみられず
高解像度を示した。
Further, although the copying operation was repeated 50,000 times, no decrease in image fi by 1 degree was observed. This photoreceptor was heated at 30°C and 85%RH.
Image quality was evaluated under the following environment, but no image flow was observed, indicating high resolution.

比較例2; 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状へβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc。
Comparative Example 2: A β substrate was installed in a cylindrical shape at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 12 Qcc per minute.

水素希釈の1000ppm シボラフ (B2 H1+
)ガスを毎分30cc、および100%の窒素(N2)
ガスを毎分90cc、さらに100%水素(H2)ガス
を毎分IQccで流入させ、反応槽内を0.5Torr
の内圧を維持した後、13.56 M Hzの高周波電
力を投入して、グロー放電を生じせしめ、高周波電源の
出力を85Wに維持した。このようにして円筒状のAf
基板上に、厚さ25μmで非晶質ケイ素を主体として不
純物としてホウ素、更に、窒素を含有するp型半導体か
ら成る光導電層を有する感光体を得た。
1000ppm of hydrogen dilution Sibolaf (B2 H1+
) gas at 30cc per minute, and 100% nitrogen (N2)
Gas was introduced at 90cc per minute, and 100% hydrogen (H2) gas was introduced at IQcc per minute, and the inside of the reaction tank was maintained at 0.5 Torr.
After maintaining the internal pressure of 13.56 MHz, a high frequency power of 13.56 MHz was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, the cylindrical Af
A photoreceptor was obtained having a photoconductive layer on a substrate having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron and nitrogen as impurities.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度が得られなかった。また、この感光体を3
0℃、85%RHの環境下で画質評価したところ、画像
の流れが観察された。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained. In addition, this photoreceptor was
When image quality was evaluated under an environment of 0° C. and 85% RH, image flow was observed.

実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体としホウ素および窒素を含有するp型半導体か
ら成る光導電層を有する感光体の上に、スズテトラプロ
ポキシド2重量部、ジメチルジメトキシシラン1重量部
、およびエチルアルコール40重量部からなる溶液を浸
漬塗布し、250℃で2時間乾燥硬化し、0.3μm厚
の中間層を形成した。次にこの中間層上に、比較例2と
同じ方法により、比較例2と同じ内容の非晶質ケイ素を
主体とする光導電層を、比較例2とほぼ同じ膜厚で設け
た。
Example 2: Tin tetrapropoxide was deposited on a photoreceptor having a photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing boron and nitrogen, which was produced by the same method and under the same conditions as Comparative Example 2. A solution consisting of 2 parts by weight, 1 part by weight of dimethyldimethoxysilane, and 40 parts by weight of ethyl alcohol was applied by dip coating, and dried and cured at 250° C. for 2 hours to form an intermediate layer with a thickness of 0.3 μm. Next, on this intermediate layer, by the same method as in Comparative Example 2, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 2 was provided with approximately the same thickness as in Comparative Example 2.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が1弄られた。また、複写操作を5
万回繰り返したが画(象濃度の低下はみられなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, the image density at the initial stage was not a problem for practical use. Also, the copy operation is
Although the test was repeated 10,000 times, no decrease in image density was observed.

この感光体を30℃、85%RHの環境下で画質評価を
行なったが画像の流れはみられず高解像度を示した。
The image quality of this photoreceptor was evaluated under an environment of 30° C. and 85% RH, but no image flow was observed, indicating high resolution.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状All基金設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120CC1水素希釈のlOQOpp
m シボラフ(B2H8)ガスを毎分3Qc5および1
00%の酸素(02)ガスを毎分1.Occ、さらに1
00%水素(H2)ガスを毎分89ccで流入させ、反
応槽内をQ、5Torrの内圧に維持した後、13.5
6 M Hzの高周波電力を投入して、グロー放電を生
じせしめ、高周波電源の出力を85Wに維持した。この
ようにして円筒状のAβ基板上に厚さ25μmで非晶質
ケイ素を主体とし不純物としてホウ素、更に、酸素を含
有するp型半導体から成る光導電層を有する感光体を1
等だ。
Comparative Example 3: A cylindrical All-in-one fund was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas per minute with 120CC1 hydrogen dilution lOQOpp
m Siboraf (B2H8) gas per minute 3Qc5 and 1
00% oxygen (02) gas per minute. Occ, 1 more
After introducing 00% hydrogen (H2) gas at a rate of 89 cc per minute and maintaining the internal pressure in the reaction tank at Q, 5 Torr, 13.5
High frequency power of 6 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a photoreceptor having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron and oxygen as impurities was formed on a cylindrical Aβ substrate.
etc.

このようにして得られた感光体を複写機に入れ、負のコ
ロナ帯電方式により画質評価を行なったところ、実用に
耐え1辱る画像濃度が得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use could not be obtained.

また、この感光体を30℃、85%RHの環境下で画質
評価したところ、画像の流れが観察された。
Further, when the image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, image smearing was observed.

実施例3: 比較例3と同一方法、同一条件にて作成した非晶質ケイ
素を主体としホウ素および酸素を含有するp型半導体か
ら成る光導電層を有する感光体の上に、スズテトラブト
キシド2重量部、T−アクリロキシプロピルトリメトキ
ンシラン1重II、メチルアルコール20重11i、エ
チルアルコール30重量部からなる溶液を浸漬塗布し、
250℃にて2時間乾燥して、0.2μm厚の中間層を
形成した。次にこの中間層上に、比較例3と同じ方法に
より、比較例3と同じ内容の非晶質ケイ素を主体とする
光導電層を、比較例3とほぼ同じ膜厚で設けた。
Example 3: Tin tetrabutoxide 2 A solution consisting of parts by weight, T-acryloxypropyltrimethyne silane 1 part II, 20 parts by weight methyl alcohol, and 30 parts by weight of ethyl alcohol was applied by dip coating,
It was dried at 250° C. for 2 hours to form a 0.2 μm thick intermediate layer. Next, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 3 was provided with approximately the same thickness as in Comparative Example 3.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。この
感光体を30℃、85%RHの環境下で画質評価を行な
ったが画像の流れはみられず高解1象度を示した。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed. The image quality of this photoreceptor was evaluated in an environment of 30° C. and 85% RH, but no image flow was observed and a high resolution of 1 quadrant was observed.

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity, and is also resistant to the external environment. It has a high charge retention ability and can provide images of excellent quality regardless of the number of uses.

Claims (1)

【特許請求の範囲】 導電性基板上に光導電層および表面層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてホウ素原子を含有するp型する半導
体で成り、更に、炭素原子、窒素原子または酸素原子の
うち少なくとも1種類を含有しており、前記表面層が、
有機スズ化合物を少なくとも1種類含む溶液の乾燥硬化
物から成ることを特徴とする電子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms and contains impurities. The surface layer is made of a p-type semiconductor containing boron atoms, and further contains at least one type of carbon atoms, nitrogen atoms, or oxygen atoms, and the surface layer
An electrophotographic photoreceptor comprising a dried and cured product of a solution containing at least one type of organic tin compound.
JP61117813A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117813A JPH0727253B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117813A JPH0727253B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273558A true JPS62273558A (en) 1987-11-27
JPH0727253B2 JPH0727253B2 (en) 1995-03-29

Family

ID=14720896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117813A Expired - Lifetime JPH0727253B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276143A (en) * 1988-04-28 1989-11-06 Canon Inc Electrophotographic sensitive body
WO2011019180A2 (en) 2009-08-11 2011-02-17 주식회사 파캔오피씨 Electrostatic image-developing toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62201457A (en) * 1986-02-28 1987-09-05 Sharp Corp Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62201457A (en) * 1986-02-28 1987-09-05 Sharp Corp Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276143A (en) * 1988-04-28 1989-11-06 Canon Inc Electrophotographic sensitive body
WO2011019180A2 (en) 2009-08-11 2011-02-17 주식회사 파캔오피씨 Electrostatic image-developing toner

Also Published As

Publication number Publication date
JPH0727253B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS62273558A (en) Electrophotographic sensitive body
JPS62273547A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPH0711713B2 (en) Electrophotographic photoconductor
JPS62273562A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPH0727254B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPS62145252A (en) Electrophotographic sensitive body
JPH0727249B2 (en) Electrophotographic photoconductor
JPS62273563A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPH0727258B2 (en) Electrophotographic photoconductor
JPS62273548A (en) Electrophotographic sensitive body
JPS62288855A (en) Electrophotographic sensitive body
JPS62273564A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPH0711710B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPS62273554A (en) Electrophotographic sensitive body