JPS62273550A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62273550A
JPS62273550A JP11780586A JP11780586A JPS62273550A JP S62273550 A JPS62273550 A JP S62273550A JP 11780586 A JP11780586 A JP 11780586A JP 11780586 A JP11780586 A JP 11780586A JP S62273550 A JPS62273550 A JP S62273550A
Authority
JP
Japan
Prior art keywords
amorphous silicon
intermediate layer
atom
titanium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11780586A
Other languages
Japanese (ja)
Other versions
JPH0721648B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP11780586A priority Critical patent/JPH0721648B2/en
Publication of JPS62273550A publication Critical patent/JPS62273550A/en
Publication of JPH0721648B2 publication Critical patent/JPH0721648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having a very small dark attenuation of the electrostatic charge potential by constituting a photoconductive layer from a p-type semiconductor which comprises an amorphous silicon contg. hydrogen atom as a main component, and also boron atom as an impurity, and by constituting an intermediate layer from a dried curing material of a solution contg. at least one kind of an org. titanium compd. CONSTITUTION:The intermediate layer is laminated on a conductive substrate, and the conductive layer composed of the amorphous silicon is coated on the intermediate layer. The dried curing material of the solution contg. at least one kind of the org. titanium compd. is used as the intermediate layer. The p-type semiconductor which contains the amorphous silicon contg. hydrogen atom as the main component, and also contains boron atom and at least one kind of carbon atom, nitrogen atom and oxygen atom as an impurity is used the photoconductive layer. The org. titanium compd. is further preferably exemplified by a titanium complex and a titanium alkoxide. Thus, the high mechanical strength, the high durability, the high heat-resisting property and the high photosensitivity of the titled body are maintained, and the high electric charge holding power of the titled body is obtd., without being affected by the surroundings of an outside and the number of using, thereby obtaining the picture image having excellent quality.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、電子写真用、感光体に関し、特に、誌光層に
非晶質ケイ素を用いた電子写真用、感光体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to a photoreceptor for electrophotography, and in particular to a photoreceptor for electrophotography using amorphous silicon in the photosensitive layer. Regarding.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜(象をトナーと称される現1象剤で現像
後、転写紙にトナー像を転写し定着して複写物を得る方
法である。この電子写真1去に用いられる感光体は、基
本構成として導電性基板上に感光層を積層して成る。し
かして、従来より、感光層を構成する材料としてはセレ
ンあるいはセレン合金、硫化カドミウム、酸化亜鉛等の
無機感光材料、あるいは、ポリビニルカルバゾール、ト
リニトロフルオレノン、ビスアゾ顔料、フタロンアニン
、ピラゾリン、ヒドラゾン等の有mFF<光材料が知ら
れており、感光1を土層あるいは積、1にして用いられ
ている。
In conventional electrophotography, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called toner, the toner image is transferred to transfer paper. This is a method of fixing and obtaining copies.The basic structure of the photoreceptor used in this electrophotography is a photosensitive layer laminated on a conductive substrate. The materials include inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, and mFF photomaterials such as polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalonanine, pyrazoline, and hydrazone. It is used with 1 representing the soil layer or layer.

発明が解決しようとする問題点 しかしながら、従来より用いられているこれらの感光層
は、耐久性、耐熱性、光感度などにおいて未だ解決すべ
き問題点を有している。
Problems to be Solved by the Invention However, these conventionally used photosensitive layers have problems in durability, heat resistance, photosensitivity, etc. that still need to be solved.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、7ラン
(SI84)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩擦にも強く、耐熱性も高
く、機械的強度においてもすぐれている。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon has an amorphous silicon film formed on a conductive substrate using a glow discharge decomposition method using 7-run (SI84) gas. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to friction, has high heat resistance, and has excellent mechanical strength.

更に、非晶質ケイ素は、分光感度域が広く、高い光感度
を有する如く感光特性もすぐれてる。しかし反面、非晶
質ケイ素を用いた感光体は、暗減衰が大きく、帯電して
も十分な帯電電位が得られないという欠点を有する。即
ち、非晶質ケイ素感光体を帯電し、像露光して静電潜像
を形成し、次いで現像する際、感光体上の表面電荷が像
露光工程まで、あるいは現像工程までの間に光照射を受
けなかった部分の電荷までも減衰してしまい、現像に必
要な帯電電位が得られない。この帯電電位の減衰は、環
境条件の影響によっても変化しやすく、特に高温高湿環
境では帯電電位が大巾に低下する。
Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoreceptor is not irradiated with light until the imagewise exposure step or the development step. Even the charge on the parts that are not affected is attenuated, making it impossible to obtain the charging potential necessary for development. This attenuation of the charging potential is likely to change depending on the influence of environmental conditions, and in particular, the charging potential decreases significantly in a high temperature and high humidity environment.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雲囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the cloud surroundings of the external environment.

また、不発明の他の目的は、繰返し使用されても画像品
質の浸れた電子写真用感光体を提供することにあるっ 更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Another object of the invention is to provide an electrophotographic photoreceptor with improved image quality even after repeated use. An object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as light sensitivity and photosensitivity.

問題点を解決するための手段 本発明者は、鋭意研究を行なった結果、導電性基板上に
、中間層を積層し、その上に、非晶質ケイ素から成る光
導電層を被覆し、該中間層として、有機チタニウム化合
物を少なくとも1種類含有する溶液の乾燥硬化物を用い
ることによって上記目的が達成されることを見出した。
Means for Solving the Problems As a result of extensive research, the inventor of the present invention laminated an intermediate layer on a conductive substrate, coated it with a photoconductive layer made of amorphous silicon, and It has been found that the above object can be achieved by using, as the intermediate layer, a dried and cured product of a solution containing at least one organic titanium compound.

光導電層としては、水素原子を含有する非晶質ケイ素を
主体とし、不純物としてホウ素原子を含有し、更に、炭
素原子、窒素原子または酸素原子のうちの少なくとも1
種類を含有するp型半導体を用いる。
The photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms, contains boron atoms as impurities, and further contains at least one of carbon atoms, nitrogen atoms, and oxygen atoms.
A p-type semiconductor containing p-type semiconductors is used.

かくして、本発明に従えば、導電性基板上に中間層およ
び光導電層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体として不純物としてホウ素原子を含有し、更に、
炭素原子、窒素原子または酸素原子のうちの少なくとも
1種類を含有するp型半導体から成り、前記中間層が、
有機チタニウム化合物を少なくとも1種類含む溶液の乾
燥硬化物から成ることを特徴とする電子写真用感光体が
提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. Contains a boron atom as an impurity, and further,
The intermediate layer is made of a p-type semiconductor containing at least one of carbon atoms, nitrogen atoms, and oxygen atoms, and the intermediate layer is
There is provided an electrophotographic photoreceptor characterized by being made of a dried and cured product of a solution containing at least one type of organic titanium compound.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機チタニウム化合物としては、種々のものが考
えられるが、特に好ましいのは、チタニウム錯体および
チタニウムアルコキシドである。これらの好ましい例と
しては、 ジイソプロポキシ・チタンビス(アセチルアセト ネ 
− ト ) 、 ポリチタンアセチルアセトネート、 ビス(アセチルアセトネート)チタンオキシド、チタニ
ウムテトラメトキサイド、チタニウムテトラエトキサイ
ド、チタニウムテトラ−n−プロポキサイド、チタニウ
ムテトラ−イソ−プロポキサイド、チタニウムテトラブ
トキサイド、チタニウムテトラ−イソ−ブトキサイド、
等が挙げられる。
Although various organic titanium compounds can be used to form the intermediate layer of the electrophotographic photoreceptor of the present invention, titanium complexes and titanium alkoxides are particularly preferred. Preferred examples of these include diisopropoxy titanium bis(acetylacetone).
), polytitanium acetylacetonate, bis(acetylacetonate) titanium oxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetra-iso-propoxide, titanium tetrabutoxide, titanium tetra -iso-butoxide,
etc.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機チタニウム化合物の1種または2種以上を適当
な溶媒に溶解した溶液を塗布する。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above organic titanium compounds dissolved in a suitable solvent is coated.

また、この際、これらの有機チタニウム化合物に有機ケ
イ素化合物を混合した溶液を用いてもよい。
Further, at this time, a solution obtained by mixing these organic titanium compounds with an organic silicon compound may be used.

この有機ケイ素化合物としては一般にシランカップリン
グ剤と呼ばれている化合物が好適であり、例えば、ビニ
ルトリクロルシラン、ビニルトリエトキシシラン、ビニ
ルトリス(β−メトキシエトキシ)シラン、r−グリシ
ドキシプロピルトリメトキンシラン、γ−メタアクリロ
キシプロピルトリメトキシシラン、N−β(アミノエチ
ル>r−アミノプロピルトリメトキシシラン、N−β(
アミノエチル)T−アミノプロピルメチルジメトキシシ
ラン、r−クロロプロピルトリメトキシシラン、γ−メ
ルカプトプロピルトリメトキシシラン、γ−アミノプロ
ピルトリエトキシシラン、メチルトリメトキシシラン、
ジメチルジメトキシシラン、トリメチルモノメトキシシ
ラン、ジフェニルジメトキシシラン、ジフェニルジェト
キシシラン、モノフェニルトリメトキシシラン等が挙げ
られる。
Compounds generally called silane coupling agents are suitable as this organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, r-glycidoxypropyltrimethquine, etc. Silane, γ-methacryloxypropyltrimethoxysilane, N-β(aminoethyl>r-aminopropyltrimethoxysilane, N-β(
(aminoethyl) T-aminopropylmethyldimethoxysilane, r-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, methyltrimethoxysilane,
Examples include dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane.

このようなシランカップリング剤を混合して用いる場合
には、該シランカップリング剤が全固形物重量に対して
5〜50%となるようにするのがよい。
When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機チタニウム化合物、場合によっては更に
を機ケイ素化合物を含有する溶液を、導電性基板上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾燥硬化させ、その上に光導
電層を積層することによって本発明の電子写真用感光体
が得られる。
Thus, a solution containing an organotitanium compound and optionally an organosilicon compound is applied onto a conductive substrate.
The electrophotographic photoreceptor of the present invention can be obtained by coating by spray coating, dip coating, knife coating, roll coating, or the like, drying and curing, and laminating a photoconductive layer thereon.

乾燥硬化温度は100〜400℃の間の任意の温度に設
定することができる。最終的に1弄られる中間層の膜厚
も任意に設定され得るが、0.1〜10μmが好適であ
る。
The drying and curing temperature can be set at any temperature between 100 and 400°C. The thickness of the intermediate layer that is finally removed can be set arbitrarily, but it is preferably 0.1 to 10 μm.

非晶質ケイ素を主体とする光導電層は、SiH,、s 
i2Hg 、S i:Hs 、S i<H+。、等の水
素ケイ素ガスの1種またはそれらの混合物を原料として
、グロー放電法、スパッタリング法、イオンブレーティ
ング法、真空蒸着法などの方法によって中間l上に形成
する。中でも、プラズマCVD(Chemical V
apor Depositlon  )法によりシラン
(SiH4)ガス等をグロー放電分解する方法(グロー
放電法)が、膜中への水素の含有量の制御の点から好ま
しい。また、この場合水素の含有を一層効率良く行なう
ために、プラズマCVD装置内にシランガス等に同時に
、別途に水素(H2)ガスを導入してもよい。また、膜
成長速度の点からは、SiH,、Si□H6を用いるの
が好ましい。
The photoconductive layer mainly composed of amorphous silicon is SiH,,s
i2Hg, S i:Hs, S i<H+. , etc., or a mixture thereof, as a raw material, and is formed on the intermediate layer by a method such as a glow discharge method, a sputtering method, an ion blasting method, or a vacuum evaporation method. Among them, plasma CVD (Chemical V
A method (glow discharge method) in which silane (SiH4) gas or the like is decomposed by glow discharge using an apor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as the silane gas or the like. Furthermore, from the viewpoint of film growth rate, it is preferable to use SiH, Si□H6.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶質ケイ素を主体として不純物
としてリン原子を含をするp型半導体からなり、更に、
炭素原子、窒素原子または酸素原子のうちの少なくとも
1種類を含有している。このような原子の含有は、特に
感光層膜の暗抵抗の増加、光感度の増加、更には、帯電
能(単位膜厚あたりの帯電電位)の増加の点から好まし
この非晶質ケイ素感光層へのホウ素(B)原子の添加に
は通常シボラン(B2 Hs)ガスが原料として用いら
れる。この場合B原子の添加量は10〜100ppm 
の程度である。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is made of a p-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing phosphorus atoms as impurities;
It contains at least one type of carbon atom, nitrogen atom, or oxygen atom. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer film, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film thickness). Ciborane (B2 Hs) gas is usually used as a raw material for adding boron (B) atoms to the layer. In this case, the amount of B atoms added is 10 to 100 ppm
This is the extent of

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength region. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロー放電分解  ゛を行なえばよい。以上のよう
にプラズマCVD法による非晶質ケイ素から成る光導電
層を形成するのに有効な放電条件は、例えば、交流放電
の場合、周波数は通常0.1〜33 MHz、放電時の
真空度は0、1〜5Torr、基板加熱温度は100〜
400℃である。しかして、非晶質ケイ素を主体とする
光導電層の膜厚は、1〜100μm、特に10〜50μ
mとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 33 MHz, and the degree of vacuum during discharge. is 0.1~5 Torr, substrate heating temperature is 100~
The temperature is 400°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, particularly 10 to 50 μm.
It is preferable to set it to m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1; 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Al基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
Hl)ガスを毎分120cc。
Comparative Example 1: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
Hl) gas at 120cc per minute.

水素希釈の100 CN9m シボラフ(B’2H3)
ガスを毎分33cc、およびエチレン(C2H,)ガス
を毎分15cc、さらに100%水素(N2)ガスを毎
分75ccの範囲で流入させ、反応槽内をQ、5Tor
rの内圧に維持した後、13.57MHzの高周波電力
を投入して、グロー放電を生じせしめ、高周波電源のa
カを85Wに維持した。このようにして、円筒状のA1
基板上に厚さ25μmの非晶質ケイ素を主体とし不純物
としてホウ素原子を含有し、更に水素と炭素を含むp型
半導体から成る光導電層を有する感光体を得た。
100 CN9m Cibolaf (B'2H3) diluted with hydrogen
33cc of gas per minute, 15cc of ethylene (C2H,) gas, and 75cc of 100% hydrogen (N2) gas per minute were introduced into the reaction tank, and the inside of the reaction tank was heated to Q, 5 Tor.
After maintaining the internal pressure at r, high-frequency power of 13.57 MHz is applied to generate glow discharge, and the high-frequency power supply a
The power was maintained at 85W. In this way, the cylindrical A1
A photoreceptor was obtained having a 25 μm thick photoconductive layer on a substrate made of a p-type semiconductor mainly composed of amorphous silicon, containing boron atoms as impurities, and further containing hydrogen and carbon.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
1尋る画像濃度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use could not be obtained.

実施例1: 比較例1と同じ形状の円筒状A 1基板上に、ジイソブ
ポキシチタンピス(アセチルアセトネート)1重量部、
n−ブタノール20重量部からなる溶液を浸漬塗布し、
250℃の炉中で2時間乾燥して0.4μm厚の中間層
を設けた。次に、この中間層上に、比較例1と同じ方法
により、比較例1と同じ内容の非晶質ケイ素を主とする
光導電層を、比較例1とほぼ同じ膜厚で設けた。このよ
うにして得られた光導電層はセラミックに似た性質を持
ち、非晶質珪素の涜れた特性である、表面硬度、耐摩耗
性、耐熱性をそのま\有していた。
Example 1: On one cylindrical A substrate having the same shape as Comparative Example 1, 1 part by weight of diisobutoxy titanium pis (acetylacetonate),
Applying a solution consisting of 20 parts by weight of n-butanol by dip coating,
It was dried in an oven at 250° C. for 2 hours to provide a 0.4 μm thick intermediate layer. Next, on this intermediate layer, a photoconductive layer mainly made of amorphous silicon having the same content as in Comparative Example 1 was provided by the same method as in Comparative Example 1, and with almost the same thickness as in Comparative Example 1. The photoconductive layer thus obtained had properties similar to ceramics, and had the same surface hardness, abrasion resistance, and heat resistance that are the inferior properties of amorphous silicon.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc。
Comparative Example 2: A cylindrical A1 substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 12 Qcc per minute.

水素希釈の1000ppm シボラフ (B2H3)ガ
スを毎分30cc、および100%の窒素(N2)ガス
を毎分9Qcc、さらに100%水素(N2)ガスを毎
分IQccで流入させ、反応槽内をG、 5Torrの
内圧に維持した後、13.56MHzの高周波電力を投
入して、グロー放電を生じせしめ、高周波電源の出力を
85Wに維持した。このようにして円筒状のAf基板上
に、厚さ25μmの非晶質ケイ素を主体とし不純物とし
てホウ素、更に、水素と窒素を含有するp型半導体から
成る光導電層を有する感光体を得た。
Hydrogen diluted 1000 ppm Siboraf (B2H3) gas was introduced at 30 cc per minute, 100% nitrogen (N2) gas was introduced at 9 Qcc per minute, and 100% hydrogen (N2) gas was introduced at IQcc per minute. After maintaining the internal pressure at 5 Torr, high frequency power of 13.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, a photoreceptor having a 25 μm thick photoconductive layer made of a p-type semiconductor mainly composed of amorphous silicon and containing boron as impurities and further hydrogen and nitrogen was obtained on a cylindrical Af substrate. .

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は1尋られなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, the image density was not acceptable for practical use.

実施例2: 比較例2と同じ形状の円筒状A1基板上に、テトラエチ
ルオルソチタネート1重量部、イソプロピルアルコール
30重量部からなる溶液を浸漬塗布し、250℃の炉中
で2時間乾燥して0.3μm厚の中間層を設けた。次に
、この中間層上に、比較例2と同じ方法により、比較例
2と同じ内容の非晶質ケイ素を主体とする光導電層を、
比較例2とほぼ同じ膜厚で設けた。
Example 2: A solution consisting of 1 part by weight of tetraethylorthotitanate and 30 parts by weight of isopropyl alcohol was dip-coated onto a cylindrical A1 substrate having the same shape as in Comparative Example 2, and dried in an oven at 250° C. for 2 hours. A .3 μm thick intermediate layer was provided. Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 2 was formed by the same method as in Comparative Example 2.
The film thickness was approximately the same as that of Comparative Example 2.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分120cc、水素希釈の1000ρp
m シボラフ (B2 H3)ガスを毎分3Qcc、お
よび100%の酸素(02)ガスを毎分1.0cc、さ
らに100%水素(H2)ガスを毎分39ccで流入さ
せ、反応槽内を0.5Torrの内圧に維持した後、1
3.56MHzの高周波電力を投入して、グロー放電を
生じせしめ、高周波電源の出力を85Wに維持した。こ
のようにして円筒状の、1基板上に、厘さ25μmで非
晶質ケイ素を主体とし不純物としてホウ素、更に、水素
と酸素を含有するp型半導体から成る光導電層を有する
感光体を得た。
Comparative Example 3: A cylindrical A1 substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 120cc/min, hydrogen dilution at 1000ρp
m Siboraf (B2 H3) gas was introduced at 3 Qcc per minute, 100% oxygen (02) gas was introduced at 1.0 cc per minute, and 100% hydrogen (H2) gas was introduced at 39 cc per minute to bring the inside of the reaction vessel to 0.0 cc per minute. After maintaining an internal pressure of 5 Torr, 1
High frequency power of 3.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, a cylindrical photoreceptor having a photoconductive layer having a thickness of 25 μm and consisting of a p-type semiconductor mainly composed of amorphous silicon and containing boron as impurities and further hydrogen and oxygen was obtained on one cylindrical substrate. Ta.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価を行なったところ、実用に耐え
得る画像濃度は得られなかった。
When the photoreceptor thus obtained was placed in a copying machine and image quality was evaluated using a positive corona charging method, an image density that could withstand practical use was not obtained.

実施例3: 比較例3と同じ形状の円筒状Afl基板上に、テトラブ
チルオルソチタネート1重量部、T−アクリロキシプロ
ピルトリメトキシシラン1重量部、メチルアルコール1
0重量部、イソプロピルアルコール20重量部からなる
溶液を浸漬塗布し、250℃の炉中にて2時間乾燥して
0.3μm厚の中間層を設けた。次に、この中間層上に
、比較例3と同じ方法により比較例3と同じ内容の非晶
質ケイ素を主体とする光導電層を比較例3とほぼ同じ膜
厚で設けた。
Example 3: On a cylindrical Afl substrate having the same shape as Comparative Example 3, 1 part by weight of tetrabutyl orthotitanate, 1 part by weight of T-acryloxypropyltrimethoxysilane, and 1 part by weight of methyl alcohol were added.
A solution consisting of 0 parts by weight and 20 parts by weight of isopropyl alcohol was applied by dip coating and dried in an oven at 250° C. for 2 hours to form an intermediate layer with a thickness of 0.3 μm. Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided by the same method as in Comparative Example 3 and having almost the same thickness as in Comparative Example 3.

このようにして辱られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。
When the photoreceptor thus exposed was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

発明の効果 本発明の電子写真用感光体は、非晶゛質ケイ素から成る
感光体の優れた特性である高機減的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外B環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention retains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high light sensitivity. B It has a high charge retention ability without being affected by the environment or the number of times of use, and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層および光導電層を順次積層して成
る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてホウ素原子を含有するp型半導体か
ら成り、更に、炭素原子、窒素原子または酸素原子のう
ちの少なくとも1種類を含有しており、 前記中間層が、有機チタニウム化合物を少なくとも1種
類含む溶液の乾燥硬化物から成ることを特徴とする電子
写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms as an impurity. The intermediate layer is made of a p-type semiconductor containing a boron atom, and further contains at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer is drying and curing a solution containing at least one type of organic titanium compound. An electrophotographic photoreceptor characterized by being made of a material.
JP11780586A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0721648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11780586A JPH0721648B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11780586A JPH0721648B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62273550A true JPS62273550A (en) 1987-11-27
JPH0721648B2 JPH0721648B2 (en) 1995-03-08

Family

ID=14720711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11780586A Expired - Lifetime JPH0721648B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0721648B2 (en)

Also Published As

Publication number Publication date
JPH0721648B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JPS62273547A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273549A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273554A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPS62273563A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPS62273551A (en) Electrophotographic sensitive body
JPS62273546A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPS62273567A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body