JPH0727259B2 - Electrophotographic photoconductor - Google Patents

Electrophotographic photoconductor

Info

Publication number
JPH0727259B2
JPH0727259B2 JP61117821A JP11782186A JPH0727259B2 JP H0727259 B2 JPH0727259 B2 JP H0727259B2 JP 61117821 A JP61117821 A JP 61117821A JP 11782186 A JP11782186 A JP 11782186A JP H0727259 B2 JPH0727259 B2 JP H0727259B2
Authority
JP
Japan
Prior art keywords
photoconductor
amorphous silicon
photoconductive layer
tin
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61117821A
Other languages
Japanese (ja)
Other versions
JPS62288855A (en
Inventor
譲 福田
茂 八木
健一 唐木田
康令 奥川
泰男 盧
徳好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP61117821A priority Critical patent/JPH0727259B2/en
Publication of JPS62288855A publication Critical patent/JPS62288855A/en
Publication of JPH0727259B2 publication Critical patent/JPH0727259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
TECHNICAL FIELD The present invention relates to an electrophotographic photoconductor, and more particularly to an electrophotographic photoconductor using amorphous silicon in a photosensitive layer.

従来技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像を現像剤で現像後、転写紙にトナー像
を転写し定着して複写物を得る方法として知られてい
る。この電子写真法に用いられる感光体は、基本構成と
して導電性基板上に感光層を積層して成る。しかして、
従来より、感光層を構成する材料としてはセレンあるい
はセレン合金、硫化カドミウム、酸化亜鉛等の無機感光
材料、あるいは、ポリビニルカルバゾール、トリニトロ
フルオレノン、ビスアゾ顔料、フタロシアニン、ピラゾ
リン、ヒドラゾン等の有機感光材料が知られており、感
光層を単層あるいは積層にして用いられている。しかし
ながら、従来より用いられているこれらの感光層は、耐
久性、耐熱性、光感度などにおいて未だ解決すべき問題
点を有している。
2. Description of the Related Art The electrophotographic method is a method for obtaining a copy by forming an electrostatic latent image on a photoconductor by charging and imagewise exposing it, developing the latent image with a developer, and then transferring and fixing the toner image on a transfer paper. Are known. The photoconductor used in this electrophotographic method has a basic structure in which a photosensitive layer is laminated on a conductive substrate. Then,
Conventionally, as the material constituting the photosensitive layer, an inorganic photosensitive material such as selenium or selenium alloy, cadmium sulfide, zinc oxide, or an organic photosensitive material such as polyvinylcarbazole, trinitrofluorenone, bisazo pigment, phthalocyanine, pyrazoline, or hydrazone. It is known and is used as a single layer or a laminate of photosensitive layers. However, these conventionally used photosensitive layers still have problems to be solved in terms of durability, heat resistance and photosensitivity.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH4)ガスをグロー放電分解法等によりケイ素の非晶
質膜を導電性基板上に形成したものであって、非晶質ケ
イ素膜中に水素原子が組み込まれて光導電性を呈するも
のである。この非晶質ケイ素感光体は、感光層の表面硬
度が高く傷つきにくく、摩耗にも強く、耐熱性も高く、
機械的強度においてもすぐれている。更に、非晶質ケイ
素は、分光感度域が広く、高い光感度を有する如く感光
特性もすぐれている。しかし反面、非晶質ケイ素を用い
た感光体は、暗減衰が大きく、帯電しても十分な帯電電
位が得られないという欠点を有する。即ち、非晶質ケイ
素感光体を帯電し、像露光して静電潜像を形成し、次い
で現像する際、感光体上の表面電荷が像露光工程まで、
あるいは現像工程までの間に光照射を受けなかった部分
の電荷までも減衰してしまい、現像に必要な帯電電位が
得られない。この帯電電位の減衰は、環境条件の影響に
よっても変化しやすく、特に高温高湿環境では帯電電位
が大巾に低下する。更に、非晶質ケイ素の感光体は、繰
返し使用すると徐々に帯電電位が低下してしまう。この
様な帯電電位の暗減衰の大きな感光体を用いて複写物を
作成すると、画像濃度が低くまた、中間調の再現性に乏
しい複写物となる。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various improvements have been attempted. A photoreceptor using this amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition method of silane (SiH 4 ) gas. It has photoconductivity due to the incorporation of hydrogen atoms into it. This amorphous silicon photoreceptor has a high surface hardness of the photosensitive layer, is hard to be scratched, is resistant to abrasion, and has high heat resistance.
It also has excellent mechanical strength. Further, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity so as to have high photosensitivity. On the other hand, however, the photoconductor using amorphous silicon has a drawback that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, when the amorphous silicon photoconductor is charged, imagewise exposed to form an electrostatic latent image, and then developed, the surface charge on the photoconductor remains until the image exposure step.
Alternatively, even the electric charge of the portion which was not irradiated with light during the developing step is attenuated, and the charging potential required for the developing cannot be obtained. The decay of the charging potential is likely to change due to the influence of environmental conditions, and particularly in a high temperature and high humidity environment, the charging potential is drastically reduced. Furthermore, the charge potential of an amorphous silicon photoreceptor gradually decreases when it is repeatedly used. When a copy is made using such a photoreceptor having a large dark decay of the charging potential, the copy has low image density and poor halftone reproducibility.

本発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにあ
る。
OBJECT OF THE INVENTION It is an object of the present invention to provide an electrophotographic photosensitive member which solves the above-mentioned drawbacks of the photosensitive member using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, an object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoconductor in which the dark decay of the charging potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photosensitive member whose charging characteristics are not affected by changes in the atmosphere of the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor having excellent image quality even if it is repeatedly used.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic characteristics such as mechanical strength, durability, heat resistance and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板上
に、非晶質ケイ素から成る光導電層を被覆し、更に、そ
の上に表面層を積層すると共に、該表面層として、スズ
のアセチルアセトネート錯体またはスズのアルコキシド
を少なくとも1種類含有する溶液の乾燥硬化物を用いる
ことによって上記目的が達成されることを見出した。光
導電層としては、非晶質ケイ素を主体とするi型半導体
を用いる。
As a result of earnest research, the present inventor has coated a photoconductive layer made of amorphous silicon on a conductive substrate, and further laminated a surface layer on the photoconductive layer. It has been found that the above object can be achieved by using a dry-cured product of a solution containing at least one tin acetylacetonate complex or tin alkoxide. An i-type semiconductor mainly containing amorphous silicon is used as the photoconductive layer.

かくして、本発明に従えば、導電性基板上に光導電層お
よび表面層を順次積層して成る電子写真用感光体におい
て、前記光導電層が、水素原子を含有する非晶質ケイ素
を主体とするi型半導体から成り、更に、炭素原子、窒
素原子、または酸素原子の内少なくとも1種類を含有し
ており、前記表面層が、スズのアセチルアセトネート錯
体またはスズのアルコキシドを少なくとも1種類含む溶
液の乾燥硬化物から成ることを特徴とする電子写真用感
光体が提供される。
Thus, according to the present invention, in the electrophotographic photosensitive member formed by sequentially stacking the photoconductive layer and the surface layer on the conductive substrate, the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms. A solution containing at least one kind of carbon atom, nitrogen atom or oxygen atom, wherein the surface layer contains at least one kind of tin acetylacetonate complex or tin alkoxide. There is provided an electrophotographic photosensitive member comprising the dried and cured product of

本発明の電子写真用感光体の表面層を形成するのに用い
られるスズのアセチルアセトネート錯体またはスズのア
ルコキシドの好ましい例としては、スズビスアセチルア
セトネート、スズテトラメトキシド、スズテトラエトキ
シド、スズテトライソプロポキシド、スズテトラブトキ
シド、スズテトラ−Sec−ブトキシドが挙げられる。
Preferred examples of the tin acetylacetonate complex or tin alkoxide used for forming the surface layer of the electrophotographic photoreceptor of the present invention include tin bisacetylacetonate, tin tetramethoxide, tin tetraethoxide, Examples include tin tetraisopropoxide, tin tetrabutoxide, and tin tetra-Sec-butoxide.

本発明の電子写真用感光体を得るに当っては、上記のご
とき特定の有機スズ化合物の1種または2種以上を適当
な溶媒に溶解した溶液を塗布する。また、この際、これ
らの有機スズ化合物に有機ケイ素化合物を混合した溶液
を用いてもよい。この有機ケイ素化合物としては一般に
シランカップリング剤と呼ばれている化合物が好適であ
り、例えば、ビニルトリクロルシラン、ビニルトリエト
キシシラン、ビニルトリス(β−メトキシエトキシ)シ
ラン、γ−グリシドキシプロピルトリメトキシシラン、
γ−メタアクリロキシプロピルトリメトキシシラン、N
−β(アミノエチル)γ−アミノプロピルトリメトキシ
シラン、N−β(アミノエチル)γ−アミノプロピルメ
チルジメトキシシラン、γ−クロロプロピルトリメトキ
シシラン、γ−メルカプトプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、メチルト
リメトキシシラン、ジメチルジメトキシラン、トリメチ
ルモノメトキシシラン、ジフェニルジメトキシシラン、
ジフェニルジエトキシシラン、モノフェニルトリメトキ
シシラン等が挙げられる。このようなシランカップリン
グ剤を混合して用いる場合には、該シランカップリング
剤が全固形物重量に対して5〜50%となるようにするの
がよい。
In obtaining the electrophotographic photoreceptor of the present invention, a solution prepared by dissolving one or more of the above specific organotin compounds in a suitable solvent is applied. At this time, a solution obtained by mixing these organotin compounds with an organosilicon compound may be used. A compound generally called a silane coupling agent is suitable as the organosilicon compound, and examples thereof include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and γ-glycidoxypropyltrimethoxy. Silane,
γ-methacryloxypropyltrimethoxysilane, N
-Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane Ethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane,
Examples thereof include diphenyldiethoxysilane and monophenyltrimethoxysilane. When such a silane coupling agent is mixed and used, it is preferable that the silane coupling agent accounts for 5 to 50% of the total solid weight.

かくして、有機スズ化合物、場合によっては更に有機ケ
イ素化合物を含有する溶液を、光導電層上に、スプレー
塗布、浸漬塗布、ナイフ塗布またはロール塗布などの方
法で塗布した後、乾燥硬化させることによって本発明の
電子写真用感光体が得られる。乾燥硬化温度は100〜400
℃の間の任意の温度に設定することができる。最終的に
得られる表面層の膜厚も任意に設定され得るが、0.1〜1
0μmが好適である。
Thus, a solution containing an organotin compound, and optionally an organosilicon compound, is applied onto the photoconductive layer by a method such as spray coating, dip coating, knife coating or roll coating, and then dried and cured to form a solution. The electrophotographic photoreceptor of the invention can be obtained. Dry hardening temperature is 100 ~ 400
It can be set to any temperature between ° C. The film thickness of the finally obtained surface layer can also be set arbitrarily, but 0.1 to 1
0 μm is preferable.

非晶質ケイ素を主体とする光導電層は、SiH4、Si2H6、S
i3H8、Si4H10、等の水素化ケイ素ガスの1種またはそれ
らの混合物を原料として、グロー放電法、スパッタリン
グ法、イオンプレーテイング法、真空蒸着法などの方法
によって基板上に形成する。中でも、プラズマCVD(Che
mical Vapor Deposition)法によりシラン(SiH4)ガス
等をグロー放電分解する方法(グロー放電法)が、膜中
への水素の含有量の制御の点から好ましい。また、この
場合水素の含有を一層効率良く行なうために、プラズマ
CVD装置内にシランガス等と同時に、別途に水素(H2
ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is composed of SiH 4 , Si 2 H 6 , and S.
Formed on a substrate by a glow discharge method, a sputtering method, an ion plating method, a vacuum deposition method or the like using one kind of a silicon hydride gas such as i 3 H 8 or Si 4 H 10 or a mixture thereof as a raw material. To do. Among them, plasma CVD (Che
A method of decomposing silane (SiH 4 ) gas and the like by glow discharge (glow discharge method) by a mical vapor deposition method is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, plasma
Separately hydrogen (H 2 ) in the CVD device at the same time as silane gas, etc.
Gas may be introduced.

本発明の電子写真用感光体の光導電層として用いるの
は、水素原子を含有する非晶質ケイ素を主体とする、い
わゆるi型半導体である。なお、よりi型半導体にする
ように微量のホウ素を含有させるのが好ましく、このホ
ウ素原子の添加には、通常、ジボラン(B2H6)ガスが原
料として用いられ、ホウ素原子の添加量は10〜100ppm程
度であるのが好ましい。
What is used as the photoconductive layer of the electrophotographic photoreceptor of the present invention is a so-called i-type semiconductor mainly containing amorphous silicon containing hydrogen atoms. Note that it is preferable to add a trace amount of boron so as to obtain a more i-type semiconductor. For the addition of the boron atom, diborane (B 2 H 6 ) gas is usually used as a raw material, and the addition amount of the boron atom is It is preferably about 10 to 100 ppm.

また、本発明に従う電子写真用感光体においては、光導
電層が、更に、炭素原子、窒素原子または酸素原子の内
少なくとも1種類を含有している。このような原子の含
有は、特に感光層膜の暗抵抗の増加、光感度の増加、更
には、帯電能(単位膜厚あたりの帯電電位)の増加の点
から好ましい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer further contains at least one kind of carbon atom, nitrogen atom or oxygen atom. The inclusion of such atoms is particularly preferable from the viewpoint of increasing the dark resistance of the photosensitive layer film, increasing the photosensitivity, and further increasing the charging ability (charging potential per unit film thickness).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素を
添加することも可能である。また、ハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもでき
る。
Further, an element such as germanium (Ge) may be added to the photoconductive layer film for the purpose of increasing the sensitivity of the photoconductor in the long wavelength region. In addition, dark resistance can be increased by adding a halogen atom.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素化
ケイ素ガス、更に所望に応じて水素ガスを用い、それら
のガスと共に、必要な元素を含むガス状化合物を導入し
てグロー放電分解を行なえばよい。以上のようにプラズ
マCVD法による非晶質ケイ素から成る光導電層を形成す
るのに有効な放電条件は、例えば、交流放電の場合、周
波数は通常0.1〜30MHz、放電時の真空度は0.1〜5Torr、
基板加熱温度は100〜400℃である。しかして、非晶質ケ
イ素を主体とする光導電層の膜厚は、1〜100μm、特
に10〜50μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photosensitive member of the present invention, in the plasma CVD apparatus, a silicon hydride gas as the main raw material, further using hydrogen gas as desired, together with those gases, Glow discharge decomposition may be performed by introducing a gaseous compound containing a necessary element. The discharge conditions effective for forming the photoconductive layer made of amorphous silicon by the plasma CVD method as described above are, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum degree at the time of discharge is 0.1 to 30 MHz. 5Torr,
The substrate heating temperature is 100 to 400 ° C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is preferably 1 to 100 μm, particularly 10 to 50 μm.

導電性基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or a paper which has been made conductive can be used. In addition, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, and an endless belt shape.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
Examples Next, the electrophotographic photoreceptor of the present invention will be further described with reference to Comparative Examples and Examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、100%エチレン(C2H4)ガスを毎分12cc、さら
に100%水素(H2)ガスを毎分88ccの範囲で流入させ、
反応槽内を0.5Torrの内圧に維持した後、13.56MHzの高
周波電力を投入して、グロー放電を生じせしめ、高周波
電源の出力を85Wに維持した。このようにして、円筒状
のAl基板上に厚さ25μmで非晶質ケイ素を主体とし微量
のホウ素原子と更に炭素原子を含有するi型半導体から
成る光導電層を有する感光体を得た。
Comparative Example 1: A cylindrical Al substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining at 0 ℃, 100cc silane (SiH 4 ) gas 120cc / min, 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen 20cc / min, 100% ethylene (C 2 H 4 ) gas in the reaction chamber. Inject 12 cc / min and 100% hydrogen (H 2 ) gas in the range of 88 cc / min,
After maintaining the internal pressure of the reactor at 0.5 Torr, high frequency power of 13.56 MHz was applied to cause glow discharge, and the output of the high frequency power source was maintained at 85 W. Thus, a photoconductor having a thickness of 25 μm and having a photoconductive layer composed of an i-type semiconductor mainly containing amorphous silicon and having a trace amount of boron atoms and further carbon atoms on a cylindrical Al substrate was obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。また、この感光体
を30℃、85%RHの環境下で画質評価したところ、初期時
より画像の流れが観察された。
The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.

実施例1: 比較例1と同一方法、同一条件にて作成した非晶質ケイ
素を主体とするi型半導体から成る光導電層を有する感
光体の上に、スズビスアセチルアセトネート1重量部、
メチルトリメトキシシラン1重量部、メチルアルコール
20重量部、イソプロピルアルコール30重量部からなる溶
液を浸漬塗布し、200℃の炉中で1時間乾燥硬化し、0.2
μ厚の表面層を有する感光体を得た。このように得られ
た表面層はセラミックスに似た性質を持ち、非晶質ケイ
素の優れた特性である、表面硬度、耐摩耗性、耐熱性を
ほとんど損うことがなかった。
Example 1: 1 part by weight of tin bisacetylacetonate was formed on a photoreceptor having a photoconductive layer made of an i-type semiconductor mainly composed of amorphous silicon, which was prepared under the same method and under the same conditions as in Comparative Example 1.
Methyltrimethoxysilane 1 part by weight, methyl alcohol
A solution consisting of 20 parts by weight and 30 parts by weight of isopropyl alcohol is applied by dip coating, dried and hardened in an oven at 200 ° C for 1 hour, and then 0.2
A photoreceptor having a μ-thick surface layer was obtained. The surface layer thus obtained had properties similar to those of ceramics, and did not impair the surface hardness, wear resistance, and heat resistance, which are the excellent characteristics of amorphous silicon.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質評価したところ、初期時では実用上
問題のない画像濃度が得られた。また、複写操作を5万
回繰り返したが画像濃度の低下はみられなかった。この
感光体を30℃、85%RHの環境下で画質評価を行なったが
画像の流れはみられず高解像度を示した。同時に、負の
コロナ帯電方式で実施した複写試験も、正帯電方式の場
合と同様、良好な結果を与えた。
The photoconductor thus obtained was placed in a copying machine, and image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed. The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、および100%の窒素(N2)ガスを毎分85cc、さ
らに100%水素(H2)ガスを毎分15ccで流入させ、反応
槽内を0.5Torrの内圧に維持した後、13.56MHzの高周波
電力を投入して、グロー放電を生じせしめ、高周波電源
の出力を85Wに維持した。このようにして円筒状のAl基
板上に、厚さ25μmで非晶質ケイ素を主体とし不純物と
して微量のホウ素、更に、窒素(N2)を含有するi型半
導体から成る光導電層を有する感光体を得た。
Comparative Example 2: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintaining 0 ° C, 100% silane (SiH 4 ) gas at 120cc / min, 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen at 20cc / min, and 100% nitrogen (N 2 ) gas in the reaction chamber. 85 cc / min, and 100% hydrogen (H 2 ) gas was flown in at 15 cc / min, and after maintaining the internal pressure of the reaction tank at 0.5 Torr, high-frequency power of 13.56 MHz was applied to cause glow discharge, The output of the high frequency power supply was maintained at 85W. In this way, a photosensitive layer having a photoconductive layer composed of an i-type semiconductor having a thickness of 25 μm, mainly amorphous silicon, and a slight amount of boron as an impurity and nitrogen (N 2 ) on a cylindrical Al substrate in this manner. Got the body

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式で画質を評価したところ、初期時では実用
上問題のない画像濃度が得られたが、複写操作を繰り返
すうちに徐々に画像濃度は低下した。また、この感光体
を30℃、85%RHの環境下で画質評価したところ、初期時
より画像の流れが観察された。
The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density of practically no problem was obtained in the initial stage, but the image density was gradually increased as the copying operation was repeated. The image density decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.

実施例2: 比較例2と同一方法、同一条件にて作成した非晶質ケイ
素を主体とし微量のホウ素、更に窒素を含有するi型半
導体から成る光導電層を有する感光体の上に、スズテト
ライソプロポキシド2重量部、ジメチルジメトキシシラ
ン1重量部、およびエチルアルコール40重量部からなる
溶液を浸漬塗布し、200℃で1時間乾燥硬化し、0.3μm
厚の表面層を有する感光体を得た。得られた表面層はセ
ラミックスに似た性質を持ち、非晶質ケイ素の優れた特
性である、表面硬度、耐摩耗性、耐熱性をほとんど損う
ことがなかった。
Example 2: Tin was formed on a photoreceptor having a photoconductive layer made of an i-type semiconductor containing amorphous silicon as a main component and a slight amount of boron and nitrogen, which was prepared under the same method and under the same conditions as in Comparative Example 2. A solution consisting of 2 parts by weight of tetraisopropoxide, 1 part by weight of dimethyldimethoxysilane, and 40 parts by weight of ethyl alcohol is dip-coated, dried and hardened at 200 ° C. for 1 hour, and has a thickness of 0.3 μm.
A photoreceptor having a thick surface layer was obtained. The obtained surface layer had properties similar to those of ceramics, and the surface hardness, wear resistance, and heat resistance, which were the excellent characteristics of amorphous silicon, were hardly impaired.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。また、複写操作を
5万回繰り返したが画像濃度の低下はみられなかった。
この感光体を30℃、85%RHの環境下で画質評価を行なっ
たが画像の流れはみられず高解像度を示した。同時に負
のコロナ帯電方式で実施した複写試験も、正帯電方式の
場合と同様、良好な結果を与えた。
The photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.
The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown. At the same time, the copy test conducted with the negative corona charging method gave good results as in the case of the positive charging method.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度である25
0℃に維持し、反応室内に100%シラン(SiH4)ガスを毎
分120cc、水素希釈の100ppmジボラン(B2H6)ガスを毎
分20cc、および、100%の酸素(O2)ガスを毎分1.0cc.
さらに100%水素(H2)ガスを毎分99ccで流入させ、反
応槽内を0.5Torrの内圧に維持した後、13.56MHzの高周
波電力を投入して、グロー放電を生じぜしめ、高周波電
源の出力を85Wに維持した。このようにして円筒状のAl
基板上に厚さ25μmで非晶質ケイ素を主体とし不純物と
して微量のホウ素、更に、酸素を含有するi型半導体か
ら成る光導電層を有する感光体を得た。
Comparative Example 3: A cylindrical Al substrate was placed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, and the substrate temperature was set to a predetermined temperature.
Maintain at 0 ℃, 100cc silane (SiH 4 ) gas 120cc / min, 100ppm diborane (B 2 H 6 ) gas diluted with hydrogen 20cc / min, and 100% oxygen (O 2 ) gas in the reaction chamber. 1.0 cc per minute.
Furthermore, 100% hydrogen (H 2 ) gas was flowed in at 99 cc / min, and after maintaining the internal pressure of the reaction tank at 0.5 Torr, high frequency power of 13.56 MHz was applied to cause glow discharge, causing high frequency power supply. The output was maintained at 85W. In this way, the cylindrical Al
A photoconductor having a thickness of 25 μm and having a photoconductive layer composed of an i-type semiconductor having a thickness of 25 μm as a main component, amorphous silicon as a main component, and a trace amount of boron as an impurity was obtained.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価を行なったところ、初期時
では実用上問題のない画像濃度が得られたが、複写操作
を繰り返すうちに徐々に画像濃度は低下した。また、こ
の感光体を30℃、85%RHの環境下で画質評価したとこ
ろ、初期時より画像の流れが観察された。
The photoconductor thus obtained was placed in a copying machine, and the image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The image density gradually decreased. In addition, when the image quality of this photoconductor was evaluated in an environment of 30 ° C. and 85% RH, the image flow was observed from the initial stage.

実施例3: 比較例3と同一方法、同一条件で作成した非晶質ケイ素
を主体とし微量のホウ素、更には酸素を含有するi型半
導体から成る光導電層を有する感光体の上に、スズテト
ラブトキシド2重量部、γ−アクリロキシプロピルトリ
メトキシシラン1重量部、メチルアルコール20重量部、
エチルアルコール30重量部からなる溶液を浸漬塗布し、
200℃で1時間乾燥硬化して、0.2μm厚の表面層を有す
る感光体を得た。得られた表面層はセラミックスに似た
性質を持ち、非晶質ケイ素の優れた特性である、表面硬
度、耐摩耗性、耐熱性をほとんど損うことがなかった。
Example 3: Tin was formed on a photoconductor having a photoconductive layer made of an i-type semiconductor containing amorphous silicon as a main component and a small amount of boron and oxygen, which was prepared under the same method and conditions as in Comparative Example 3. 2 parts by weight of tetrabutoxide, 1 part by weight of γ-acryloxypropyltrimethoxysilane, 20 parts by weight of methyl alcohol,
Dip coating a solution consisting of 30 parts by weight of ethyl alcohol,
It was dried and cured at 200 ° C. for 1 hour to obtain a photoreceptor having a surface layer having a thickness of 0.2 μm. The obtained surface layer had properties similar to those of ceramics, and the surface hardness, wear resistance, and heat resistance, which were the excellent characteristics of amorphous silicon, were hardly impaired.

このようにして得られた感光体を複写機に入れ、正のコ
ロナ帯電方式により画質評価したところ、初期時では実
用上問題のない画像濃度が得られた。また、複写操作を
5万回繰り返したが画像濃度の低下はみられなかった。
この感光体を30℃、85%RHの環境下で画質評価を行なっ
たが画像の流れはみられず高解像度を示した。負のコロ
ナ帯電方式で実施した複写試験も、正帯電方式の場合と
同様、良好な結果を与えた。
The photoconductor thus obtained was placed in a copying machine and the image quality was evaluated by a positive corona charging method. As a result, an image density practically no problem was obtained in the initial stage. The copying operation was repeated 50,000 times, but no decrease in image density was observed.
The image quality of this photoconductor was evaluated in an environment of 30 ° C and 85% RH, but no image flow was observed and high resolution was shown. The copy test performed with the negative corona charging method also gave good results, as with the positive charging method.

(発明の効果) 本発明の電子写真用感光体は、非晶質ケイ素から成る感
光体の優れた特性である高機械的強度、高耐久性、高耐
熱、高光感度を保持し、しかも、外部環境や使用回数の
影響を受けずに高い電荷保持力を有して、優れた品質の
画像を供することができる。
(Effects of the Invention) The electrophotographic photoreceptor of the present invention retains the excellent characteristics of the photoreceptor made of amorphous silicon, that is, high mechanical strength, high durability, high heat resistance and high photosensitivity, and It has a high charge retention ability without being affected by the environment and the number of times of use, and can provide an image of excellent quality.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 康令 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 盧 泰男 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (72)発明者 高橋 徳好 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社竹松工場内 (56)参考文献 特開 昭59−223444(JP,A) 特開 昭59−223446(JP,A) 特開 昭59−102240(JP,A) 特開 昭62−201457(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunori Okugawa 1600 Takematsu, Minamiashigara-shi, Kanagawa Fuji Xerox Co., Ltd. Takematsu Plant (72) Inventor Yasuo Ro, 1600 Takematsu, Minamiashigara, Kanagawa Fuji Xerox Co., Ltd. Takematsu Inside the factory (72) Inventor Tokuyoshi Takahashi 1600 Takematsu, Minamiashigara City, Kanagawa Fuji Xerox Co., Ltd. Takematsu Factory (56) Reference JP 59-223444 (JP, A) JP 59-223446 (JP, A) JP-A-59-102240 (JP, A) JP-A-62-201457 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に光導電層および表面層を順
次積層して成る電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とするi型半導体から成り、更に、炭素原子、窒素原
子または酸素原子のうちの少なくとも1種類を含有して
おり、前記表面層が、スズのアセチルアセトネート錯体
またはスズのアルコキシドを少なくとも1種類含む溶液
の乾燥硬化物から成ることを特徴とする電子写真用感光
体。
1. A photoconductor for electrophotography comprising a photoconductive layer and a surface layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is an i-type mainly composed of amorphous silicon containing hydrogen atoms. Dry curing of a solution composed of a semiconductor and further containing at least one kind of carbon atom, nitrogen atom or oxygen atom, and the surface layer containing at least one kind of tin acetylacetonate complex or tin alkoxide. A photoconductor for electrophotography, which is characterized by comprising a thing.
JP61117821A 1986-05-22 1986-05-22 Electrophotographic photoconductor Expired - Lifetime JPH0727259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117821A JPH0727259B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117821A JPH0727259B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62288855A JPS62288855A (en) 1987-12-15
JPH0727259B2 true JPH0727259B2 (en) 1995-03-29

Family

ID=14721087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117821A Expired - Lifetime JPH0727259B2 (en) 1986-05-22 1986-05-22 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0727259B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102240A (en) * 1982-12-04 1984-06-13 Konishiroku Photo Ind Co Ltd Photosensitive body and its manufacture
JPS59223446A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223444A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62201457A (en) * 1986-02-28 1987-09-05 Sharp Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS62288855A (en) 1987-12-15

Similar Documents

Publication Publication Date Title
JPH0727253B2 (en) Electrophotographic photoconductor
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0711713B2 (en) Electrophotographic photoconductor
JPH0727259B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0711707B2 (en) Electrophotographic photoconductor
JPH0711712B2 (en) Electrophotographic photoconductor
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0711714B2 (en) Electrophotographic photoconductor
JPH0727257B2 (en) Electrophotographic photoconductor
JPH0711710B2 (en) Electrophotographic photoconductor
JPH0721650B2 (en) Electrophotographic photoconductor
JPH0711709B2 (en) Electrophotographic photoconductor
JPH0727249B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0723964B2 (en) Electrophotographic photoconductor
JPH0711711B2 (en) Electrophotographic photoconductor
JPH0711708B2 (en) Electrophotographic photoconductor
JPH0721648B2 (en) Electrophotographic photoconductor
JPS62273568A (en) Electrophotographic sensitive body
JPH0727248B2 (en) Electrophotographic photoconductor
JPH0721649B2 (en) Electrophotographic photoconductor