JPS62144174A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62144174A
JPS62144174A JP28599285A JP28599285A JPS62144174A JP S62144174 A JPS62144174 A JP S62144174A JP 28599285 A JP28599285 A JP 28599285A JP 28599285 A JP28599285 A JP 28599285A JP S62144174 A JPS62144174 A JP S62144174A
Authority
JP
Japan
Prior art keywords
amorphous silicon
intermediate layer
photoreceptor
photoconductive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28599285A
Other languages
Japanese (ja)
Other versions
JPH0711708B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60285992A priority Critical patent/JPH0711708B2/en
Publication of JPS62144174A publication Critical patent/JPS62144174A/en
Publication of JPH0711708B2 publication Critical patent/JPH0711708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers

Abstract

PURPOSE:To reduce the dark decay of electrostatic charge potential by interposing an intermediate layer between an electrically conductive substrate and a photoconductive layer of amorphous silicon and using a dried and hardened substance of a soln. contg. at least one kind of org. aluminum compound as the material of the intermediate layer. CONSTITUTION:A photoconductive layer is made of an N type semiconductor contg. amorphous silicon contg. H as the principal component and P as an impurity and further contains at least one among C, N and O. An intermediate layer is made of a dried and hardened substance of a soln. contg. at least one kind of org. aluminum compound. The compound used may be trisacetylacetonatoaluminum. Such atoms are preferably contained because they are effective in increasing the dark resistance, photosensitivity and electrostatic chargeability (electrostatic charge potential per unit film thickness) of a photosensitive layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナーと称される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物を得る方法で
ある。この電子写真法に用いられる感光体は、基本構成
として導電性基板上に感光層を積層して成る。しかして
、従来より、感光層を構成する材料としてはセレンある
いはセレン合金、硫化カドミウム、酸化亜鉛等の無機に
光材料、あるいは、ポリビニルカルバゾール、トリニト
ロフルオレノン、ビスアゾ顔料、フタロシアニン、ピラ
ゾリン、ヒドラゾン等の有機感光材料が知られており、
感光層を単層あるいは積層にして用いられている。しか
しながら、従来より用いられているこれらの感光層は、
耐久性、耐熱性、光感度などにおいて未だ解決すべき問
題点を有している。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called a toner,
This is a method of transferring and fixing a toner image onto transfer paper to obtain a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer include inorganic and optical materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide; Organic photosensitive materials are known,
The photosensitive layer is used as a single layer or as a stack. However, these conventionally used photosensitive layers are
There are still problems to be solved in terms of durability, heat resistance, photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスシ
リコン)を用いた感光体が知られ種々その改善が試みら
れている。この非晶質ケイ素を用いた感光体は、シラン
(SiH,)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が大きく、帯電しても十分な帯
電電位が得られないという欠点を有する。即ち、非晶質
ケイ素感光体を帯電し、像露光して静電潜像を形成し、
次いで現像する際、感光体上の表面電荷が像露光工程ま
で、あるいは現像工程までの間に光照射を受けなかった
部分の電荷までも減衰してしまい、現像に必要な帯電電
位が得られない。この帯電電位の減衰は、璋境条件の影
響によっても変化しやすく、特に高温高温環境では帯電
電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to improve them. This photoreceptor using amorphous silicon is one in which an amorphous film of silicon is formed on a conductive substrate using silane (SiH) gas using a glow discharge decomposition method. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantage that dark decay is large and a sufficient charging potential cannot be obtained even when charged. That is, an amorphous silicon photoreceptor is charged, imagewise exposed to form an electrostatic latent image,
During subsequent development, the surface charge on the photoreceptor will attenuate until the image exposure process or even the charge on the areas that have not been exposed to light during the development process, making it impossible to obtain the charging potential necessary for development. . This attenuation of the charging potential is likely to change due to the influence of environmental conditions, and particularly in high temperature environments, the charging potential decreases significantly.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雰囲気の変
化によって影響を受けない電子写真用感光体を提供する
ことにある。
Another object of the present invention is to provide an electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の優れた電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性基板と、
非晶質ケイ素から成る光導電層との間に中間層を設ける
とともに、該中間層として、有機アルミニウム化合物を
少なくとも1種類含有する溶液の乾燥硬化物を用いるこ
とによって上記目的が達成されることを見出した。光導
電層としては、非晶質ケイ素を主体とし不純物としてリ
ン原子を°含有するN型半導体であって、更に、炭素原
子、窒素原子または酸素原子のうちの少なくとも1種類
を含有したものを用いる。
Structure of the Invention As a result of extensive research, the present inventor discovered that a conductive substrate,
The above object is achieved by providing an intermediate layer between the photoconductive layer and the photoconductive layer made of amorphous silicon, and using a dried and cured product of a solution containing at least one organic aluminum compound as the intermediate layer. I found it. As the photoconductive layer, an N-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms as impurities is used, which further contains at least one type of carbon atoms, nitrogen atoms, or oxygen atoms. .

かくして、本発明に従えば、導電性基板上に中間層及び
光導電層を順次積層して成る電子写真用感光体において
、前記光導電層が、水素原子を含有する非晶質ケイ素を
主体とし不純物としてリン原子を含有するN型半導体か
ら成り、さらに炭素原子、窒素原子または酸素原子のう
ちの少なくとも1種類を含有しており、前記中間層が、
有機アルミニウム化合物を少なくとも1種類含む溶液の
乾燥硬化物から成ることを特徴とする電子写真用感光体
が提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, the photoconductive layer is mainly made of amorphous silicon containing hydrogen atoms. The intermediate layer is made of an N-type semiconductor containing phosphorus atoms as impurities, and further contains at least one type of carbon atoms, nitrogen atoms, or oxygen atoms, and the intermediate layer
There is provided an electrophotographic photoreceptor characterized by being made of a dried and cured product of a solution containing at least one type of organoaluminum compound.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機アルミニウム化合物としては、アルミニウム
トリスアセチルアセトネート、アルミニウムメトキサイ
ド、アルミニウムエトキサイド、アルミニウムイソプロ
ポキサイド、アルミニウムーn−プロポキサイド、アル
ミニウムー5ec−ブトキサイド、アルミニウムーn−
ブトキサイド等が挙げられる。
Examples of organoaluminum compounds used to form the intermediate layer of the electrophotographic photoreceptor of the present invention include aluminum trisacetylacetonate, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum-n-propoxide, and aluminum Mu5ec-butoxide, aluminum-n-
Examples include butoxide.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機アルミニウム化合物の1種または2種以上を適
当な溶媒に溶解した溶液を塗布する。また、この際、こ
れらの有機アルミニウム化合物に有機ケイ素化合物を混
合した溶液を用いてもよい。この有機ケイ素化合物とし
ては一般にシランカップリング剤と呼ばれている化合物
が好適であり、例えば、ビニルトリクロルシラン、ビニ
ルトリエトキシシラン、ビニルトリス(β−メトキシエ
トキシ)シラン、γ−グリシドキシプロピルトリメトキ
シシラン、r−メタアクリロキシプロピルトリメトキシ
シラン、N−β(アミノエチル)T−アミノプロピルト
リメトキシシラン、N−β(アミノエチル)T−アミノ
プロピルメチルジメトキシシラン、T−クロロプロピル
トリメトキシシラン、γ−メルカプトプロピルトリメト
キシシラン、T−アミノプロピルトリエトキシシラン、
メチルトリメトキシシラン、ジメチルジメトキシラン、
トリメチルモノメトキシシラン、ジフェニルジメトキシ
シラン、ジフェニルジェトキシシラン、モノフェニルト
リメトキシシラン等が挙げられる。このようなシランカ
ップリング剤を混合して用いる場合には、該シランカッ
プリング剤が全固形物重量に対して5〜50%となるよ
うにするのがよい。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above organoaluminum compounds dissolved in a suitable solvent is coated. Further, at this time, a solution obtained by mixing these organoaluminum compounds with an organosilicon compound may be used. Compounds generally called silane coupling agents are suitable as the organosilicon compound, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxypropyltrimethoxy Silane, r-methacryloxypropyltrimethoxysilane, N-β (aminoethyl) T-aminopropyltrimethoxysilane, N-β (aminoethyl) T-aminopropylmethyldimethoxysilane, T-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, T-aminopropyltriethoxysilane,
Methyltrimethoxysilane, dimethyldimethoxylan,
Examples include trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機アルミニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、光導電層上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾燥硬化させることによって
本発明の電子写真用感光体が得られる。乾燥硬化温度は
100〜400 ℃の間の任意の温度に設定することが
できる。最終的に得られる表面層の膜厚も任意に設定さ
れ得るが、0.1〜10μm1特に1μm以下が好適で
ある。
Thus, a solution containing an organoaluminum compound and optionally an organosilicon compound is applied onto the photoconductive layer.
The electrophotographic photoreceptor of the present invention can be obtained by coating by spray coating, dip coating, knife coating, roll coating, or the like, and then drying and curing. The drying and curing temperature can be set at any temperature between 100 and 400°C. The thickness of the surface layer finally obtained can also be set arbitrarily, but a thickness of 0.1 to 10 .mu.m, particularly 1 .mu.m or less, is suitable.

非晶質ケイ素を主体とする光導電層は、S i I+ 
4.5izHs、513He、514H1゜、等の水素
ケイ素ガスの1種またはそれらの混合物を原料として、
グロー放電法、スパッタリング法、イオンブレーティン
グ法、真空蒸着法などの方法によって基板上に形成する
。中でも、プラズマCVD(Chemical Vap
or Deposition )法によってシラン(S
iH<)ガス等をグロー放電分解する方法(グロー放電
法)が、膜中への水素の含有量の制御の点から好ましい
。また、この場合水素の含有を一層効率良く行なうため
に、プラズマCVD装置内にシランガス等と同時に、別
途に水素(H2)ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is S i I+
Using one type of hydrogen silicon gas such as 4.5izHs, 513He, 514H1°, etc. or a mixture thereof as a raw material,
It is formed on a substrate by a method such as a glow discharge method, a sputtering method, an ion blating method, or a vacuum evaporation method. Among them, plasma CVD (Chemical Vap
Silane (S
A method of glow discharge decomposition of iH<) gas, etc. (glow discharge method) is preferable from the viewpoint of controlling the hydrogen content in the film. Further, in this case, in order to more efficiently contain hydrogen, hydrogen (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶ケイ素を主体とし不純物とし
てリン原子を含有するN型半導体である。このリン原子
の添加には、通常、ホスフィン(PH3)ガスが原料と
して用いられる。この場合、リン原子の添加機は0.0
1〜1000ppm程度である。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is an N-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing phosphorus atoms as impurities. For this addition of phosphorus atoms, phosphine (PH3) gas is usually used as a raw material. In this case, the phosphorus atom additive is 0.0
It is about 1 to 1000 ppm.

また、本発明に従う電子写真用感光体においては、光導
電層が、水素原子を含有する非晶質ケイ素を主体とし不
純物としてリン原子を含有するN型半導体から成り、更
に、炭素原子、窒秦原子または酸素原子のうち少な(と
も1種類を含有している。このような原子の含有は、特
に感光層膜の暗抵抗の増加、光感度の増加、更には、帯
電能(単位膜厚あたりの帯電電位)の増加の点から好ま
しい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms, and is composed of an N-type semiconductor containing phosphorus atoms as impurities, and further contains carbon atoms, nitrogen atoms, etc. Contains only one type of atoms or oxygen atoms.The inclusion of such atoms increases the dark resistance of the photosensitive layer, increases the photosensitivity, and further increases the chargeability (per unit film thickness). This is preferable from the viewpoint of increasing the charging potential).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength range. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCVD装置内に、主原料である水素
化ケイ素ガス、更に所望に応じて水素ガスを用い、それ
らのガスと共に、必要な元素を含むガス状化合物を導入
してグロ・−放電分解を行なえばよい。以上のようにプ
ラズマCVD法による非晶質ケイ素から成る光導電層を
形成するのに有効な放電条件は、例えば、交流放電の場
合、周波数は通常0.1〜30 M Hz 、放電時の
真空度は0.1〜5 Torr 、基板加熱温度は10
0〜400℃である。しかして、非晶質ケイ素を主体と
する光導電層の膜厚は、1〜100μm1特に10〜5
0μmとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, silicon hydride gas, which is the main raw material, and hydrogen gas, if desired, are used in a plasma CVD apparatus, and together with these gases, Glow-discharge decomposition may be carried out by introducing a gaseous compound containing the necessary elements. As mentioned above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum during discharge. The temperature is 0.1 to 5 Torr, and the substrate heating temperature is 10
The temperature is 0 to 400°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1 to 100 μm, especially 10 to 5 μm.
It is preferable to set it to 0 μm.

導電(キ基板としては、アルミニウム、ニッケル、クロ
ム、ステンレス鋼、もしくは黄銅などの金属、導電膜を
有するプラスチックシートもしくはガラス、または、導
電化処理をした紙などを用いることができる。また、導
電性基板の形状は、円筒状、平板状、エンドレスベルト
状等の任意の形状を採ることができる。
Conductive (Ki) As the substrate, metals such as aluminum, nickel, chromium, stainless steel, or brass, plastic sheets or glass with a conductive film, or paper treated with conductivity can be used. The shape of the substrate can be any shape, such as a cylinder, a flat plate, or an endless belt.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Affi基板を設置し、基板温度を所定の温度
である250℃に維持し、反応室内に100%シラン(
SiH,)ガスを毎分120CC1水素希釈の300p
pm ホスフィン(PH3)ガスを毎分30ccSLQ
O%エチレン(C2H,)ガスを毎分15c5さらに1
00%水素〈N2)ガスを毎分75ccの範囲で流入さ
せ、反応槽内をQ、 5Torrの内圧に維持した後、
13.56 M Hzの高周波電力を投入して、グロー
放電を生じせしめ、高周波電源の出力を85Wに維持し
た。このようにして、円筒状のへ!基板上に厚さ25μ
mで非晶質ケイ素を主体とし不純物としてリン原子及び
炭素原子を含有するN型半導体から成る光導電層を有す
る感光体を得た。このようにして得られた感光体を複写
機に入れ、負のコロナ帯電方式で画質を評価したところ
、実用に耐え得る画像濃度が得られなかった。
Comparative Example 1: A cylindrical Affi substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (
SiH,) gas per minute at 300p with 120CC1 hydrogen dilution
pm Phosphine (PH3) gas 30ccSLQ per minute
O% ethylene (C2H,) gas per minute 15c5 more 1
After introducing 00% hydrogen (N2) gas at a rate of 75 cc per minute and maintaining the internal pressure in the reaction tank at Q, 5 Torr,
High frequency power of 13.56 MHz was applied to generate glow discharge, and the output of the high frequency power source was maintained at 85W. In this way, to a cylindrical shape! 25μ thick on the board
A photoreceptor having a photoconductive layer made of an N-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms and carbon atoms as impurities was obtained. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density sufficient for practical use was not obtained.

実施例1: 比較例1と同一の円筒状/1/2基板に、アルミニウム
トリスアセチルアセトネート1重量部、イソプロピルア
ルコール30重懺部から成る溶液を浸漬塗布し、250
℃の炉中で2時間乾燥硬化し、0.1μm厚の中間層を
設けた。次に、この中間層上に、比較例1と同じ方法に
より、比較例1と同じ内容の非晶質ケイ素を主体とする
光導電層を比較例1とほぼ同じ膜厚で設けた。このよう
にして得られた感光体を複写機に入れ、負のコロナ帯電
方式で画質評価したところ、初期時では実用上問題のな
い画像濃度が得られた。また、複写操作を5万回繰り返
したが画像濃度の低下はみられなかった。
Example 1: A solution consisting of 1 part by weight of aluminum trisacetylacetonate and 30 parts by weight of isopropyl alcohol was dip coated onto the same cylindrical/1/2 substrate as in Comparative Example 1, and
It was dried and cured in an oven at 0.degree. C. for 2 hours to provide a 0.1 .mu.m thick intermediate layer. Next, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 1 was provided with approximately the same thickness as in Comparative Example 1. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

比較例2: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Afl基板を設置し、基板温度を所定の温度で
ある250℃に維持し、反応室内に100%シラン(S
iH,)ガスを毎分120cc。
Comparative Example 2: A cylindrical Afl substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (S) was placed in the reaction chamber.
iH,) 120cc of gas per minute.

水素希釈の300ppm ホスフィン(PH3)ガスを
毎分33cc、100%窒素(N2)ガスを毎分90c
c、さらに100%水素(N2)ガスを毎分10ccの
範囲で流入させ、反応槽内を0.5Torrの内圧に維
持した後、13.56 M Hzの高周波電力を投入し
て、グロー放電を生じせしめ、高周波電源の出力を85
Wに維持した。このようにして、円筒状のA、Il!基
板上に厚さ25μmで非晶質ケイ素を主体とし不純物と
してリン原子及び窒素原子を含有するN型半導体から成
る光導電層を有する感光体を1等だ。このようにして得
られた感光体を複写機に入れ、負のコロナ帯電方式で画
質を評価したところ、実用に耐え得る画像濃度は得られ
なかった。
Hydrogen dilution of 300ppm phosphine (PH3) gas at 33cc/min, 100% nitrogen (N2) gas at 90cc/min
c. Furthermore, 100% hydrogen (N2) gas was introduced at a rate of 10 cc per minute to maintain an internal pressure of 0.5 Torr in the reaction tank, and then 13.56 MHz high-frequency power was applied to generate glow discharge. The output of the high frequency power supply is 85
I kept it at W. In this way, the cylindrical A, Il! A photoreceptor having a photoconductive layer on a substrate with a thickness of 25 μm and consisting of an N-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms and nitrogen atoms as impurities is rated as 1st class. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density sufficient for practical use was not obtained.

実施例2: 比較例2と同一の円筒状Δβ基板に、アルミニウムー5
ec−ブトキサイド1重量部、エチルアルコール40重
量部から成る溶液を浸漬塗布し、250℃の炉中で2時
間乾燥硬化し、0.2μm厚の中間層を設けた。次に、
この中間層上に、比較例2と同じ方法により、比較例2
と同じ内容の非晶質ケイ素を主体とする光導電層を比較
例2とほぼ同じ膜厚で設けた。このようにして得られた
感光体を複写機に入れ、負のコロナ帯電方式で画質評価
したところ、初期時では実用上問題のない画像濃度が得
られた。また、複写操作を5万回繰り返したが画像濃度
の低下はみられなかった。
Example 2: Aluminum-5 was applied to the same cylindrical Δβ substrate as in Comparative Example 2.
A solution consisting of 1 part by weight of ec-butoxide and 40 parts by weight of ethyl alcohol was applied by dip coating and dried and cured in an oven at 250°C for 2 hours to provide an intermediate layer with a thickness of 0.2 μm. next,
Comparative Example 2 was applied onto this intermediate layer by the same method as Comparative Example 2.
A photoconductive layer mainly composed of amorphous silicon having the same content as that of Comparative Example 2 was provided with approximately the same thickness as Comparative Example 2. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状A1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc。
Comparative Example 3: A cylindrical A1 substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
H,) gas at 12 Qcc per minute.

水素希釈の300ppm ホスフィン(PH3)ガスを
毎分300C,100%酸累(0□)ガスを毎分1.0
cc、さらに100%水素(N2)ガスを毎分89cc
の範囲で流入させ、反応槽内を0.5Torrの内圧に
維持した後、13.56 M Hzの高周波電力を投入
して、グロー放電を生じせしめ、高周波電源の出力を8
5Wに維持した。このようにして、円筒状のAβ基板上
に厚さ25μmで非晶質ケイ素を主体とし不純物として
リン原子及び炭素原子を含有するN型半導体から成る光
導電層を有する感光体を得た。このようにして得られた
感光体を複写機に入れ、負のコロナ帯電方式で画質を評
価したところ、実用に耐え得る画像濃度は得られなかっ
た。
Hydrogen dilution of 300ppm phosphine (PH3) gas at 300C/min, 100% acid accumulation (0□) gas at 1.0%/min
cc, and 89cc of 100% hydrogen (N2) gas per minute.
After maintaining the internal pressure in the reaction tank at 0.5 Torr, high frequency power of 13.56 MHz was applied to generate glow discharge, and the output of the high frequency power supply was increased to 8 Torr.
It was maintained at 5W. In this way, a photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm and consisting of an N-type semiconductor mainly composed of amorphous silicon and containing phosphorus atoms and carbon atoms as impurities on a cylindrical Aβ substrate. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density sufficient for practical use was not obtained.

実施例3: 比較例3と同一の円筒状A42基板に、アルミニウムー
5ec−ブトキサイド1重量部、メチルトリメトキシシ
ラン1重量部、イソプロピルアルコール30重量部、エ
チルアルコール30重量部から成る溶液を浸漬塗布し、
250℃の炉中で2時間乾遅硬化し、0.2μm厚の中
間層を設けた。次に、この中間層上に、比較例3と同じ
方法により、比較例3と同じ内容の非晶質ケイ素を主体
とする光導電層を比較例3とほぼ同じ膜厚で設けた。こ
のようにして得られた感光体を複写機に入れ、負のコロ
ナ帯電方式で画質評価したところ、初期時では実用上問
題のない画像濃度が得られた。また、複写操作を5万回
繰り返したが画像濃度の低下はみられなかった。
Example 3: A solution consisting of 1 part by weight of aluminum-5ec-butoxide, 1 part by weight of methyltrimethoxysilane, 30 parts by weight of isopropyl alcohol, and 30 parts by weight of ethyl alcohol was applied by dip coating to the same cylindrical A42 substrate as in Comparative Example 3. death,
Slow drying and curing was performed in an oven at 250° C. for 2 hours to form an intermediate layer with a thickness of 0.2 μm. Next, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided with approximately the same thickness as in Comparative Example 3. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a negative corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. Further, although the copying operation was repeated 50,000 times, no decrease in image density was observed.

」l旧化級】 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部環境や使用回数
の影響を受けずに高い電荷保持力を有して、優れた品質
の画像を供することができる。
The electrophotographic photoreceptor of the present invention maintains the excellent properties of a photoreceptor made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity. , it has a high charge retention ability without being affected by the external environment or the number of times of use, and can provide images of excellent quality.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層及び光導電層を順次積層して成る
電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてリン原子を含有するN型半導体から
成り、更に、炭素原子、窒素原子または酸素原子のうち
少なくとも1種類を含有しており、 前記中間層が、有機アルミニウム化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms as an impurity. The intermediate layer is made of an N-type semiconductor containing a phosphorus atom, and further contains at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer contains at least one organic aluminum compound.
1. A photoreceptor for electrophotography, characterized in that it is made of a dried and cured product of a solution containing various types of photoreceptors.
JP60285992A 1985-12-19 1985-12-19 Electrophotographic photoconductor Expired - Lifetime JPH0711708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285992A JPH0711708B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285992A JPH0711708B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62144174A true JPS62144174A (en) 1987-06-27
JPH0711708B2 JPH0711708B2 (en) 1995-02-08

Family

ID=17698607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285992A Expired - Lifetime JPH0711708B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0711708B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5893062A (en) * 1981-11-28 1983-06-02 Canon Inc Electrophotogaphic photoreceptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5893062A (en) * 1981-11-28 1983-06-02 Canon Inc Electrophotogaphic photoreceptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0711708B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPS62144174A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPH0721647B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62145250A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273558A (en) Electrophotographic sensitive body
JPS62273548A (en) Electrophotographic sensitive body
JPS62144175A (en) Electrophotographic sensitive body
JPS62273556A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body
JPS62273560A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62144176A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62288855A (en) Electrophotographic sensitive body
JPS62273552A (en) Electrophotographic sensitive body
JPS62273555A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body