JPS62144175A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62144175A
JPS62144175A JP28599385A JP28599385A JPS62144175A JP S62144175 A JPS62144175 A JP S62144175A JP 28599385 A JP28599385 A JP 28599385A JP 28599385 A JP28599385 A JP 28599385A JP S62144175 A JPS62144175 A JP S62144175A
Authority
JP
Japan
Prior art keywords
amorphous silicon
intermediate layer
photoreceptor
layer
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28599385A
Other languages
Japanese (ja)
Other versions
JPH0711709B2 (en
Inventor
Yuzuru Fukuda
譲 福田
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Yasunari Okugawa
奥川 康令
Yasuo Ro
盧 泰男
Noriyoshi Takahashi
高橋 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60285993A priority Critical patent/JPH0711709B2/en
Publication of JPS62144175A publication Critical patent/JPS62144175A/en
Publication of JPH0711709B2 publication Critical patent/JPH0711709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Abstract

PURPOSE:To reduce the dark decay of electrostatic charge potential by interposing an intermediate layer between an electrically conductive substrate and a photoconductive layer of amorphous silicon and using a dried and hardened substance of a soln. contg. at least one kind of org. aluminum compound as the material of the intermediate layer. CONSTITUTION:A photoconductive layer is made of a P type semiconductor contg. amorphous silicon contg. H as the principal component and B as an impurity and further contains at least one among C, N and O. An intermediate layer is made of a dried and hardened substance of a soln. contg. at least one kind of org. aluminum compound. The compound used may be trisacetylacetonatoaluminum. Such atoms are preferably contained because they are effective in increasing the dark resistance, photosensitivity and electrostatic chargeability (electrostatic charge potential per unit film thickness) of a photosensitive layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体に関し、特に、感光層に非
晶質ケイ素を用いた電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor using amorphous silicon in the photosensitive layer.

従来の技術 電子写真法は、感光体に帯電、像露光により静電潜像を
形成し、この潜像をトナニと弥される現像剤で現像後、
転写紙にトナー像を転写し定着して複写物をtjbる方
法である。この電子写真法に用いられる感光体は、基本
構成として導電性基板上に感光層を積層して成る。しか
して、従来より、感光層を構成する材料としてはセレン
あるいはセレン合金、硫化カドミウム、酸化亜鉛等の無
機感光材料、あるいは、ポリビニルカルバゾール、トリ
ニトロフルオレノン、ビスアゾ顔料、フタロシアニン、
ピラゾリン、ヒドラゾン等の有機感光材料が知られてお
り、感光層を単層あるいはFL″I層にして用いられて
いる。しかしながら、従来より用いられているこれらの
感光層は、耐久性、耐熱性、光感度などにおいて未だ解
決すべき問題点を有している。
In the conventional electrophotographic method, an electrostatic latent image is formed by charging a photoreceptor and exposing it to light, and after developing this latent image with a developer called Tonani,
This is a method of transferring and fixing a toner image onto transfer paper to produce a copy. The photoreceptor used in this electrophotographic method basically has a photosensitive layer laminated on a conductive substrate. Conventionally, the materials constituting the photosensitive layer include inorganic photosensitive materials such as selenium or selenium alloys, cadmium sulfide, and zinc oxide, or polyvinylcarbazole, trinitrofluorenone, bisazo pigments, phthalocyanine, etc.
Organic photosensitive materials such as pyrazoline and hydrazone are known, and are used as a single layer or FL''I layer as a photosensitive layer.However, these conventionally used photosensitive layers lack durability and heat resistance. , there are still problems to be solved in terms of photosensitivity, etc.

近年、この感光層として非晶質ケイ素(アモルファスン
リコン)を用いた感光体が知られ種々その改選が試みら
れている。この非晶質ケイ素を用いた感光体は、7ラン
(SI84)ガスをグロー放電分解法等によりケイ素の
非晶質膜を導電性基板上に形成したものであって、非晶
質ケイ素膜中に水素原子が組み込まれて光導電性を呈す
るものである。この非晶質ケイ素感光体は、感光層の表
面硬度が高く傷つきに<<、摩耗にも強く、耐熱性も高
く、機械的強度においてもすぐれている。更に、非晶質
ケイ素は、分光感度域が広く、高い光感度を有する如く
感光特性もすぐれている。しかし反面、非晶質ケイ素を
用いた感光体は、暗減衰が太き(、帯電しても十分な帯
電電位が得られな51という欠点を有する。即ち、非晶
質ケイ素感光体を帯電し、像露光して静電潜像を形成し
、次いで現像する際、感光体上の表面電荷が像露光工程
まで、あるいは現像工程までの間に光照射を受けなかっ
た部分の電荷までも減衰してしまい、現像に必要な帯電
電位が1耳られない。この帯電電位の減衰は、環境条件
の影響によっても変化しやすく、特に高温高湿二項では
帯電電位が大巾に低下する。
In recent years, photoreceptors using amorphous silicon as the photosensitive layer have been known, and various attempts have been made to modify them. This photoreceptor using amorphous silicon has an amorphous silicon film formed on a conductive substrate using a glow discharge decomposition method using 7-run (SI84) gas. Hydrogen atoms are incorporated into the material to exhibit photoconductivity. This amorphous silicon photoreceptor has a photosensitive layer that has a high surface hardness, is resistant to scratches, is resistant to abrasion, has high heat resistance, and has excellent mechanical strength. Furthermore, amorphous silicon has a wide spectral sensitivity range and has excellent photosensitivity, such as high photosensitivity. However, on the other hand, photoreceptors using amorphous silicon have the disadvantages of large dark decay (and insufficient charging potential even when charged). , when an electrostatic latent image is formed by imagewise exposure and then developed, the surface charge on the photoreceptor is attenuated until the imagewise exposure process or even the charge on the part that has not been exposed to light during the development process. As a result, the charging potential necessary for development is not available.The attenuation of this charging potential is also susceptible to changes due to the influence of environmental conditions, and especially in high temperature and high humidity, the charging potential decreases significantly.

更に、非晶質ケイ素の感光体は、繰返し使用すると徐々
に帯電電位が低下してしまう。この様な帯電電位の暗減
衰の大きな感光体を用いて複写物を作成すると、画像濃
度が低くまた、中間調の再現性に乏しい複写物となる。
Furthermore, when an amorphous silicon photoreceptor is used repeatedly, its charging potential gradually decreases. If a copy is made using a photoreceptor with such a large dark attenuation of the charged potential, the copy will have low image density and poor reproducibility of halftones.

発明の目的 本発明の目的は、非晶質ケイ素を用いる感光体の上述の
欠点を解消した電子写真用感光体を提供することにある
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks of photoreceptors using amorphous silicon.

更に、本発明の目的は、非晶質ケイ素を用い、しかも、
帯電電位の暗減衰が極めて小さい電子写真用感光体を提
供することにある。
Furthermore, the object of the present invention is to use amorphous silicon, and
An object of the present invention is to provide an electrophotographic photoreceptor in which the dark decay of the charged potential is extremely small.

本発明の他の目的は、帯電特性が外部環境の雪囲気の変
化によって影響を受けない電子写真用、感光体を提供す
ることにある。
Another object of the present invention is to provide a photoreceptor for electrophotography whose charging characteristics are not affected by changes in the snow surrounding the external environment.

また、本発明の他の目的は、繰返し使用されても画像品
質の(優れた電子写真用感光体を提供することiこある
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent image quality even after repeated use.

更に、本発明の他の目的は、機械的強度、耐久性、耐熱
性、光感度などの電子写真特性に優れた電子写真用感光
体を提供することにある。
Furthermore, another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, heat resistance, and photosensitivity.

発明の構成 本発明者は、鋭意研究を行なった結果、導電性)5.仮
と、非晶質ケイ巽から成る光導電層との間に中間層を設
けるとともに、該中間層として、有機アルミニウム化合
物を少なくとも1種類含有する(容、Ckの乾9 G更
化物を用いることによって上記目的が達成されることを
見出した。光導電層としては、非晶質ケイ素を主体とし
不純物としてホウ患原子を含有するP型半導体であって
、更に、炭素原子、窒素原子または酸泰原子のうちの少
なくとも1+重類を含有したものを用いる。
Structure of the Invention As a result of extensive research, the present inventor has found that conductivity) 5. An intermediate layer is provided between the photoconductive layer and the photoconductive layer made of amorphous silicon, and the intermediate layer contains at least one type of organoaluminum compound. It has been found that the above object can be achieved by the photoconductive layer.The photoconductive layer is a P-type semiconductor mainly composed of amorphous silicon and containing boron atoms as impurities, and further contains carbon atoms, nitrogen atoms, or oxidized atoms. One containing at least 1+ heavy atoms is used.

かくして、本発明に従えば、導電性基板上に中間層及び
光導電層を順次u層して成る電子写真用感光体において
、前記光導電層が、水木原子を含有する非晶質ケイ素を
生体とし不純物としてホウ累原子を含有するP型半導体
から成り、さらに炭素原子、窒素原子または酸素原子の
うちの少なくとも1種類を含有しており、前記中間層が
、有機アルミニウム化合物を少なくとも1種類含む溶液
の乾坦硬化物から成ることを特徴とする電子写真用感光
体が提供される。
Thus, according to the present invention, in an electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially formed on a conductive substrate, the photoconductive layer is made of amorphous silicon containing Mizuki atoms. A solution comprising a P-type semiconductor containing boron atoms as an impurity and further containing at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer containing at least one type of organoaluminum compound. Provided is an electrophotographic photoreceptor comprising a dry cured product.

本発明の電子写真用感光体の中間層を形成するのに用い
られる有機アルミニウム化合物□としては、アルミニウ
ムトリスアセチルアセトネート、アルミニウムメトキサ
イド、アルミニウムエトキサイド、アルミニウムイソプ
ロポキサイド、アルミニウムーn−プロポキサイド、ア
ルミニウムー5ec−ブトキサイド、アルミニウムーn
−ブトキサイド等が挙げられる。
Examples of the organic aluminum compound □ used to form the intermediate layer of the electrophotographic photoreceptor of the present invention include aluminum trisacetylacetonate, aluminum methoxide, aluminum ethoxide, aluminum isopropoxide, aluminum-n-propoxide, aluminum-5ec-butoxide, aluminum-n
-butoxide, etc.

本発明の電子写真用感光体を得るに当っては、上記のご
とき有機アルミニウム化合物の1種または2種以上を適
当な溶媒に溶解した溶液を塗布する。また、この際、こ
れらの有機アルミニウム化合物に有機ケイ素化合物を混
合した溶液を用いてもよい。この有機ケイ素化合物とし
ては一般にンランカップリング剤と呼ばれている化合物
が好適であり、例えば、ビニルトリクロルシラン、ビニ
ルトリエトキシシラン、ビニルトリス(β−メトキシエ
トキシ)シラン、T−グリシドキシプロピルトリメトキ
ンンラン、T−メクアクリロキシプロピルトリメトキシ
ンラン、N−β(アミノエチル)γ−アミノプロピルト
リメトキシシラン、N−β(アミノエチル)T−アミノ
プロピルメチルジメトキシシラン、r−クロロプロピル
トリメトキシンラン、γ−メルカプトプロピルトリメト
キシシラン、T−アミノプロピルトリエトキシンラン、
メチルトリメトキシシラン、ジメチルジメトキシラン、
トリ゛メチルモノメトキシシラン、ジフェニルジメトキ
シシラン、ジフェニルジェトキシシラン、モノフェニル
トリメトキシシラン等が挙げられる。このようなシラン
カップリング剤を混合して用いる場合には、該シランカ
ップリング剤が全固形物重量に対して5〜50%となる
ようにするのがよい。
In order to obtain the electrophotographic photoreceptor of the present invention, a solution of one or more of the above organoaluminum compounds dissolved in a suitable solvent is coated. Further, at this time, a solution obtained by mixing these organoaluminum compounds with an organosilicon compound may be used. As this organosilicon compound, compounds generally called Nran coupling agents are suitable, such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, T-glycidoxypropyltrimethquine, etc. Nran, T-mequaacryloxypropyltrimethoxyrane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) T-aminopropylmethyldimethoxysilane, r-chloropropyltrimethoxyrane, γ-mercaptopropyltrimethoxysilane, T-aminopropyltriethoxysilane,
Methyltrimethoxysilane, dimethyldimethoxylan,
Examples include trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, and monophenyltrimethoxysilane. When such silane coupling agents are mixed and used, it is preferable that the silane coupling agents account for 5 to 50% of the total solid weight.

かくして、有機アルミニウム化合物、場合によっては更
に有機ケイ素化合物を含有する溶液を、光導電層上に、
スプレー塗布、浸漬塗布、ナイフ塗布またはロール塗布
などの方法で塗布した後、乾坦硬化させることによって
本発明の電子写真用感光体が得られる。乾煙硬化温度は
100〜・100 ℃の間の任意の温度に設定すること
ができる。最終的にi)られる表面層の膜厚も任意に設
定され(坪るが、0.1〜10μm1特に1μm以下が
好適である。
Thus, a solution containing an organoaluminum compound and optionally an organosilicon compound is applied onto the photoconductive layer.
The electrophotographic photoreceptor of the present invention can be obtained by coating by spray coating, dip coating, knife coating, roll coating, or the like, followed by dry curing. The dry smoke curing temperature can be set at any temperature between 100 and 100°C. The thickness of the final surface layer (i) can also be set arbitrarily, but preferably 0.1 to 10 .mu.m, particularly 1 .mu.m or less.

非晶質ケイ素を主体とする光導電層は、S i II 
、、Si2+−16,513HIl、314H+o、等
の水素ケイ素ガスの1種またはそれらの混合物を原料と
して、グロー放電法、スパッタリング法、イオンブレー
ティング法、真空蒸着法などの方法によってiff上に
形成する。中でも、プラズマCVD(Chemical
 Vapor Deposition  )法によって
シラン(SiH=)ガス等をグロー放電分解する方法(
グロー放電法)が、膜中への水素の含有屯の制御の点か
ら好ましい。また、この場合水素の含有を一層効率良く
行なうために、プラズマCVD装置内にシランガス等と
同時に、別途に水1(H2)ガスを導入してもよい。
The photoconductive layer mainly composed of amorphous silicon is S i II
, , Si2+-16,513HIl, 314H+o, etc., or a mixture thereof as a raw material, and is formed on the IF by a method such as a glow discharge method, a sputtering method, an ion blating method, or a vacuum evaporation method. . Among them, plasma CVD (Chemical
A method of glow discharge decomposition of silane (SiH=) gas, etc. by the Vapor Deposition method (
The glow discharge method) is preferable from the viewpoint of controlling the amount of hydrogen contained in the film. Further, in this case, in order to more efficiently contain hydrogen, water 1 (H2) gas may be separately introduced into the plasma CVD apparatus at the same time as silane gas or the like.

本発明の電子写真用感光体の光導電層として用いるのは
、水素原子を含有する非晶ケイ素を主体とし不純物とし
てホウ素原子を含有するP型半導体である。このホウ素
原子の添加には、通常、ジボラン(B2H6)ガスが原
料として用いられる。
The photoconductive layer of the electrophotographic photoreceptor of the present invention is a P-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing boron atoms as impurities. For this addition of boron atoms, diborane (B2H6) gas is usually used as a raw material.

この場合、ホウ素原子の添加量は、0.01〜1原子%
程度である。
In this case, the amount of boron atoms added is 0.01 to 1 at%
That's about it.

また、本発明に従う電子写真用感光体においては、光導
電層が、水素原子を含有する非晶質ケイ素を主体とし不
純物としてホウ素原子を含有するP型半導体から成り、
更に、炭素原子、窒素原子または酸累原子のうち少なく
とも1種類を含有している。このような原子の含有は、
特に感光層膜の暗抵抗の増加、光感度の増加、更には、
帯電能(単位膜厚あたりの帯電電位)の増加の点から好
ましい。
Further, in the electrophotographic photoreceptor according to the present invention, the photoconductive layer is made of a P-type semiconductor mainly composed of amorphous silicon containing hydrogen atoms and containing boron atoms as impurities,
Furthermore, it contains at least one type of carbon atom, nitrogen atom, or acid atom. The content of such atoms is
In particular, an increase in the dark resistance of the photosensitive layer film, an increase in photosensitivity, and furthermore,
This is preferable from the viewpoint of increasing charging ability (charging potential per unit film thickness).

更に、感光体の長波長域の感度を増加させることを目的
として、光導電層膜にゲルマニウム(Ge)などの元素
を添加することも可能である。またハロゲン原子を添加
することによって、暗抵抗の増加等を図ることもできる
Furthermore, it is also possible to add an element such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity of the photoreceptor in the long wavelength range. Further, by adding halogen atoms, it is also possible to increase the dark resistance.

かくして、本発明の電子写真用感光体の光導電層を調製
するには、プラズマCV D 9置内に、主原料である
水素ケイ素ガス、更に所望に応じて水素ガスを用い、そ
れらのガスと共に、必要な元素を含むガス状化合物を導
入してグロー放電分解を行なえばよい。以上のようにプ
ラズマCVD法による非晶質ケイ素から成る光導電層を
形成するのに有効な放電条件は、例えば、交流放電の場
合、周波数は通常0.1〜30 M Hz、放電時の真
空度は0.1〜5Torr、基板加熱温度は100〜4
0i]℃である。しかして、非晶質ケイ素を主体とする
光導電層の膜厚は、1−100μm、特に10〜50μ
mとするのが好適である。
Thus, in order to prepare the photoconductive layer of the electrophotographic photoreceptor of the present invention, hydrogen silicon gas as the main raw material and hydrogen gas as desired are used together with these gases in a plasma CVD 9 apparatus. , a gaseous compound containing necessary elements may be introduced to perform glow discharge decomposition. As described above, effective discharge conditions for forming a photoconductive layer made of amorphous silicon by the plasma CVD method include, for example, in the case of AC discharge, the frequency is usually 0.1 to 30 MHz, and the vacuum during discharge. The temperature is 0.1 to 5 Torr, and the substrate heating temperature is 100 to 4
0i]°C. Therefore, the film thickness of the photoconductive layer mainly composed of amorphous silicon is 1-100 μm, particularly 10-50 μm.
It is preferable to set it to m.

導電性基板としては、アルミニウム、ニッケル、クロム
、ステンレス鋼、もしくは黄銅などの金属、導電膜を有
するプラスチックシートもしくはガラス、または、導電
化処理をした紙などを用いることができる。また、導電
性基板の形状は、円筒状、平板状、エンドレスベルト状
等の任意の形状を採ることができる。
As the conductive substrate, a metal such as aluminum, nickel, chromium, stainless steel, or brass, a plastic sheet or glass having a conductive film, or paper treated to be conductive can be used. Moreover, the shape of the conductive substrate can be any shape such as a cylindrical shape, a flat plate shape, an endless belt shape, or the like.

実施例 次に、比較例と本発明の実施例とを挙げて、本発明の電
子写真用感光体を更に説明する。
EXAMPLES Next, the electrophotographic photoreceptor of the present invention will be further explained with reference to comparative examples and examples of the present invention.

比較例1: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状/1基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(S 
i H4)ガスを毎分120CG、水素希釈のl OO
Oppm シボラフ(B2H6)ガスを毎分30cc、
100%エチレン(C2H,)ガスを毎分15cc、さ
らに100%水素(H2)ガスを毎分75ccの範囲で
流入させ、反応槽内を0.5Torrの内圧に維持した
後、13.56 M Hzの高周波電力を投入して、グ
ロー放電を生じせしめ、高周波電源の出力を85Wに維
持した。このようにして、円筒状のAI基板上に厚さ2
5μmで非晶質ケイ素を主体とし不純物としてホウ素原
子及び炭讃原子を含有するP型半導体から成る光導電層
を有する感光体を得た。このようにして1等られた感光
体を複写機に入れ、正のコロナ帯電方式で画質を評価し
たところ、実用に耐え碍る画像濃度は得られなかった。
Comparative Example 1: A cylindrical/1 substrate was installed at a predetermined position in a reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (S) was placed in the reaction chamber.
i H4) gas at 120CG/min, hydrogen dilution lOO
Oppm Sibolaf (B2H6) gas at 30cc per minute,
100% ethylene (C2H,) gas was introduced at a rate of 15 cc per minute, and 100% hydrogen (H2) gas was introduced at a rate of 75 cc per minute, and the internal pressure inside the reaction tank was maintained at 0.5 Torr. high-frequency power was applied to generate glow discharge, and the output of the high-frequency power source was maintained at 85W. In this way, a thickness of 2
A photoreceptor was obtained having a photoconductive layer having a thickness of 5 μm and consisting of a P-type semiconductor mainly composed of amorphous silicon and containing boron atoms and carbon atoms as impurities. When the photoreceptor thus ranked first was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density sufficient for practical use was not obtained.

実施例1: 比較例1と同一の円筒状A1基板に、アルミニウムトリ
スアセチルアセトネート1重量部、イソプロピルアルコ
ール30重量部から成る溶液を浸2i7 塗布し、25
0℃の炉中で2時間乾燥硬化し、0.1μm厚の中間層
を設けた。次に、この中間層上に、比較例1と同じ方法
により、比較例1と同じ内容の非晶質ケイ素を主体とす
る光導電層を比較例1とほぼ同じ膜厚で設けた。このよ
うにして得られた感光体を複写機に入れ、正のコロナ帯
電方式で画質評価したところ、初期時では実用上問題の
ない画像濃度が得られた。また、複写操作を5万回繰り
返したが画像濃度の低下はみられなか比・咬例2: 容蚤結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Al基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
H,)ガスを毎分12 Qcc。
Example 1: The same cylindrical A1 substrate as in Comparative Example 1 was coated with a solution consisting of 1 part by weight of aluminum trisacetylacetonate and 30 parts by weight of isopropyl alcohol for 25 hours.
It was dried and cured in an oven at 0° C. for 2 hours to provide an intermediate layer with a thickness of 0.1 μm. Next, on this intermediate layer, by the same method as in Comparative Example 1, a photoconductive layer mainly composed of amorphous silicon having the same content as in Comparative Example 1 was provided with approximately the same thickness as in Comparative Example 1. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. In addition, although the copying operation was repeated 50,000 times, no decrease in image density was observed. was maintained at a predetermined temperature of 250°C, and 100% silane (Si
H,) gas at 12 Qcc per minute.

水素希釈の11000pp ジボラン(82H6)ガス
を毎分30CC,100%窒素(N2)ガスを毎分90
cc、さらに100%水素(H2)ガスを毎分IQcc
の範囲で流入させ、反応槽内をQ、5Torrの内圧に
ta持した後、13.56 M Hzの高周波電力を投
入して、グロー放電を生じせしめ、高周波電源の出力を
85Wに維持した。このようにして、円筒状のA 、&
基板上に厚さ25μmで非晶質ケイ素を主体とし不純物
としてホウ素原子及び窒素原子を含有するP型半導体か
ら成る光導電層を有する感光体を得た。このようにして
得られた感光体を複写機に入れ、正のコロナ帯電方式で
画質を評価したところ、実用に耐え?)る画像濃度は冴
られなかった。
Hydrogen dilution of 11000pp diborane (82H6) gas at 30cc/min, 100% nitrogen (N2) gas at 90cc/min
cc, plus 100% hydrogen (H2) gas per minute at IQcc
After maintaining the internal pressure in the reaction tank at 5 Torr, high frequency power of 13.56 MHz was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, the cylindrical A, &
A photoreceptor was obtained having a photoconductive layer having a thickness of 25 μm on a substrate and consisting of a P-type semiconductor mainly composed of amorphous silicon and containing boron atoms and nitrogen atoms as impurities. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, was it suitable for practical use? ) The image density was poor.

実施例2: 比較例2と同一の円筒状A!基板に、アルミニウムー5
eC−ブトキサイド1重量部、エチルアルコール40重
量部から成る溶液を浸漬塗布し、250℃の炉中で2時
間乾燥硬化し、0.2μm厚の中間層を設けた。次に、
この中間層上に、比較例2と同じ方法により、比較例2
と同じ内容の非晶質ケイ素を主体とする光導電層を比較
例2と!よぼ同じ膜厚で設けた。このようにして得られ
た感光体を複写機に入れ、正のコロナ帯電方式で画質評
価したところ、初期時では実用上問題のない画像613
度が得られた。また、複写撲作を5万回謀り返したが画
像濃度の低下はみられなかった。
Example 2: Same cylindrical shape A as Comparative Example 2! Aluminum-5 on the board
A solution consisting of 1 part by weight of eC-butoxide and 40 parts by weight of ethyl alcohol was applied by dip coating and dried and cured in an oven at 250°C for 2 hours to provide an intermediate layer with a thickness of 0.2 μm. next,
Comparative Example 2 was applied onto this intermediate layer by the same method as Comparative Example 2.
A photoconductive layer mainly composed of amorphous silicon with the same content as Comparative Example 2! The film thickness was approximately the same. When the photoreceptor obtained in this way was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image of 613, which had no practical problems at the initial stage, was obtained.
degree was obtained. In addition, despite repeated copying attempts 50,000 times, no decrease in image density was observed.

比較例3: 容量結合型プラズマCVD装置の反応室内の所定の位置
に円筒状Aβ基板を設置し、基板温度を所定の温度であ
る250℃に維持し、反応室内に100%シラン(Si
)(、)ガスを毎分12QCC1水累希釈の1000p
pm  ジボラ:/(B21−16)力スを毎分30c
c、100%酸崇(02)ガスを毎分1.0cc、さら
に100%水累(H2)ガスを毎分89ccの範囲で流
入させ、反応槽内を0.5Torrの内圧に1、■持し
た後、13.56M、Hzの高周波電力を投入して、グ
ロー放電を生じせしめ、高周波電源の出力を85Wに維
持した。このようにして、円筒状のAA基板上に厚さ2
5μmで非晶質ケイ素を主体とし不純物としてホウ素原
子及び炭素原子を含有するP型半導体から成る光導電層
を有する感光体を得た。このようにして得られた感光体
を複写機に入れ、正のコロナ帯電方式で画質を評価した
ところ、実用に耐え得る画像濃度は得られなかった。
Comparative Example 3: A cylindrical Aβ substrate was installed at a predetermined position in the reaction chamber of a capacitively coupled plasma CVD apparatus, the substrate temperature was maintained at a predetermined temperature of 250°C, and 100% silane (Si) was placed in the reaction chamber.
)(,)Gas 1000p of cumulative dilution with 12QCC1 water per minute
pm Jibora: / (B21-16) force 30c per minute
c. 100% acidic (02) gas was introduced at a rate of 1.0cc per minute, and 100% water (H2) gas was introduced at a rate of 89cc/min, and the internal pressure in the reaction tank was maintained at 0.5 Torr. After that, a high frequency power of 13.56 M, Hz was applied to generate a glow discharge, and the output of the high frequency power source was maintained at 85 W. In this way, a cylindrical AA substrate with a thickness of 2
A photoreceptor was obtained having a photoconductive layer having a thickness of 5 μm and consisting of a P-type semiconductor mainly composed of amorphous silicon and containing boron atoms and carbon atoms as impurities. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density sufficient for practical use was not obtained.

実施例3: 比較例3と同一の円筒状Afl基板に、アルミニウムー
5ec−ブトキサイド1重量部、メチルトリメトキシシ
ラン1重量部、イソプロピルアルコール30重量部、エ
チルアルコール30重量部から成る溶液を浸漬塗布し、
250℃の炉中で2時間乾煙硬化し、0.2μm厚の中
間層を設けた。次に、この中間層上に、比較例3と同じ
方法により、比較例3と同じ内容の非晶質ケイ素を主体
とする光導電層を比較例3とほぼ同じ膜厚で設けた。こ
のようにして得られた感光体を複写機に入れ、正のコロ
ナ帯電方式で画質評価したところ、初期時では実用上問
題のない画像濃度が得られた。また、複写燥作を5万回
繰り返したが画像濃度の低下(よみられなかった。
Example 3: A solution consisting of 1 part by weight of aluminum-5ec-butoxide, 1 part by weight of methyltrimethoxysilane, 30 parts by weight of isopropyl alcohol, and 30 parts by weight of ethyl alcohol was applied by dip coating to the same cylindrical Afl substrate as in Comparative Example 3. death,
Dry smoke curing was performed in an oven at 250° C. for 2 hours to provide a 0.2 μm thick intermediate layer. Next, on this intermediate layer, by the same method as in Comparative Example 3, a photoconductive layer mainly composed of amorphous silicon having the same contents as in Comparative Example 3 was provided with approximately the same thickness as in Comparative Example 3. When the photoreceptor thus obtained was placed in a copying machine and the image quality was evaluated using a positive corona charging method, an image density that was acceptable for practical use was obtained at the initial stage. In addition, although copying and drying was repeated 50,000 times, the image density decreased (unreadable).

発明の効果 本発明の電子写真用感光体は、非晶質ケイ素からの成る
感光体の優れた特性である高機械的強度、高耐久性、高
耐熱、高光感度を保持し、しかも、外部二項や使用回数
の影晋を受けずに高い電荷保持力を有して、浸れた品質
の画像を供することができる。
Effects of the Invention The electrophotographic photoreceptor of the present invention maintains the excellent properties of photoreceptors made of amorphous silicon, such as high mechanical strength, high durability, high heat resistance, and high photosensitivity. It has a high charge retention ability and can provide high-quality images regardless of the period or number of uses.

Claims (1)

【特許請求の範囲】 導電性基板上に中間層及び光導電層を順次積層して成る
電子写真用感光体において、 前記光導電層が、水素原子を含有する非晶質ケイ素を主
体とし不純物としてホウ素原子を含有するP型半導体か
ら成り、更に、炭素原子、窒素原子または酸素原子のう
ち少なくとも1種類を含有しており、 前記中間層が、有機アルミニウム化合物を少なくとも1
種類含む溶液の乾燥硬化物から成ることを特徴とする電
子写真用感光体。
[Scope of Claims] An electrophotographic photoreceptor comprising an intermediate layer and a photoconductive layer sequentially laminated on a conductive substrate, wherein the photoconductive layer is mainly composed of amorphous silicon containing hydrogen atoms as an impurity. The intermediate layer is made of a P-type semiconductor containing a boron atom, and further contains at least one type of carbon atom, nitrogen atom, or oxygen atom, and the intermediate layer contains at least one organic aluminum compound.
1. A photoreceptor for electrophotography, characterized in that it is made of a dried and cured product of a solution containing various types of photoreceptors.
JP60285993A 1985-12-19 1985-12-19 Electrophotographic photoconductor Expired - Lifetime JPH0711709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285993A JPH0711709B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285993A JPH0711709B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS62144175A true JPS62144175A (en) 1987-06-27
JPH0711709B2 JPH0711709B2 (en) 1995-02-08

Family

ID=17698619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285993A Expired - Lifetime JPH0711709B2 (en) 1985-12-19 1985-12-19 Electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JPH0711709B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5893062A (en) * 1981-11-28 1983-06-02 Canon Inc Electrophotogaphic photoreceptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860748A (en) * 1981-10-08 1983-04-11 Fuji Xerox Co Ltd Electrophotographic receptor
JPS5893062A (en) * 1981-11-28 1983-06-02 Canon Inc Electrophotogaphic photoreceptor
JPS59223439A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS59223441A (en) * 1983-06-03 1984-12-15 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0711709B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPS62144175A (en) Electrophotographic sensitive body
JPS62145251A (en) Electrophotographic sensitive body
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPS62145250A (en) Electrophotographic sensitive body
JPS62144173A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPH0727253B2 (en) Electrophotographic photoconductor
JPS62144174A (en) Electrophotographic sensitive body
JPS62273568A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPS62144176A (en) Electrophotographic sensitive body
JPS62145249A (en) Electrophotographic sensitive body
JPH0727257B2 (en) Electrophotographic photoconductor
JPS62273560A (en) Electrophotographic sensitive body
JPH0727250B2 (en) Electrophotographic photoconductor
JPS62288855A (en) Electrophotographic sensitive body
JPH0727252B2 (en) Electrophotographic photoconductor
JPS62273548A (en) Electrophotographic sensitive body
JPS62273561A (en) Electrophotographic sensitive body
JPS62288854A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPH0721650B2 (en) Electrophotographic photoconductor