JPS6160868A - 発熱被覆管用鋼 - Google Patents

発熱被覆管用鋼

Info

Publication number
JPS6160868A
JPS6160868A JP17908484A JP17908484A JPS6160868A JP S6160868 A JPS6160868 A JP S6160868A JP 17908484 A JP17908484 A JP 17908484A JP 17908484 A JP17908484 A JP 17908484A JP S6160868 A JPS6160868 A JP S6160868A
Authority
JP
Japan
Prior art keywords
heat
steel
content
less
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17908484A
Other languages
English (en)
Other versions
JPS6411106B2 (ja
Inventor
Kiichi Saito
斉藤 喜一
Takeshi Yoshida
毅 吉田
Hisashi Kondo
久 近藤
Noboru Naruo
成尾 昇
Hideyuki Ohashi
秀行 大橋
Hidesato Kawanishi
英賢 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Stainless Steel Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP17908484A priority Critical patent/JPS6160868A/ja
Publication of JPS6160868A publication Critical patent/JPS6160868A/ja
Publication of JPS6411106B2 publication Critical patent/JPS6411106B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、常温・高温間の熱サイクルが頻繁に加わる
上、比較的高濃度の塩化物含有物質が接触したり付着し
゛たりし易い環境下にあっても、優れた耐食性を示すこ
とはもちろん5溶接性や成形加工性等も良好で、発熱被
覆管に使用して優れた性能を発揮する鋼に関するもので
ある。
近年、防災対策等のために燃料用ガスの使用を規制した
集合型住宅が増加しており、これらを中心として調理用
電気機器類や電気温水器類が目覚しい勢で普及してきた
ところで、電気コンロや魚焼器等の調理用電気機器類の
発熱源には、従来、「ぜんまい状」に成形されたニクロ
ム線をそのまま使用する場合が多かったが、このような
形式のものは感電の危険性が高く、また断線を起こしや
すい等の指摘がなされていたこともあって、近年では、
前記発熱体を耐熱性金属材料のパイプに挿入するととも
に、その両者間にマグネシア等の無機絶縁粉末を充填し
て完全密閉したところの5所謂パシーズヒータ″の採用
が目立つようになり5発熱源の安全性や安定性は飛躍的
に向上している。
しかし一方では、上述のような調理用電気機器類に使用
されるシーズヒータは5大気中での表面温度が約800
℃程度にも達することに加え、醤油、マヨネーズ或いは
食塩水等の付着する機会が多いこともあって(因に、醤
油やマヨネーズには、通常、5%以上のNaC4が含ま
れている)、シーズヒータの発熱被覆管として通常の鋼
材等を使用したのでは予想外の腐食により比較的短時間
に孔が発生し、発熱体の断線を招くと言う問題があった
もちろん、このような塩化物の存在する高温環境下での
腐食問題は調理用電気機器類に限られるものではなく、
例えば水道水を加熱する温水器(使用期間が長くなると
、その伝熱面等に水アカが生成して温度が予想以上に上
昇し易くなると同時に。
該箇所に塩分の濃縮が生ずる機会も多くなる)やその他
の熱交換用発熱被覆管等に共通する問題でもあった。
〈従来の技術〉 そこで、従来、シーズヒータの被覆管に代表される発熱
被覆管材には、例えばJIS規格の5US309S鋼、
SUS 310 s%、或いはNCF300材と言った
ようなN1含有量の高い材料が使用され、塩化物の存在
する高温環境での鋼の耐食性にN1の添加が有効である
との従来の報告の通り、良好な成績を収めるものと期待
されていた。
〈発明が解決しようとする問題点〉 しかしながら、これらの材料のうち、5US309S鋼
や5US31OS鋼等の比較的N1含有量の低いものは
1発熱被覆管の使用環境における腐食形態が前述の如く
に従来の予想を越えたものであったことから、耐食性の
点で十分に満足できるものでないことが明らかとな!7
5一方、N1含有量の比較的高いNCF 800材は、
耐熱性・耐食性の点で従来材中量も良好な部類のもので
はあったが、それでも、 (a)  CL−イオンを多量に含む水溶液による常温
並びに高温腐食に対しての抵抗性が今−歩十分ではな(
、Cr系炭化物の粒界析出に起因する粒界型の腐食を発
生し易い。
(b)  特にシーズヒータの発熱被覆管として電気製
品に組み込まれる場合、シーズヒータの絶縁破壊電圧に
どうしても悪影響が及んでしまう。
つまり、シーズヒータの絶縁破壊電圧は1発熱被覆管に
充填する無機絶縁粉末の特性以外に。
該発熱被覆管内部の気圧によって大きく変化する性質の
ものであるが、前記NCF300材であっても高温加熱
時に酸化が起こって密封された発熱被覆管内部の空気を
消費し、その内部圧を下げるので、絶縁破壊電圧の低下
を逸れない。
との問題を有していることが長期に亘る実使用によって
次第に明らかとなってきた上、 (C)  溶接性や成形加工性に難点があって、素管製
造時の溶接に際してビード部に割れを生じたシ1発熱被
覆管の断面成形時(シーズヒータ等の発熱被覆管は、通
常、上部に偏平辺が位置するような三角形断面に成形加
工され1熱効率の向上が図られる)や、スパイラル形状
等への成形加工時に割れを発生したシし易い。
即ち、NCF300材は、室温から溶融温度までオース
テナイト−相組織でアシ、このため57工ライト生成元
素であってかつ溶融温度の低いP及びSが溶接凝固時に
地金中へ固溶しないでセル状デ/ドライド境界に濃化す
るので、凝固収縮応力がこの部分に集中し、割れを発生
する。この場合、C含有量は高い方が溶接割れ感受性を
抑えるのに有効であるが、C含有量を高くすると発熱被
覆管としての性能が劣化するのでC量含有量はどうして
も0.04%以下(以降。
成分割合を表わすチは重量基準とする)に抑えざるを得
す、溶接割れ感受性は必然的に高くなってしまう。そし
て、例えこの溶接部の割れ欠陥が極めて小さい内部欠陥
であったとしても、その後の偏平加工時や、スパイラル
状又はU字型への成形時に製品割れとして顕化してしま
う。
と言う、発熱被覆管の製造上極めて不利な問題点をも抱
えていたのである。
く問題点を解決するだめの手段〉 この発明は、上述のような各種の問題点を解消し、常温
・高温間の熱サイクルが頻繁に加わる上。
比較的高濃度の塩化物含有物質と接触し易い環境下にあ
っても優れた耐食性を示すことはもちろん、溶接性や成
形加工性等も良好で、例えばシーズヒータの発熱被覆管
に適用したとしても該シーズヒータの絶縁破壊電圧に悪
影響を及ぼすことのない金属材料を比較的安価に提供す
べく、試行錯誤を繰り返しながらなされた本発明者等の
研究の結果なされたものであり、 発熱被覆管用材料を。
C:0.015〜0.04チ、Si:0.2〜1.0%
Mn:1.O%以下r    Cr:19〜23%。
Ni:30超〜35%、  Mo : 0.2〜5.0
%。
Cu:  0.2〜1.0  %、    AA:0.
15〜0.60  %。
Ti:O,15〜060 % を含有し、 残部:Fe及び不可避不純物 から成るとともに、前記不可避不純物中のp、s。
N及び○の含有量を、それぞれ、 P:0.020チ以下、S:0.002%以下。
N:0.02%以下、  O二0.01チ以下に抑えた
鋼で構成することにより、通常の高温用鋼としての必要
特性を有することはもちろんのこと、塩化物の存在する
高温環境中での格段に改善された耐食性、シーズヒータ
の発熱被覆管として使用した際にも絶縁破壊電圧に悪影
響を及ぼさない特性、優れた溶接性、そして優れた成形
性等をも兼ね備えしめ5発熱被覆管を備えた各種高温機
器類寿命の飛躍的延長を可能ならしめた点。
K特徴を有するものである。
次に、この発明の鋼において、その組成成分の割合を前
記の如くに限定した理由を詳述する。
■ C C成分の含有量がO,Ol 5チ未満では溶接時にビー
ド割れを発生し易くな)、一方、0.04%を越えてC
を含有させると、発熱被覆管として使用される際にcr
系炭化物が析出して高温耐食性を劣化することから、C
含有量はO,Ol 5〜o、 04 %と定めた。
■ 5i Si成分は鋼の脱酸剤として有効なものであるが、その
含有量が0.2%未満では溶解工程において脱酸不良を
惹起し、地金中に多量の酸化物系介在物が残存するよう
罠なって製品板表面の地疵欠陥を誘発する恐れがでてく
る。一方、1.0%を越えてSlを含有させると、溶接
時のビード割れを発生するようになることから、 Si
含有量を0.2〜1.0%と定めた。
■ Mn    ・ Mn成分も溶解工程における脱酸剤として使用されるも
のであるが、この意味からも鋼中に残存するMn量は1
.0%以内で十分であるので、 Mn含有量を1.0%
以下と定めた。
@Cr Cr成分には、塩化物の存在する環境で使用される発熱
被覆管用鋼の高温及び常温での耐食性を改善する作用が
あるが、その含有量が19チ未満では前記作用に所望の
効果が得られず、一方、 Cr含有量が高いほど高温耐
酸化性には有効でわるけれども、あまシ多量に含有させ
ると、オーステナイト単相を維持して長時間時効による
劣化を防止したシ溶接性を確保するのKNiの多量添加
を必要としてコスト上昇をもたらす上523%を越える
添加ではそれ以上の特性向上効果が得られないばかりか
1組織的にσ相を析出するようになることから、Cr含
有量は19〜23%と定めた。
(i)  Ni N1成分は、塩化物の存在する環境で使用される発熱被
覆管用鋼の耐食性を改善するのに極めて重要な元素であ
り、またオーステナイト単相を維持するためにも重要な
ものであるが、その含有量が30%以下では塩化物付着
下での高温耐食性改善作用やオーステナイト単相維持作
用に所望の効果妙S得られなり上、加工性の面からも好
ましくなく。
一方、N1含有量が高いほど発熱被覆管としての耐食性
向上効果は顕著であるが、35%を越えてN1を含有さ
せることは鋼材価格の著しい上昇につながることから、
 Ni含有量は30%を越える値〜35チと定めた。
■ M。
MO酸成分、塩化物の存在する環境で使用される発熱被
覆管用鋼の耐食性向上に有効な元素であるが、その含有
量が0.2%未満では所望の耐食性向上効果が得られず
、一方、5.0%を越えて含有させると、耐食性向上効
果は増進するものの発熱被覆管製作工程での曲げ加工性
を害するようKなることから、 Mo含有量は0.2〜
5.0%と定めた。
■ Cu Cu成分にも、塩化物存在下で使用される発熱被覆管用
鋼の耐食性改善作用があるが、その含有量が0.2チ未
満では前記作用に所望の効果が得られず、一方、1.0
%を越えて含有させると素管溶接時KWJJれの発生を
みるようになることから、 Cu含有金は02〜1.0
チと定めた。
OAl、及びT1 これらの各成分には、発熱被覆管用鋼の高温強度を向上
する作用があるが、それぞれの含有量が0.15%未満
では所望のクリープ・ラブチャー強度を確保することが
できず、一方、各々0.60%を越えて含有させると、
素管溶接時にAl、Tiの酸化物や窒化物が溶接ビード
部へ浮上し、溶接部のビード割れを惹起するようになる
ことから1M及びTiの含有量は、それぞれ0.15〜
0.60%と定めた。
■ P Pは、溶接時にビード割れを誘発する有害な不純物元素
であるが、その含有量を0.020 %以下に低減する
と前記ビード割れ発生が抑えられることから、P含有量
を0.020%以下と定めた。
■ S Sも、Pと同様、溶接時にビード割れを誘発する有害な
不純物元素であるが、やはシその含有量を0.002%
以下にまで低減すると前記ビード割れ発生が抑えられる
ことから、S含有量をO,OO2チ以下と定めた。
■ N この発明の鋼は5窒化物形成傾向の高いM及びT1を含
有するため、N含有量が多くなるとAI、Tiの窒化物
を多量に形成し、溶接性(溶接曲げ性)を害するように
なる。しかしながら、その含有量が0.02%以下であ
れば溶接性に対する悪影響はそれ4ど著しくないことか
ら、N含有量を0.02−以下と定めた。
の  0 前記M及びT1は酸化物形成傾向の高い元素でもあるの
で、やはり溶接性の観点から鋼中のO含有量を低減する
必要がある。しかしながら、種々の実験の結果、0含有
量が0.01%以下であれば実用上の格別な問題を生じ
ないことから、0含有量は0.01%以下と定めた。
さて、この発明は、これまで説明してきたように、塩化
物含有物質との接触を避けることが困難な発熱被覆管に
適用する鋼を、上述のような成分組成にて構成した点に
大きな特徴を有するものであるが、適用対象である発熱
被覆管には格別な制限はなく、いずれの型式のものであ
っても十分に満足し得る効果が得られる。しかしながら
、最近特にその普及が著しい、被覆管内部に発熱コイル
を挿入するとともにマグネシア等の無機絶縁粉末を充填
してなる構造を有し、かつ大気中で600℃以上の赤熱
状態とされるか、或いは水中にて加熱状態とされるシー
ズヒータの発熱被覆管に適用することで一層優れた性能
が発揮される。
次いで、この発明を、実施例により比較例と対比しなが
ら更に具体的に説明する。
〈実施例〉 実施例 1 まず、第1表に示される如き成分組成の鋼を。
真空溶解を経てインゴットとし、熱間鍛造、熱間圧延及
び冷間圧延にて0.4611JI厚の鋼板とした。
続いてこれらの鋼板を素材として、通常の方法にて造管
・溶接(溶接は「なめ付TIG溶接」を採用し、溶接速
度は3m/misと5 m / aa以上との2覆とし
た)を行い、直径が8騙φの発熱被覆管を製造した。
このようKして得られた各発熱被覆管について、溶接部
欠陥の有無(超音波探傷試験によって調査)並びに曲げ
加工性を調べ、その結果を第1表に併せて示した。なお
5曲げ加工性は、発熱被覆管を半径:11朋で曲げ加工
したときの割れ発生の有無に;つて評価した。
第1表に示される結果からも明らかなように。
本発明鋼A−Hは素管の溶接性及び発熱被覆管としたと
きの曲げ加工性のいずれもが良好な結果を示したのに対
して、比較材に、L及び0以外の比較・材については、
素管の溶接でビード割れを起した)或いはスカム浮上に
よる欠陥が発生し、曲げ加工性を劣化することがわかる
実施例 2 実施例1において良好な溶接性並びに曲げ加工性を示し
た材料の中から、本発明鋼A、C,E及びF、並びに比
較材に、L及びQを選んで、Ct−イオンに対する耐孔
食性と、加熱温度:800℃の熱サイクノシ試験を実施
した。
なお、針孔食性試験はJISGO5’77に基づいて実
施し、熱サイクル試験は、実施例1におけると同様に製
作した発熱被覆管に発熱コイルを挿入し、かつマグネシ
アを充填して得たシーズヒータに、20分間通電及び1
0分間止電の熱サイクルを与えるとともK、初回及び5
回目毎に3%NaC4水溶液中へ浸漬し、腐食の有無、
並びに形状変形の有無を調査する方法を採用した。
得られた結果を第2表に示す。
′第   2   表 第2表に2いて、「耐孔食性」の評価は50・・・・・
・孔食電位がO,l 2 V以下(対S、C,E、 )
のもの、 Δ・・・・・・孔食電位が0.1 V以下(対S、C,
E、)のもの。
で表わし、また「熱サイクル試験結果」の評価は。
O・・・・・・熱サイクル300回以上で異常なし。
X・・・・・・熱サイクル300回未満で粒界腐食又は
形状変形あり、 で表わしているが、該第2表からも5本発明鋼はいずれ
も良好な結果が得られているのに対して、比較材に、L
及びOは、発熱被覆管の製作上は何の問題もなかつたけ
れども実用面での性能に劣っていることが明白である。
実施例 3 まず、第1表の本発明鋼A及びB、並びにJIS規格の
NCF 800材から成る板厚:0.46mの帯鋼を用
い、シーム溶接にて外径、8朋φの発熱被覆管を作製し
た。
次いで、第1図に示されるようK、前記発熱被覆管1に
1両端部に電気数シ出し端子2を接続したJIS規格N
CHWIから成る発熱コイル3を挿入し、マグネシアを
主成分とする無機絶縁粉末4を充填した後、そのままで
外径:6.6uφにまで縮径圧延した。
続いて、これに固溶化熱処理を施し、「うす巻き状」に
曲げ加工し、更にプレス加工を行った後2発熱被覆管1
の端部をガラス5及びシリコーンツム6で封口して、第
2図(a)の平面図で、そして第2図(b)の正面図で
それぞれ示されるような電気コンロ用シーズヒニタを作
製した。なお、第2図において符号7及び8で示される
ものは、シーズヒータ取付金具である。
このようKして得られたシーズヒータの電気特性を調べ
、その結果を第3図及び第4図に示した。
第3図は1通電中の熱時絶縁抵抗を示すグラフであシ、
第4図は、シーズヒータ完成後の絶縁破壊電圧を示した
グラフである。なお、これらは。
それぞれシーズヒータ5本について測定した値の範囲で
示されている。
第3図に示される結果からは、熱時絶縁抵抗については
5本発明鋼A及びBとNCF 800材との間に殆んど
差がなく、いずれも電気用品取締法に規定されたIMΩ
よプ大きな値を示していることがわかるが、これは、熱
時絶縁抵抗が、本来、無機絶縁粉末の電気抵抗によって
決定されるものであることを考慮すれば十分に理解でき
ることである。
一方、絶縁破壊電圧については、第4図からも明らかな
ように、NCF300材と比較して本発明鋼A及びBは
一段と高い値を示すと言う結果が得られた。
このように、絶縁破壊電圧は、無機絶縁粉末の特性以外
にシーズヒータ内部の気圧によって大きく変化する性質
のものであるが、本発明鋼A及びBは耐酸化性に優れる
ためにシーズヒータ内部の空気の消費が少なく、従って
シーズヒータ内部圧を高く保持し続けるために、絶縁破
壊電圧が高くなると言う好結果を得ることができたわけ
である。
更に、以上のシーズヒータを電気コンロに組込み5実使
用に近い条件で耐久テストを行った。
即ち、20分間通電−10分間休止を1サイクルとし、
48サイクル毎に味噌汁及び醤油のそれぞれ20WLt
をシーズヒータ全体に塗布して、定格電圧で熱サイクル
試験を実施したわけである。なお、この時のシーズヒー
タの表面温度は約760℃であった。
この耐久テストの結果を第3表に示す。
第3表 (注)表中に示す数値は、発熱被覆管に孔があき、絶縁
劣化に至ったサイクル数である。
第3表に示される結果からも、味噌汁に比べて醤油の方
が食塩濃度が高いため耐久性は悪くなるが、いずれにお
いても、NCF300材に比べて本発明鋼A及びBの方
が耐久性に優れていることは明白である。これは、鋼中
のC含有量を低減し5塩化物の存在する高温環境下での
腐食に大きく影響する炭化クロム量を低減するとともに
、MoやCuの含有量を高めた効果が現われたものであ
る。
また、第1表に示した本発明鋼A、E及びG。
並びにJIS規格のNCF300材を用いて同様のシー
ズヒータを作製し、電気コンロに組み込んで、空気中空
焼による耐久テストを行った。
即ち、 ” 20分間通電−10分間休止″を1サイク
ルとし、定格電圧の20%アップの電圧にて空気中空焼
による熱サイクル試験を実施したわけである。この時の
シーズヒータの表面温度は、約870℃であった。
この耐久テストの結果を第4表に示す。
第4表に示される結果からも5本発明鋼A、 E及びG
は、NCF 800材に比べて一段と耐久性に侵れてい
ることが明白である。
これは1本発明鋼中のMOか、シーズヒータの加工工程
における焼鈍工程や除湿工程等での加熱工第   4 
  表 (注) 表中に示す数値は1通電中の熱時絶縁抵抗がI
MΩ未満になるサイクル数である。
程を経る際に酸化され、酸化モリブデンを生成するので
、シーズ−ヒータ通電中に該シーズヒータ内部が減圧傾
向になった場合でも酸素を解離して減圧を防止する作用
を発揮するためであると考えられる。
第5図は、鋼中のMo含有量とシーズヒータの、耐久寿
命との関係を示すグラフであるが、第5図からも、鋼中
のMo含有量増加に伴って耐久寿命が増加していること
が明らかである。
また、第6図は、シーズヒータの耐久テスト中の熱時絶
縁抵抗の変化を示すグラフであり、熱時絶縁抵抗の測定
を定格電圧(シーズヒータの表面温度:約760℃)で
行った場合のものを示しているが、第6図からは、本発
明鋼を用いたシーズヒータの方が熱時絶縁抵抗の劣化が
少ないことがわかり、更に鋼中のMo含有量の増加に従
って熱時絶縁抵抗の劣化が少なくなることも明らかであ
る。
そして、これも、前記したように、酸化モリブデンの減
圧防止作用に起因した効果であると考えられる。
上述のようK、本発明鋼を用いたシーズヒータの耐久特
性はJIS規格のNCF300材を用いたシーズヒータ
に比べて非常に優れており、高い信頼性の得られること
がわかった。
このように5本発明鋼から成る発熱被覆管を用いたシー
ズヒータは、従来のNCF300材を使用したものに比
較して、電気特性及び実使用下での耐久性のいずれにも
優れていることが明らかであり、特に1食塩等の塩化物
含有物質(調味料等)が付着する恐れのある電気コンロ
、ロースタ−、オーブ/、或いはオーブンレンジ等の耐
久性な格段に向上できることが明白である。
く総括的な効果〉 以上説明したように、この発明によれば、塩化物の存在
する常温・高温熱サイクル付加環境下においても優れた
耐食性を示す上、溶接性及び曲げ加工性にも優れた発熱
被覆管用鋼を比較的安価に得ることができ、高温機器類
の性能や耐久性を一段と向上することが可能となるなど
、産業上極めて優れた効果がもたらされるのである。
【図面の簡単な説明】
第1図は、シーズヒータの構造の1例を示す概略模式図
、 第2図は、電気コンロ用シーズヒータの1例を示す概略
図であシ、第2図(a)はその平面図、第2図(b)は
その正面図、 第3図は、シーズヒータの通電中の熱時絶縁抵抗を比較
したグラフ。 第4図は、シーズヒータの絶縁破壊電圧を比較したグラ
フ。 第5図は、鋼中のMo含有量とンーズヒータの面す久寿
命との関係を示すグラフ、 第6図は5シーズヒータの耐久テスト中の熱時絶縁抵抗
の変化を示すグラフである。 図面において。 l・・・発熱被覆管、  2・・・電気取り出し端子。 3・・・発熱コイル、 4・・・無機絶縁粉末、5・・
・ガラス、    6・・・シリコーンツム、7.8・
・・ンーズヒータ取付金具。 出願人   日本ステンレス株式会社 出願人  松下電器産業株式会社 代理人  富  1) 和  夫ほか1名業2図 第3図 本饗明個A  本亨晴鋼B   NCF300第4図 $fBF4A岡A 不に明渡B   NCFE300調
中/)Mo、含有1  (1量%ン 1頁の続き 松下電器産業株式会社内 松下電器産業株式会社内

Claims (2)

    【特許請求の範囲】
  1. (1)重量割合で、 C:0.015〜0.04%、Si:0.2〜1.0%
    、Mn:1.0%以下、Cr:19〜23%、Ni:3
    0超〜35%、Mo:0.2〜5.0%、Cu:0.2
    〜1.0%、Al:0.15〜0.60%、Ti:0.
    15〜0.60% を含有し、 残部:Fe及び不可避不純物 から成るとともに、前記不可避不純物中のP、S、N及
    びOの含有量を、それぞれ、 P:0.020%以下、S:0.002%以下、N:0
    .02%以下、O:0.01%以下 に抑えたことを特徴とする発熱被覆管用鋼。
  2. (2)鋼の用途が、無機絶縁粉末充填材とともに内部に
    封入された発熱コイルによつて、600℃以上の大気中
    赤熱状態、若しくは水中加熱状態に置かれるシーズヒー
    タの発熱被覆管用である、特許請求の範囲第1項に記載
    の発熱被覆管用鋼。
JP17908484A 1984-08-28 1984-08-28 発熱被覆管用鋼 Granted JPS6160868A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17908484A JPS6160868A (ja) 1984-08-28 1984-08-28 発熱被覆管用鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17908484A JPS6160868A (ja) 1984-08-28 1984-08-28 発熱被覆管用鋼

Publications (2)

Publication Number Publication Date
JPS6160868A true JPS6160868A (ja) 1986-03-28
JPS6411106B2 JPS6411106B2 (ja) 1989-02-23

Family

ID=16059798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17908484A Granted JPS6160868A (ja) 1984-08-28 1984-08-28 発熱被覆管用鋼

Country Status (1)

Country Link
JP (1) JPS6160868A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158785A (ja) * 1986-12-19 1988-07-01 松下電器産業株式会社 シ−ズヒ−タ
JPS63158786A (ja) * 1986-12-22 1988-07-01 松下電器産業株式会社 シ−ズヒ−タ
JPS63289788A (ja) * 1987-05-20 1988-11-28 Matsushita Electric Ind Co Ltd シ−ズヒ−タ
JPH0357182A (ja) * 1989-07-26 1991-03-12 Sanyo Electric Co Ltd シーズヒータユニット
JP2010532425A (ja) * 2007-06-26 2010-10-07 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング 鉄−ニッケル−クロム−ケイ素合金
JP2013241650A (ja) * 2012-05-21 2013-12-05 Nippon Yakin Kogyo Co Ltd オーステナイト系Fe−Ni−Cr合金
JP2014084493A (ja) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
JP6186043B1 (ja) * 2016-05-31 2017-08-23 日本冶金工業株式会社 Fe−Ni−Cr合金、Fe−Ni−Cr合金帯、シーズヒーター、Fe−Ni−Cr合金の製造方法及びシーズヒーターの製造方法
JP2018150606A (ja) * 2017-03-14 2018-09-27 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびガスケット
CN109790608A (zh) * 2016-10-04 2019-05-21 日本冶金工业株式会社 Fe-Cr-Ni合金及其制造方法
CN110331327A (zh) * 2019-06-13 2019-10-15 青岛经济技术开发区海尔热水器有限公司 一种耐腐蚀的不锈钢材料和使用该材料的加热管及其应用
JP2020041195A (ja) * 2018-09-12 2020-03-19 日鉄ステンレス株式会社 メタルガスケット中間製品およびメタルガスケットの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611236B2 (ja) 2015-08-28 2019-11-27 日本冶金工業株式会社 Fe−Cr−Ni−Mo合金とその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158785A (ja) * 1986-12-19 1988-07-01 松下電器産業株式会社 シ−ズヒ−タ
JPS63158786A (ja) * 1986-12-22 1988-07-01 松下電器産業株式会社 シ−ズヒ−タ
JPS63289788A (ja) * 1987-05-20 1988-11-28 Matsushita Electric Ind Co Ltd シ−ズヒ−タ
JPH0357182A (ja) * 1989-07-26 1991-03-12 Sanyo Electric Co Ltd シーズヒータユニット
JP2010532425A (ja) * 2007-06-26 2010-10-07 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング 鉄−ニッケル−クロム−ケイ素合金
JP2013177691A (ja) * 2007-06-26 2013-09-09 Outokumpu Vdm Gmbh 鉄−ニッケル−クロム−ケイ素合金
US9777356B2 (en) 2012-05-21 2017-10-03 Nippon Yakin Kogyo Co., Ltd. Austenitic Fe—Ni—Cr alloy
JP2013241650A (ja) * 2012-05-21 2013-12-05 Nippon Yakin Kogyo Co Ltd オーステナイト系Fe−Ni−Cr合金
JP2014084493A (ja) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd 溶接性に優れる被覆管用オーステナイト系Fe−Ni−Cr合金
JP2017214622A (ja) * 2016-05-31 2017-12-07 日本冶金工業株式会社 Fe−Ni−Cr合金、Fe−Ni−Cr合金帯、シーズヒーター、Fe−Ni−Cr合金の製造方法及びシーズヒーターの製造方法
JP6186043B1 (ja) * 2016-05-31 2017-08-23 日本冶金工業株式会社 Fe−Ni−Cr合金、Fe−Ni−Cr合金帯、シーズヒーター、Fe−Ni−Cr合金の製造方法及びシーズヒーターの製造方法
WO2017208563A1 (ja) * 2016-05-31 2017-12-07 日本冶金工業株式会社 Fe-Ni-Cr合金、Fe-Ni-Cr合金帯、シーズヒーター、Fe-Ni-Cr合金の製造方法及びシーズヒーターの製造方法
CN109154056A (zh) * 2016-05-31 2019-01-04 日本冶金工业株式会社 Fe-Ni-Cr合金、Fe-Ni-Cr合金带、铠装加热器、Fe-Ni-Cr合金的制造方法和铠装加热器的制造方法
US10927438B2 (en) 2016-05-31 2021-02-23 Nippon Yakin Kogyo Co., Ltd. Fe-Ni-Cr alloy, Fe-Ni-Cr alloy strip, sheath heater, method of manufacturing Fe-Ni-Cr alloy, and method of manufacturing sheath heater
CN109790608A (zh) * 2016-10-04 2019-05-21 日本冶金工业株式会社 Fe-Cr-Ni合金及其制造方法
EP3524704A4 (en) * 2016-10-04 2020-03-25 Nippon Yakin Kogyo Co., Ltd. FE-CR-NI ALLOY AND METHOD FOR PRODUCING THE SAME
CN109790608B (zh) * 2016-10-04 2021-05-07 日本冶金工业株式会社 Fe-Cr-Ni合金及其制造方法
JP2018150606A (ja) * 2017-03-14 2018-09-27 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびガスケット
JP2020041195A (ja) * 2018-09-12 2020-03-19 日鉄ステンレス株式会社 メタルガスケット中間製品およびメタルガスケットの製造方法
CN110331327A (zh) * 2019-06-13 2019-10-15 青岛经济技术开发区海尔热水器有限公司 一种耐腐蚀的不锈钢材料和使用该材料的加热管及其应用
CN110331327B (zh) * 2019-06-13 2022-01-18 青岛经济技术开发区海尔热水器有限公司 一种耐腐蚀的不锈钢材料和使用该材料的加热管及其应用

Also Published As

Publication number Publication date
JPS6411106B2 (ja) 1989-02-23

Similar Documents

Publication Publication Date Title
JPS6160868A (ja) 発熱被覆管用鋼
JP5888737B2 (ja) オーステナイト系Fe−Ni−Cr合金
EP2121996B1 (en) Filler metal composition and method for overlaying low nox power boiler tubes
JPS648695B2 (ja)
US20080102309A1 (en) Heating element sheaths
JPH0565762B2 (ja)
CN104455761A (zh) 一种镍基合金与碳钢冶金结合的复合焊管及其制造方法
EP2426226B1 (en) Iron-nickel based alloy for high temperature use
EP0551711B1 (en) Heater sheath alloy
CN105252170A (zh) 提高室温抗拉强度的不锈钢埋弧焊焊带
JPS63121641A (ja) オ−ステナイトステンレス鋼製シ−ズヒ−タ外部被覆
US4950873A (en) Sheath heater
JP4042367B2 (ja) 熱電対と、その保護管材料およびその材料の使用方法
JPH03229838A (ja) 塩化物存在下での耐高温腐食性に優れた鋼
JP2548153B2 (ja) シ−ズヒ−タ
JPH0231631B2 (ja)
JPS5970494A (ja) Cr−Mo鋼溶接用被覆ア−ク溶接棒
JPS63158786A (ja) シ−ズヒ−タ
JP2639913B2 (ja) シーズヒータユニツト
JPS61235542A (ja) 断続的加熱時の耐久性にすぐれたフエライト系ステンレス鋼
JPH04228547A (ja) 耐粒界腐食性,造管性および高温強度に優れたフエライト系ステンレス鋼
JPS61103698A (ja) 高温クリ−プ破断強さとクリ−プ破断伸びが共に優れたオ−ステナイトステンレス鋼溶接用ワイヤ
JPH0421995B2 (ja)
JPS6036863B2 (ja) オ−ステナイト系ステンレス鋼の溶接方法
JPS6325053B2 (ja)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term