JPS6147377B2 - - Google Patents
Info
- Publication number
- JPS6147377B2 JPS6147377B2 JP55122412A JP12241280A JPS6147377B2 JP S6147377 B2 JPS6147377 B2 JP S6147377B2 JP 55122412 A JP55122412 A JP 55122412A JP 12241280 A JP12241280 A JP 12241280A JP S6147377 B2 JPS6147377 B2 JP S6147377B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- coating agent
- shows
- amount
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000007784 solid electrolyte Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 description 23
- 229910000831 Steel Inorganic materials 0.000 description 21
- 239000010959 steel Substances 0.000 description 21
- 238000005259 measurement Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- -1 oxygen ion Chemical class 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910001512 metal fluoride Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/411—Cells and probes with solid electrolytes for investigating or analysing of liquid metals
- G01N27/4115—Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/411—Cells and probes with solid electrolytes for investigating or analysing of liquid metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/411—Cells and probes with solid electrolytes for investigating or analysing of liquid metals
- G01N27/4118—Means for protecting the electrolyte or the electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は酸素イオン導電性を有する固体電解質
素子を用いて酸素濃淡電池を形成し、溶鋼、溶銅
等の溶融金属中の溶解酸素量を測定するセンサー
の改良に関するものである。 溶融金属中の酸素量は製品品質を所定の成分と
する為に非常に重要な管理成分であり、近年固体
電解質の開発が進むにつれ、これを素子として酸
素濃淡電池を構成したセンサーを直接溶融金属中
に浸漬して酸素量を測定する方法が行われるよう
になつてきた。 この電池の構成は、第1図に示すようにMo電
極5―溶鋼―固体電解質1―標準極3―Mo電極
4とし、両Mo電極間に酸素分圧差に比例した起
電力が発生することを利用している。 標準極3には、一般にNi+NiO、Mo+MoO2、
Cr+Cr2O3等の混合物を使用し、また酸素イオン
導電性固体電解質1としてはZrO2基、ThO2基等
の金属酸化物を一定形状に成形したものを用いて
いる。さらにセンサーに併設された熱電対6によ
り、溶融金属の温度も同時に測定出来る様になつ
ている(その他第1図において7はセラミツクハ
ウジング、8はコネクター、9は鉄製キヤツプ、
10はセラミツクフアイバー耐火スリーブ、11
はペーパースリーブである)。ここで溶解酸素量
は測定対象が溶鋼の場合、ネルンストの式より導
かれる次式により計算で求めることが出来る。 loga0=10.08E−13580/T+8.62 (標準極はCr+Cr2O3) a0:溶解酸素量(ppm) E:起電力(mV) T:温度(〓) センサーの形状については種々提供されている
が、第1図のごとく標準極物質3を一端閉管状の
固体電解質素子1(以下素子という)の内部に充
填したセンサーを用いて溶鋼中の溶解酸素量の測
定を行なつた場合、その起電力波形は第2図に示
すような熱的電気的過度現象により立上がりに大
きなピークを生じてから平衡状態に移行するとい
う挙動を示す。 これは浸漬直後には素子内外面に大きな温度差
が生じ、素子内部に充填した温度依存性を有する
標準極の解離酸素分圧が、溶鋼温度での平衡分圧
に達するまでに長い時間を要することに原因があ
る。 そこで、起電力波形の立上がりのピークを低く
抑えて平衡状態に達するまでの時間を短縮するた
めに、溶鋼との濡れ性が良好となるよう素子表面
にコーテイング2を施したセンサーが既に知られ
ている。このコーテイング剤の特性としては、 (1) 室温から溶鋼中に浸漬しても亀裂剥離を生じ
ない。 (2) 素子の酸素イオン導電性を阻害しない。 ことが要求される。 しかしながら、従来のAl2O3細粒と有機系バイ
ン―を組合せたコーテイング剤は(1)項についての
配慮が十分ではなく、溶鋼への浸漬直後にサーマ
ルシヨツクによる亀裂が生じ、コーテイング層が
短時間で剥離して素子が露出するため溶鋼との濡
れ性が十分に保たれない為効果は乏しかつた。こ
れは有機系バインダーが常温でのAl2O3素子間の
結合および素子との接着は保障するが、溶鋼浸漬
と同時に燃焼してその効力を失うためであり、上
記の点はAl2O3系単独のコーテイング剤を用いる
かぎり避けることのできない欠点である。 本発明はこのような従来の不利欠点を解決する
ために提案されたものである。 本発明のコーテイング剤は、室温における結合
力を有機系バインダーを用いて出す点は従来技術
と同じであるが、高温下でのコーテイング層強度
を高める目的で、Al2O3との結合力の大きい添加
物を単独または組合せて配合するようにしてい
る。 ここで添加物は、コーテイング剤の調整の際
に水を使用する点およびセンサーに組み込み後
の吸湿防止等を考慮して水に難容な金属弗化物と
した。この金属弗化物としてはCaF2、MgF2等で
あり、これらの水に対する溶解度は、 MgF2:7.6mg/l(18℃) CaF2:1.6mg/100g(18℃) である。 このような弗化物を添加して、コーテイング層
を形成すると、溶鋼浸漬直後に弗化物が酸化され
て酸化物となり、Al2O3粒と反応して強固層をつ
くり、前述の(1)(2)項を共に満足する理想的なコー
テイング効果を発揮させることが出来る。 以下実施例に従つて本発明を詳細に説明する。 〔実施例 1〕 溶鋼へ浸漬した時のコーテイング剤の状態変化
を調査した。
素子を用いて酸素濃淡電池を形成し、溶鋼、溶銅
等の溶融金属中の溶解酸素量を測定するセンサー
の改良に関するものである。 溶融金属中の酸素量は製品品質を所定の成分と
する為に非常に重要な管理成分であり、近年固体
電解質の開発が進むにつれ、これを素子として酸
素濃淡電池を構成したセンサーを直接溶融金属中
に浸漬して酸素量を測定する方法が行われるよう
になつてきた。 この電池の構成は、第1図に示すようにMo電
極5―溶鋼―固体電解質1―標準極3―Mo電極
4とし、両Mo電極間に酸素分圧差に比例した起
電力が発生することを利用している。 標準極3には、一般にNi+NiO、Mo+MoO2、
Cr+Cr2O3等の混合物を使用し、また酸素イオン
導電性固体電解質1としてはZrO2基、ThO2基等
の金属酸化物を一定形状に成形したものを用いて
いる。さらにセンサーに併設された熱電対6によ
り、溶融金属の温度も同時に測定出来る様になつ
ている(その他第1図において7はセラミツクハ
ウジング、8はコネクター、9は鉄製キヤツプ、
10はセラミツクフアイバー耐火スリーブ、11
はペーパースリーブである)。ここで溶解酸素量
は測定対象が溶鋼の場合、ネルンストの式より導
かれる次式により計算で求めることが出来る。 loga0=10.08E−13580/T+8.62 (標準極はCr+Cr2O3) a0:溶解酸素量(ppm) E:起電力(mV) T:温度(〓) センサーの形状については種々提供されている
が、第1図のごとく標準極物質3を一端閉管状の
固体電解質素子1(以下素子という)の内部に充
填したセンサーを用いて溶鋼中の溶解酸素量の測
定を行なつた場合、その起電力波形は第2図に示
すような熱的電気的過度現象により立上がりに大
きなピークを生じてから平衡状態に移行するとい
う挙動を示す。 これは浸漬直後には素子内外面に大きな温度差
が生じ、素子内部に充填した温度依存性を有する
標準極の解離酸素分圧が、溶鋼温度での平衡分圧
に達するまでに長い時間を要することに原因があ
る。 そこで、起電力波形の立上がりのピークを低く
抑えて平衡状態に達するまでの時間を短縮するた
めに、溶鋼との濡れ性が良好となるよう素子表面
にコーテイング2を施したセンサーが既に知られ
ている。このコーテイング剤の特性としては、 (1) 室温から溶鋼中に浸漬しても亀裂剥離を生じ
ない。 (2) 素子の酸素イオン導電性を阻害しない。 ことが要求される。 しかしながら、従来のAl2O3細粒と有機系バイ
ン―を組合せたコーテイング剤は(1)項についての
配慮が十分ではなく、溶鋼への浸漬直後にサーマ
ルシヨツクによる亀裂が生じ、コーテイング層が
短時間で剥離して素子が露出するため溶鋼との濡
れ性が十分に保たれない為効果は乏しかつた。こ
れは有機系バインダーが常温でのAl2O3素子間の
結合および素子との接着は保障するが、溶鋼浸漬
と同時に燃焼してその効力を失うためであり、上
記の点はAl2O3系単独のコーテイング剤を用いる
かぎり避けることのできない欠点である。 本発明はこのような従来の不利欠点を解決する
ために提案されたものである。 本発明のコーテイング剤は、室温における結合
力を有機系バインダーを用いて出す点は従来技術
と同じであるが、高温下でのコーテイング層強度
を高める目的で、Al2O3との結合力の大きい添加
物を単独または組合せて配合するようにしてい
る。 ここで添加物は、コーテイング剤の調整の際
に水を使用する点およびセンサーに組み込み後
の吸湿防止等を考慮して水に難容な金属弗化物と
した。この金属弗化物としてはCaF2、MgF2等で
あり、これらの水に対する溶解度は、 MgF2:7.6mg/l(18℃) CaF2:1.6mg/100g(18℃) である。 このような弗化物を添加して、コーテイング層
を形成すると、溶鋼浸漬直後に弗化物が酸化され
て酸化物となり、Al2O3粒と反応して強固層をつ
くり、前述の(1)(2)項を共に満足する理想的なコー
テイング効果を発揮させることが出来る。 以下実施例に従つて本発明を詳細に説明する。 〔実施例 1〕 溶鋼へ浸漬した時のコーテイング剤の状態変化
を調査した。
【表】
各原料を表1に示す比率で混合し、水を加えて
60%濃度のスラリーとしたのち、一端閉管状の
ZrO2(MgO)素子表面に均一になるよう塗布
し、室温にて指触乾燥後、130℃で24時間乾燥処
理を施した後に、これらの素子を20Kg高周波誘導
炉を用いて溶製した溶鋼中に20秒間浸漬した。 なお、溶解した鋼はS45C、溶鋼温度は1550
℃、1600℃、1650℃である。テスト結果は表2に
示す様に、コーテイング剤B,C,D,Eにおい
ては微細な亀裂が走ることはあつても、従来のコ
ーテイング剤に見られる様なコーテイングの剥離
は全く生じなかつた。このことから弗化物系添加
材を混合することにより、改善効果のある事が判
る。
60%濃度のスラリーとしたのち、一端閉管状の
ZrO2(MgO)素子表面に均一になるよう塗布
し、室温にて指触乾燥後、130℃で24時間乾燥処
理を施した後に、これらの素子を20Kg高周波誘導
炉を用いて溶製した溶鋼中に20秒間浸漬した。 なお、溶解した鋼はS45C、溶鋼温度は1550
℃、1600℃、1650℃である。テスト結果は表2に
示す様に、コーテイング剤B,C,D,Eにおい
ては微細な亀裂が走ることはあつても、従来のコ
ーテイング剤に見られる様なコーテイングの剥離
は全く生じなかつた。このことから弗化物系添加
材を混合することにより、改善効果のある事が判
る。
コーテイングを施した素子をセンサーに組込
み、溶解酸素量の測定を行なつた。用いたコーテ
イング剤の配合条件を表3に示す。コーテイング
剤の調整および塗布方法は実施例1と同じであ
る。有機系バインダーとしては、PVA(ポリビ
ニルアルコール)を用い、各コーテイング剤とも
30本ずつ各炭素レベルごとに10本試験を行なつ
た。なお、センサーの構成は第1図と同様であ
る。
み、溶解酸素量の測定を行なつた。用いたコーテ
イング剤の配合条件を表3に示す。コーテイング
剤の調整および塗布方法は実施例1と同じであ
る。有機系バインダーとしては、PVA(ポリビ
ニルアルコール)を用い、各コーテイング剤とも
30本ずつ各炭素レベルごとに10本試験を行なつ
た。なお、センサーの構成は第1図と同様であ
る。
【表】
ここで測定条件は以下のとおりである。
溶解炉 :50Kg高周波誘導炉
溶解温度:1600℃
溶 鋼:Fe―C―O系(C量0.10%、0.20%、
0.40%)溶鋼の酸素量は、顆粒状グラ
フアイ トの添加量で調整し、また鋼浴表面は
Arガスでシールしている。 この代表的な測定波形例を第3図〜第6図に示
す。第3図は従来品Aをコーテイングした素子を
用いた場合、第4図はFをコーテイングした素子
を用いた場合、第5図はGをコーテイングした素
子を用いた場合、第6図はHをコーテイングした
素子を用いた場合を示したものである。測定され
た起電力波形を以下の分類に従つて定量的に評価
したものが表4である。 ここで起電力波形は次に示すクラスに分類し、
各々1〜6点の重みをつけて平均したものであ
り、数字が小さいほど良好な結果の得られたこと
を表わしている。
0.40%)溶鋼の酸素量は、顆粒状グラ
フアイ トの添加量で調整し、また鋼浴表面は
Arガスでシールしている。 この代表的な測定波形例を第3図〜第6図に示
す。第3図は従来品Aをコーテイングした素子を
用いた場合、第4図はFをコーテイングした素子
を用いた場合、第5図はGをコーテイングした素
子を用いた場合、第6図はHをコーテイングした
素子を用いた場合を示したものである。測定され
た起電力波形を以下の分類に従つて定量的に評価
したものが表4である。 ここで起電力波形は次に示すクラスに分類し、
各々1〜6点の重みをつけて平均したものであ
り、数字が小さいほど良好な結果の得られたこと
を表わしている。
【表】
き・振
動
* クラス5、6は読取不能と判定される
不良波形である。
さらに平衡値が出るまでの時間を評価したもの
が表5である。 この結果、いずれも金属弗化物の添加により起
電力波形が改善されたことを示している。
動
* クラス5、6は読取不能と判定される
不良波形である。
さらに平衡値が出るまでの時間を評価したもの
が表5である。 この結果、いずれも金属弗化物の添加により起
電力波形が改善されたことを示している。
製鋼現場での浸漬試験結果を示す。センサーの
構成は第1図と同じである。コーテイング剤の配
合条件を表6に示す。
構成は第1図と同じである。コーテイング剤の配
合条件を表6に示す。
【表】
測定波形を第7図〜第9図に示す。
第7図は転炉より出鋼直後の300ton取鍋中溶鋼
の測定波形例(コーテイング剤I)、第8図、第
9図はRH脱ガス処理時の250ton取鍋中溶鋼の測
定例(第8図はコーテイング剤I、第9図はコー
テイング剤J)で、測定鋼種はいずれもAlキル
ド鍋である。第10図にRH脱ガス装置での測定
で得られた溶解酸素量と、同時に採取したサンプ
ルの分析によつて求めた金属Al(SolAl)量との
相関関係を示す。また、第11図には溶解酸素量
と測定に必要な時間との関係を示す。以上いずれ
も50Kg小型溶解炉で達成できたと同じ本発明の改
良効果が製鋼現場での測定でも得られることも示
している。 以上の各実施例からも明らかなように、本発明
のセンサーによれば、溶融金属中の溶解酸素量を
測定するにあたつて、溶鋼浸漬時、素子表面のコ
ーテイング剤の亀裂剥離が防止され、しかも素子
の酸素イオン導電性を阻害することなく、良好な
測定起電力波形が得られるなどその効果のすぐれ
た発明である。
の測定波形例(コーテイング剤I)、第8図、第
9図はRH脱ガス処理時の250ton取鍋中溶鋼の測
定例(第8図はコーテイング剤I、第9図はコー
テイング剤J)で、測定鋼種はいずれもAlキル
ド鍋である。第10図にRH脱ガス装置での測定
で得られた溶解酸素量と、同時に採取したサンプ
ルの分析によつて求めた金属Al(SolAl)量との
相関関係を示す。また、第11図には溶解酸素量
と測定に必要な時間との関係を示す。以上いずれ
も50Kg小型溶解炉で達成できたと同じ本発明の改
良効果が製鋼現場での測定でも得られることも示
している。 以上の各実施例からも明らかなように、本発明
のセンサーによれば、溶融金属中の溶解酸素量を
測定するにあたつて、溶鋼浸漬時、素子表面のコ
ーテイング剤の亀裂剥離が防止され、しかも素子
の酸素イオン導電性を阻害することなく、良好な
測定起電力波形が得られるなどその効果のすぐれ
た発明である。
第1図は一般的な溶融金属用酸素濃度測定セン
サーの構成を示す概略図、第2図はコーテイング
を施さない素子を用いたセンサーの測定波形例、
第3図は従来のコーテイング剤を施した素子を用
いたセンサーの測定波形例、第4図、第5図、第
6図、第7図、第8図、第9図はいずれも本発明
に係るセンサーを用いた場合の測定波形例、第1
0図は本発明による測定溶解酸素量と金属Al量
との相関関係を示したグラフ、第11図は同じく
測定溶解酸素量と測定に必要な時間との関係を示
したグラフである。 図中1は固体電換質素子、2はコーテイング剤
である。
サーの構成を示す概略図、第2図はコーテイング
を施さない素子を用いたセンサーの測定波形例、
第3図は従来のコーテイング剤を施した素子を用
いたセンサーの測定波形例、第4図、第5図、第
6図、第7図、第8図、第9図はいずれも本発明
に係るセンサーを用いた場合の測定波形例、第1
0図は本発明による測定溶解酸素量と金属Al量
との相関関係を示したグラフ、第11図は同じく
測定溶解酸素量と測定に必要な時間との関係を示
したグラフである。 図中1は固体電換質素子、2はコーテイング剤
である。
Claims (1)
- 1 酸素イオン導電性を有する固体電解質素子の
外周面にMgF2及び/又はCaF2の粉体と結合剤か
らなるAl2O3を主体とする混合物を塗布してなる
溶融金属用酸素濃度測定センサー。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55122412A JPS5746155A (en) | 1980-09-05 | 1980-09-05 | Measuring sensor for oxygen concentration for molten metal |
AU75360/81A AU545427B2 (en) | 1980-09-05 | 1981-09-03 | Oxygen level sensor for molten metal |
US06/367,227 US4451350A (en) | 1980-09-05 | 1981-09-03 | Sensor for measuring density of oxygen in molten metal |
DE19813152318 DE3152318T5 (ja) | 1980-09-05 | 1981-09-03 | |
BR8108777A BR8108777A (pt) | 1980-09-05 | 1981-09-03 | Sensor para medicao da densidade de oxigenio em metal em fusao |
KR1019810003281A KR870000021B1 (ko) | 1980-09-05 | 1981-09-03 | 용융금속용 산소농도측정 센서(sensor) |
PCT/JP1981/000214 WO1982000892A1 (en) | 1980-09-05 | 1981-09-03 | Oxygen level sensor for molten metal |
NLAANVRAGE8120325,A NL184079C (nl) | 1980-09-05 | 1981-09-03 | Meetcel voor het bepalen van de hoeveelheid zuurstof in een gesmolten metaal en de daarbij behorende meetelektrode. |
GB8213050A GB2094485B (en) | 1980-09-05 | 1981-09-03 | Oxygen level sensor for molten metal |
EP81902453A EP0059222B1 (en) | 1980-09-05 | 1981-09-03 | Oxygen level sensor for molten metal |
SE8107224A SE455823B (sv) | 1980-09-05 | 1981-12-03 | Avkennarorgan for bestemning av syrekoncentrationen i smelt metall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55122412A JPS5746155A (en) | 1980-09-05 | 1980-09-05 | Measuring sensor for oxygen concentration for molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5746155A JPS5746155A (en) | 1982-03-16 |
JPS6147377B2 true JPS6147377B2 (ja) | 1986-10-18 |
Family
ID=14835162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55122412A Granted JPS5746155A (en) | 1980-09-05 | 1980-09-05 | Measuring sensor for oxygen concentration for molten metal |
Country Status (11)
Country | Link |
---|---|
US (1) | US4451350A (ja) |
EP (1) | EP0059222B1 (ja) |
JP (1) | JPS5746155A (ja) |
KR (1) | KR870000021B1 (ja) |
AU (1) | AU545427B2 (ja) |
BR (1) | BR8108777A (ja) |
DE (1) | DE3152318T5 (ja) |
GB (1) | GB2094485B (ja) |
NL (1) | NL184079C (ja) |
SE (1) | SE455823B (ja) |
WO (1) | WO1982000892A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57149956A (en) * | 1981-03-11 | 1982-09-16 | Hitachi Chem Co Ltd | Oxygen sensor of zirconia solid electrolyte |
FR2531222A1 (fr) * | 1982-08-02 | 1984-02-03 | Elf Aquitaine | Dispositif electrochimique de mesure de la pression partielle en oxygene dans une atmosphere gazeuse ou liquide |
HU191839B (en) * | 1983-05-16 | 1987-04-28 | Nehezipari Mueszaki Egyetem | Method and device for measuring continuously the solute alumina content of cryolite melts with alumina content during operation |
FR2547656B1 (fr) * | 1983-06-14 | 1988-11-04 | Mannesmann Ag | Sonde de mesure de l'oxygene actif dans les masses metalliques en fusion |
JPS6052763A (ja) * | 1983-09-01 | 1985-03-26 | Sumitomo Alum Smelt Co Ltd | 溶融金属中の酸素濃度測定用センサ− |
JPS61142455A (ja) * | 1984-11-20 | 1986-06-30 | Nippon Kokan Kk <Nkk> | 溶融金属中の不純物元素の活量測定方法及び測定プロ−ブ |
US4717463A (en) * | 1986-05-13 | 1988-01-05 | General Signal Corporation | Oxygen sensor |
JPS63286760A (ja) * | 1987-05-19 | 1988-11-24 | Osaka Oxygen Ind Ltd | 溶融鉄中の不純物元素の濃度測定用複合プロ−ブ |
JPH0778485B2 (ja) * | 1987-06-11 | 1995-08-23 | 大阪酸素工業株式会社 | 溶融金属中の不純物元素濃度測定プロ−ブ |
CA1303133C (en) * | 1988-09-07 | 1992-06-09 | Teruyuki Hasegawa | Method, apparatus, and probe for measuring the activity of a solute element in molten metal |
US4906349A (en) * | 1988-10-12 | 1990-03-06 | Zircoa Incorporation | Process for the manufacture of a measuring probe for a measuring head to detect the oxygen activity of metal melts and a measuring probe manufactured by such a process |
DE10310387B3 (de) * | 2003-03-07 | 2004-07-22 | Heraeus Electro-Nite International N.V. | Messeinrichtung zur Bestimmung der Sauerstoffaktivität in Metall- oder Schlackeschmelzen |
DE102004022763B3 (de) | 2004-05-05 | 2005-09-15 | Heraeus Electro-Nite International N.V. | Messeinrichtung zur Bestimmung der Sauerstoffaktivität in Metall- oder Schlackeschmelzen |
KR100671113B1 (ko) * | 2004-12-22 | 2007-01-17 | 재단법인 포항산업과학연구원 | 불순물 감지 센서 |
DE102005060492B3 (de) * | 2005-12-15 | 2007-05-24 | Heraeus Electro-Nite International N.V. | Messsonde zur Messung in Metall- oder Schlackeschmelzen |
DE102005060493B3 (de) * | 2005-12-15 | 2006-11-30 | Heraeus Electro-Nite International N.V. | Messsonde |
DE102007004147A1 (de) | 2007-01-22 | 2008-07-24 | Heraeus Electro-Nite International N.V. | Verfahren zum Beeinflussen der Eigenschaften von Gusseisen sowie Sauerstoffsensor |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL133730C (ja) * | 1965-04-08 | |||
LU54650A1 (ja) * | 1966-10-19 | 1967-12-11 | ||
LU55448A1 (ja) * | 1968-02-09 | 1969-09-23 | Metallurgie Hoboken | |
US3698955A (en) * | 1969-11-20 | 1972-10-17 | Philip Morris Inc | Oxygen-responsive electrical current supply |
US3809639A (en) * | 1969-12-24 | 1974-05-07 | Canadian Patents Dev | Solid electrolyte compact for probe used in quantitative determination of gas dissolved in molten metal |
US3758397A (en) * | 1970-07-15 | 1973-09-11 | Steel Corp | Apparatus for oxygen determination |
US3837920A (en) * | 1971-07-09 | 1974-09-24 | Mallory & Co Inc P R | A battery containing a solid electrolyte having cationic defects |
US3764269A (en) * | 1971-12-28 | 1973-10-09 | North American Rockwell | Sensor for fluid components |
US3864231A (en) * | 1972-01-31 | 1975-02-04 | Metallurgie Hoboken | Apparatus for measuring in a continuous manner oxygen in a molten metal |
CA990352A (en) * | 1974-08-02 | 1976-06-01 | Noranda Mines Limited | Apparatus for the continuous measurement of the oxygen content of molten copper or alloys thereof |
FR2330127A1 (fr) * | 1975-10-30 | 1977-05-27 | Anvar | Nouveaux conducteurs anioniques fluores |
JPS5439191A (en) * | 1977-09-02 | 1979-03-26 | Hitachi Ltd | Oxygen detector |
US4177112A (en) * | 1978-03-27 | 1979-12-04 | Nippondenso Co., Ltd. | Oxygen concentration detector and method of use thereof |
JPS54150191A (en) * | 1978-05-17 | 1979-11-26 | Hitachi Ltd | Solid electrolyte for detecting oxygen gas |
JPS5526405A (en) * | 1978-08-14 | 1980-02-25 | Hitachi Ltd | Oxygen detector |
US4216279A (en) * | 1979-03-30 | 1980-08-05 | Union Carbide Corporation | Manganese dioxide fluoride-containing cathodes for solid electrolyte cells |
JPS55152454U (ja) * | 1979-04-18 | 1980-11-04 | ||
JPS55152454A (en) * | 1979-05-17 | 1980-11-27 | Rooto Seiyaku Kk | Original method of measuring quantity of rohto extract alkaloid |
JPS55170661U (ja) * | 1979-05-26 | 1980-12-08 | ||
JPS56168152A (en) * | 1980-05-28 | 1981-12-24 | Yamazato Erekutoronaito Kk | Measuring element for concentration of sulfur |
JPH05141596A (ja) * | 1991-11-13 | 1993-06-08 | Fujitsu Ltd | 安全機構に付設するセンサの作動方法 |
-
1980
- 1980-09-05 JP JP55122412A patent/JPS5746155A/ja active Granted
-
1981
- 1981-09-03 KR KR1019810003281A patent/KR870000021B1/ko active
- 1981-09-03 GB GB8213050A patent/GB2094485B/en not_active Expired
- 1981-09-03 EP EP81902453A patent/EP0059222B1/en not_active Expired
- 1981-09-03 AU AU75360/81A patent/AU545427B2/en not_active Ceased
- 1981-09-03 NL NLAANVRAGE8120325,A patent/NL184079C/xx not_active IP Right Cessation
- 1981-09-03 BR BR8108777A patent/BR8108777A/pt not_active IP Right Cessation
- 1981-09-03 DE DE19813152318 patent/DE3152318T5/de active Pending
- 1981-09-03 US US06/367,227 patent/US4451350A/en not_active Expired - Lifetime
- 1981-09-03 WO PCT/JP1981/000214 patent/WO1982000892A1/ja active IP Right Grant
- 1981-12-03 SE SE8107224A patent/SE455823B/sv not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
GB2094485B (en) | 1985-07-24 |
NL184079B (nl) | 1988-11-01 |
WO1982000892A1 (en) | 1982-03-18 |
SE8107224L (sv) | 1982-03-06 |
DE3152318T5 (ja) | 1982-09-23 |
KR870000021B1 (ko) | 1987-01-28 |
AU7536081A (en) | 1982-04-08 |
KR830008170A (ko) | 1983-11-16 |
SE455823B (sv) | 1988-08-08 |
JPS5746155A (en) | 1982-03-16 |
NL8120325A (nl) | 1982-06-01 |
EP0059222A4 (en) | 1983-01-14 |
NL184079C (nl) | 1989-04-03 |
GB2094485A (en) | 1982-09-15 |
US4451350A (en) | 1984-05-29 |
AU545427B2 (en) | 1985-07-11 |
EP0059222A1 (en) | 1982-09-08 |
EP0059222B1 (en) | 1986-08-20 |
BR8108777A (pt) | 1982-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6147377B2 (ja) | ||
US4003814A (en) | Apparatus for the continuous measurement of the oxygen content of molten copper or alloys thereof | |
US3864231A (en) | Apparatus for measuring in a continuous manner oxygen in a molten metal | |
Liu | The development of high temperature electrochemical sensors for metallurgical processes | |
CA1099785A (en) | Determination of hydrogen | |
US4399022A (en) | Reference electrode for oxygen probe | |
KR100943649B1 (ko) | 저산소 농도 측정용 산소센서 | |
JPH10501628A (ja) | 電気−化学的な活動度の測定方法 | |
JPH0557541B2 (ja) | ||
JPS5935805Y2 (ja) | 溶融金属中の酸素濃度検出素子 | |
US6340418B1 (en) | Slag oxygen sensor | |
Mugita et al. | Development of probes for electrochemical measurement of free oxygen content in liquid steel and its application | |
KR940002514B1 (ko) | 용융금속의 실리콘 함량을 측정하는 농축셀(concentration cell) | |
JPS62102150A (ja) | ケイ素濃度測定用センサ− | |
JPH0246103B2 (ja) | ||
JPH0439030B2 (ja) | ||
JPH01459A (ja) | 溶融金属中のシリコン濃度測定用センサ− | |
JPH044215Y2 (ja) | ||
JPS60177259A (ja) | 溶融金属中の酸素濃度測定用センサ− | |
JPS5830655A (ja) | 溶融金属中の酸素濃度測定用センサ− | |
JP2004020285A (ja) | 溶銑の燐濃度測定方法及びその装置並びにそのプローブ | |
JPS5944580B2 (ja) | 溶鋼用酸素センサ | |
SU1324807A1 (ru) | Состав электродного покрыти | |
JPS62174649A (ja) | リン濃度測定用センサ− | |
SU1029065A1 (ru) | Электрод дл определени активности ионов рубиди в растворах |