JPS61159709A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS61159709A
JPS61159709A JP60205004A JP20500485A JPS61159709A JP S61159709 A JPS61159709 A JP S61159709A JP 60205004 A JP60205004 A JP 60205004A JP 20500485 A JP20500485 A JP 20500485A JP S61159709 A JPS61159709 A JP S61159709A
Authority
JP
Japan
Prior art keywords
coercive force
permanent magnet
rare earth
composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60205004A
Other languages
Japanese (ja)
Other versions
JPH0624163B2 (en
Inventor
Kaneo Mori
佳年雄 毛利
Jiro Yamazaki
山崎 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60205004A priority Critical patent/JPH0624163B2/en
Publication of JPS61159709A publication Critical patent/JPS61159709A/en
Priority to US07/572,568 priority patent/USRE34838E/en
Publication of JPH0624163B2 publication Critical patent/JPH0624163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet at extremely low cost by specific component constitution mainly comprising La and Ce. CONSTITUTION:A permanent magnet has a composition represented by a formu la (CexLa1-x)z[(Fe1-uMu)1-vBv]1- z. R represents one kind of a rare earth metal (including Y) except Ce and La and M at least one kind of elements in a group consisting of Al, Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W, Cu and Ag in the formula. 0.4<=x<=0.9, 0.2<y<=1.0, 0.05<=z<=0.3, 0.01<=v<=0.3, 0<=u<=0.2, 0<w<=0.5 hold, and the magnet has coercive force (iHc) of 4kOe or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類−鉄永久磁石に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron permanent magnets.

〔従来の技術〕[Conventional technology]

希土類−F・−Bを基本成分とする永久磁石についての
研究が近年活発になされ、その結果が公開特許公報等に
より会表されるようになりつつある。
In recent years, research has been actively conducted on permanent magnets containing rare earth elements -F and -B as basic components, and the results are beginning to be published in published patent publications and the like.

特開昭57−141901号公報によると、遷移族金属
ケ)、メタロイド金属(ロ)、Yおよびランタニド元素
Rの組み合わせからなる組成を非晶質化し、次に非晶質
組成を熱処理により結晶化することによりて保磁力を発
生せしめる永久磁石粉末製法が記載されている。この公
報によると、TはTI 、 V 、 Or 、 Mn 
、 F@ 、 Co 、 Nl 、 Cu 、 Zr 
According to JP-A-57-141901, a composition consisting of a combination of a transition group metal (ii), a metalloid metal (ii), Y, and a lanthanide element R is made amorphous, and then the amorphous composition is crystallized by heat treatment. A method for manufacturing permanent magnet powder is described in which a coercive force is generated by the following steps. According to this publication, T is TI, V, Or, Mn
, F@, Co, Nl, Cu, Zr
.

Nb 、 Mo 、 Hf 、 Ts 、 Wよシ選ば
れる1種もしくは2種以上の組合せであυ、またMはB
 、 81 。
One or a combination of two or more selected from Nb, Mo, Hf, Ts, W, and M is B.
, 81.

P、Cよシ選ばれる1種もしくは2種以上の組合せ、R
はYおよびランタニド元素よシ選ばれる1種もしくは2
種以上の組合せ、であって、これらを(T1−xMx 
)zRl−zなる関係式(但し、0≦x≦0.35.0
.35≦2≦0.90)で含有させた永久磁石粉末につ
いての特許が請求されている。
One type or combination of two or more types selected from P and C, R
is one or two selected from Y and the lanthanide elements
A combination of more than one species, which is (T1-xMx
)zRl-z (however, 0≦x≦0.35.0
.. A patent is claimed for a permanent magnet powder containing a powder with a content of 35≦2≦0.90).

特開昭58−123853号公報によると、L&および
Pr含有材料が提案されておシ、その組成は、< F@
 、s 1 ++ x )y < La Kp rwn
 1− z −W) 1−y 、但し、RはLa 、 
Pr以外の希土類金属、x=0.75〜0.85、y=
0.85〜0.95、寡=0.40〜0.75、w=0
.25〜0.60.z+w≦1.0である。この公報に
は、液体急冷法によシ非晶質化したR−F@−B含有合
金を焼鈍して結晶化させる際の保磁力増大を適切にする
ために、希土類元素の種類および割合を上述の(Lζ”
vRl−+c−v)とする組成調節法が述べられている
According to JP-A-58-123853, a material containing L& and Pr has been proposed, and its composition is <F@
, s 1 ++ x ) y < La Kp rwn
1-z-W) 1-y, where R is La,
Rare earth metal other than Pr, x=0.75-0.85, y=
0.85-0.95, small=0.40-0.75, w=0
.. 25-0.60. z+w≦1.0. This publication describes the type and proportion of rare earth elements in order to appropriately increase the coercive force when annealing and crystallizing the R-F@-B-containing alloy that has been made amorphous by the liquid quenching method. The above (Lζ”
A method for adjusting the composition to obtain vRl-+c-v) is described.

特開昭59−46008号公報には、8〜30原子チの
R(但し、Rは希土類元素の少なくとも1種)、2〜2
8原子チのB1及び残部F・からなる磁気異方性焼結体
が提案されている。この公報で分間された発明は液体急
冷法によらず焼結法によって任意の形状の永久磁石体を
製造可能にすることをひとつの意図としている。また、
焼結体成分中ORに関しては、Nd単独、Pr単独、N
dとPrの組合せ、NdとCIの組合せ、SmとPrの
組合せ、 PrとYの組合せ、Nd 、 PrとL&の
組合せ、Tb単独、D7単独、 Ho単独、ErとTb
の組合せ等についての焼結体の磁気特性が示されている
JP-A No. 59-46008 discloses 8 to 30 atoms of R (wherein R is at least one rare earth element), 2 to 2
A magnetically anisotropic sintered body consisting of 8 atoms of B1 and the remainder F. has been proposed. One of the intentions of the invention disclosed in this publication is to make it possible to manufacture a permanent magnet body of any shape by a sintering method rather than by a liquid quenching method. Also,
Regarding the OR in the sintered body components, Nd alone, Pr alone, N
Combination of d and Pr, combination of Nd and CI, combination of Sm and Pr, combination of Pr and Y, combination of Nd, Pr and L&, Tb alone, D7 alone, Ho alone, Er and Tb
The magnetic properties of the sintered body are shown for combinations of.

上述の如き従来技術をまとめるとR−F・−B(但し、
Rは希土類金属、以下同じ)系永久磁石においてRがN
dtたはPrであるときに優れた磁石特性が得られてい
たことが分かる。
To summarize the prior art as mentioned above, R-F・-B (However,
R is a rare earth metal, the same applies hereafter) system permanent magnet, R is N
It can be seen that excellent magnetic properties were obtained when the magnet was dt or Pr.

また、従来技術において、希土類元素としてLaおよび
C・が使用可能であることを特許請求しているものもあ
るがLaのみを8として使用するのではな(Laの含有
量上限を制限していることによ〕多量のLaによる磁気
特性低下が避けられている。上記従来技術においてはL
&およびC・を主体として希土類成分を具体的に構成し
た永久磁石の例はない。
In addition, some prior art patents claim that La and C can be used as rare earth elements, but they do not use only La as 8 (the upper limit of La content is limited). In particular, deterioration of magnetic properties due to a large amount of La is avoided.In the above conventional technology, L
There is no example of a permanent magnet in which rare earth components are specifically composed of & and C.

第2図ktJ、 Appl、 Phys、 Vol、5
5 (1984)第2079頁に掲載されているグラフ
を再掲したR−F・−B系永久磁石合金の減磁曲線であ
る。このグラフよシも、Pr 、 NdがR−F・−B
合金のR成分として最も望ましく、LaまたはC・をR
−F・−B系合金のR成分とした合金は永久磁石として
の特性をもたなくなることが分かる。このような点から
して、上述の従来技術は、Pr 、 Nd等の極く一部
をLa 、 C・で置換することを開示していても、L
aまたはC・を主体としてR成分を構成したR−F・−
B合金が永久磁石になることは何ら開示していないと言
えよう。
Figure 2 ktJ, Appl, Phys, Vol, 5
5 (1984), page 2079, which is a reproduction of the demagnetization curve of the R-F·-B permanent magnet alloy. This graph also shows that Pr and Nd are R-F・-B
The most desirable R component of the alloy is La or C.
It can be seen that the alloy containing the R component of the -F/-B series alloy no longer has the characteristics as a permanent magnet. From this point of view, even though the above-mentioned prior art discloses replacing a very small part of Pr, Nd, etc. with La, C.
R-F・- whose R component is composed mainly of a or C・
It can be said that there is no disclosure that the B alloy becomes a permanent magnet.

最近の希土類−鉄永久磁石に関する注目すべき進展は、
1984年10月の薦に発表されたF*−(32,5〜
34.5S)R−(lN1.6%)B。
Recent notable developments in rare earth-iron permanent magnets include:
F*-(32,5~
34.5S)R-(IN1.6%)B.

(但しRはジジム(Nd−10%Pr)、5Ce −ジ
ジム、または40−C・ジジム)がtHc=10.2k
G 1(BI()mA! =40 MGO*を達成した
ことである。(r DIDYMIUM−F會−B 8I
NTERED PERMANENTMihGNET8 
J論文)。だが、この永久磁石でもR成分はNdが主体
となっている。
(However, R is didymium (Nd-10%Pr), 5Ce-didymium, or 40-C didimium) tHc = 10.2k
G 1(BI()mA! = 40 MGO* has been achieved.(r DIDYMIUM-Fkai-B 8I
NTERED PERMANENTMihGNET8
J paper). However, even in this permanent magnet, the R component is mainly Nd.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

R−F・−Bを基本成分とする永久磁石は磁気特性がす
ぐれているものの、そのひとつの問題点はすぐれた磁気
特性を得ようとするとNd 、 Prを希土類金属の主
体とせざるを得す、このために永久磁石が高価になるこ
とでありた。よって、上記ジジム含有永久磁石は、比較
的安価なジジムを使用してもNd 、 Prと同等の磁
気特性を発揮できるので注目されているのである。
Permanent magnets whose basic components are RF and -B have excellent magnetic properties, but one problem with them is that in order to obtain excellent magnetic properties, Nd and Pr must be the main rare earth metals. This made permanent magnets expensive. Therefore, the didymium-containing permanent magnet is attracting attention because it can exhibit magnetic properties equivalent to those of Nd and Pr even when relatively inexpensive didymium is used.

L&またはC・は他の希土類元素と比較して多量に産出
されそして安価であるために、これらな希土類金属の主
成分として使用可能になれば希土類−鉄永久磁石の大幅
なコストダウンが可能になる。
Since L& or C is produced in large quantities and is inexpensive compared to other rare earth elements, if it can be used as the main component of these rare earth metals, it will be possible to significantly reduce the cost of rare earth-iron permanent magnets. Become.

だが、第2図から分かるようにLa 、 C・は磁気特
性上有害な元素である。La 、 C・が磁気特性上有
害である理由は、希土類−鉄永久磁石の強磁性成分はR
2Fe、4B化合物であシ、そしてRがLaであると該
化合物が不安定になるかもしくは生成されず、またRが
C・であるR(C・)2F・、4Bは保磁力が小さいた
めである。
However, as can be seen from Figure 2, La and C are elements that are harmful in terms of magnetic properties. The reason why La and C are harmful in terms of magnetic properties is that the ferromagnetic component of rare earth-iron permanent magnets is R.
If it is a 2Fe, 4B compound, and R is La, the compound will become unstable or will not be produced, and R(C・) 2F・, 4B, where R is C・, has a small coercive force. It is.

上述のように、従来技術はLa 、 C・を希土類金属
の主成分として使用するに至っていない。
As mentioned above, the prior art has not reached the point of using La and C as the main components of rare earth metals.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は、液体急冷法で製造した板厚20趨、板幅3−
のF・77C”1−X”X)17”4合金の保磁力を測
定した結果を示すグラフである。
Figure 1 shows a plate with a thickness of 20 mm and a width of 3 mm manufactured using the liquid quenching method.
It is a graph showing the results of measuring the coercive force of the F.77C"1-X"X)17"4 alloy.

F・78(L’1−x”x)17BSなる組成式におい
てx=1(すなわち?@1yC@、7B6)およびx 
= 0(すなわちF・77”17B! )のときの保磁
力は第2図のそれぞれCe、 Laのデータとほぼ一致
している。なお若干の差は両図に保磁力が示された合金
の組成の差による。
In the composition formula F.78(L'1-x"x)17BS, x=1 (i.e.?@1yC@, 7B6) and x
= 0 (that is, F・77"17B!), the coercive force almost matches the data for Ce and La shown in Figure 2.The slight difference is due to the coercivity of the alloys whose coercive forces are shown in both figures. Due to differences in composition.

第1図に示されているようにLmとC・の両者が希土類
元素として用いられるとLaまたはC・単独の場合よシ
も保磁力が格段に高められる。λ値が約0.65である
と保磁力(xHc )は約7 ko・となる。この保磁
力はPrまたはNd1kRの主体とする永久磁石の保磁
力の約1/!であるが、La 、 Co等のみからR成
分を構成できるようになると、かかる永久磁石はPr 
、 Nd主体永久磁石と十分にコスト・性能の総合面か
ら競争できるようになる。
As shown in FIG. 1, when both Lm and C. are used as rare earth elements, the coercive force is greatly increased compared to when La or C. is used alone. When the λ value is approximately 0.65, the coercive force (xHc) is approximately 7 ko·. This coercive force is about 1/1 of the coercive force of a permanent magnet mainly composed of Pr or Nd1kR! However, if the R component can be composed only of La, Co, etc., such a permanent magnet will become Pr.
, it will be able to fully compete with Nd-based permanent magnets in terms of overall cost and performance.

本発明(以下、第1発明と称する)は第1図の如(La
とCIの共存によって保磁力(KHc )が著しく高め
られるとの発明にもとづいて成立しているものであって
、その特徴とするところは、(C・x”1−x)z(F
拳1−v”v)1−x ’但し0.4≦I≦0.9.0
.05≦2≦0.3.0.01≦v≦0.3なる組成と
4 kO・以上の保磁力(tHe )にある。R中の重
希土類の量比は0.4以下、特に0.2以下が望ましい
0本発明において、Iが0.4未満もしくは0.9を越
えるとそれぞれLa単独またはC・単独の組成と同等程
度の保磁力しか得られないために、x = 0.4〜0
.9とした。tた2が0.05未満であると角型比およ
び保磁力が低下し、2が0.3を越えると残留磁束密度
が低下するために、2=0.05〜0.3とした。さら
に、マが0.01未満であると保磁力が低下し、またマ
が0.3を越えると残留磁束密度が低下するためマ=0
.01〜0.3とした。さらに、よ)高い保磁力を得る
ためには。
The present invention (hereinafter referred to as the first invention) is as shown in FIG.
It was established based on the invention that the coercive force (KHc) is significantly increased by the coexistence of CI and CI.
Fist 1-v"v)1-x 'However, 0.4≦I≦0.9.0
.. The composition has a composition of 05≦2≦0.3, 0.01≦v≦0.3, and a coercive force (tHe) of 4 kO· or more. The quantitative ratio of heavy rare earths in R is preferably 0.4 or less, especially 0.2 or less. In the present invention, if I is less than 0.4 or exceeds 0.9, the composition is equivalent to La alone or C alone, respectively. x = 0.4 to 0 because only a coercive force of about
.. It was set as 9. If t2 is less than 0.05, the squareness ratio and coercive force will decrease, and if 2 exceeds 0.3, the residual magnetic flux density will decrease, so 2 was set to 0.05 to 0.3. Furthermore, if Ma is less than 0.01, the coercive force will decrease, and if Ma exceeds 0.3, the residual magnetic flux density will decrease, so Ma = 0.
.. 01 to 0.3. Furthermore, in order to obtain a high coercive force.

0.6≦x≦0.8,0.02≦v≦0615.0.1
≦2≦0.2の範囲であることが好ましい。よシ好まし
くは、0.03≦v≦0.12である。
0.6≦x≦0.8, 0.02≦v≦0615.0.1
It is preferable that the range is ≦2≦0.2. More preferably, 0.03≦v≦0.12.

本発明において保磁力(xHc )を4kO・以上とし
たのは、4kO・の保磁力が達成されると、CeとL&
の顕著な相乗効果が認められるからであり、また4kO
・以上の保磁力(sHa )を有するF・−B−(La
 、 C・)系磁石は、市場において各種永久磁石に代
替しうる特性を有するからである。前者の点は第1図か
ら明らかであシ、後者の点についてはF・−Bという安
価な元素を用いかつ希土類金属中でも多量に産出される
La 、 C・を用いて4kO・以上の保磁力を具備す
る本発明の永久磁石は希土類コバルト系およびF・−B
−Pr(Nd)系、およびフェライト系永久磁石と十二
分に対抗しうるものであるから、これらの点から4kO
・以上を本発明の構成要件とする。
In the present invention, the reason why the coercive force (xHc) is set to 4 kO. or more is that once the coercive force of 4 kO.
This is because a remarkable synergistic effect of 4kO
・F・-B−(La
, C.) system magnets have characteristics that allow them to be substituted for various permanent magnets on the market. The former point is clear from Figure 1, and the latter point is made by using an inexpensive element called F・-B and using La and C・, which are produced in large quantities among rare earth metals, to achieve a coercive force of 4 kO・ or more. The permanent magnet of the present invention comprises rare earth cobalt-based and F・-B
-Since it can more than compete with Pr (Nd)-based and ferrite-based permanent magnets, 4kO
-The above are the constituent requirements of the present invention.

第3図および第4図は、それぞれ、F・75M15Bl
Figures 3 and 4 respectively show F.75M15Bl
.

およびF・78M17BSなる組成式の合金を液体急冷
法で、単ロールの周速(イ)を変化させて薄帯化した材
料の保磁力(sHa )を示すグラフである(図中−急
冷後、0として示す)。なお上記組成式中のMは、約3
2 To La 、約484 CI、約15%Nd。
This is a graph showing the coercive force (sHa) of an alloy having the composition formula F. (shown as 0). In addition, M in the above compositional formula is approximately 3
2 To La, approximately 484 CI, approximately 15% Nd.

約4.5 %のpr、約0.3968m 、残部Feそ
の他の不純物からなるミツシュメタルである。
It is Mitsushi metal consisting of about 4.5% pr, about 0.3968m2, and the balance Fe and other impurities.

第3図および第4図から分かるように、単ロールの周速
(ロ)が約30φにおいて保磁力が最大の約8kO・に
なっている。
As can be seen from FIGS. 3 and 4, the coercive force reaches its maximum of about 8 kO· when the circumferential speed (b) of the single roll is about 30φ.

さらに、最大保磁力を達成する単ロールの周速以上の冷
却条件で得られた薄帯を550℃および600℃で時効
した後の保磁力も第3図および第4図に示す。時効のデ
ータから、上記F675M15B1゜およびF・78M
17B5なる組成の合金は液体急冷状態では保磁力(x
Hc )が低くとも時効によ〕高保磁力化することが分
かる。
Furthermore, the coercivity after aging the ribbon at 550° C. and 600° C., which was obtained under cooling conditions at a circumferential speed of a single roll that achieves the maximum coercive force, is also shown in FIGS. 3 and 4. From the aging data, the above F675M15B1゜ and F・78M
An alloy with a composition of 17B5 has a coercive force (x
It can be seen that even if Hc) is low, the coercive force increases due to aging.

第3図および第4図を引用して上述した如きところから
(1)LaおよびC・以外の希土類元素が若干l存在し
ているときでもLaおよびC・の相乗効果があり、(2
)このような相乗効果は液体急冷および時効処理等のプ
ロセスに依存性を有していす組成に起因するものである
ことが分かる。
As mentioned above with reference to Figures 3 and 4, (1) even when a small amount of rare earth elements other than La and C are present, there is a synergistic effect of La and C;
) It can be seen that such a synergistic effect is dependent on processes such as liquid quenching and aging treatment and is caused by the chair composition.

本発明(以下、第2発明と称する)はこのような発見上
に成立しているものであって、その特徴とするところは
、 (< c @ xLa 、++、)yn 1−y )z
 <’・1−v”v)1−s、但し、Rは少なくとも1
′mの希土類金属(Yを含む)、0.4≦x≦0.9.
0.2 < y (1,o、0.05≦2≦0.3.0
.01≦v≦0.03であり、RはCIおよびLa以外
の少なくとも1種の希土類元素である組成と、4kO@
以上の保磁力(tea )とにある。第2発明における
x、z、マの限定理由および好ましい範囲は第1発明と
同様である。また、第2発明においてF ft0.2超
えるように(y)0.2)定めたのはLa、C・の量が
0.20以下では希土類元素のコストが高くなるからで
ある。またy < 1. 。
The present invention (hereinafter referred to as the second invention) is based on such a discovery, and its characteristics are as follows: (< c @ xLa , ++,) yn 1-y ) z
<'・1−v”v)1−s, where R is at least 1
'm rare earth metal (including Y), 0.4≦x≦0.9.
0.2 < y (1, o, 0.05≦2≦0.3.0
.. 01≦v≦0.03, R is at least one rare earth element other than CI and La, and 4kO@
The coercive force (tea) is as follows. The reasons for limitations and preferred ranges of x, z, and ma in the second invention are the same as in the first invention. Furthermore, in the second invention, (y) 0.2) is set so that F ft exceeds 0.2, because if the amounts of La and C are less than 0.20, the cost of rare earth elements becomes high. Also, y < 1. .

としたのは、第1発明と第2発明の組成を区別するため
である。好ましいyの範囲は0.5≦y〈1.0である
The reason for this is to distinguish the compositions of the first invention and the second invention. The preferred range of y is 0.5≦y<1.0.

第1発明および第2発明に係る合金には、kA。The alloys according to the first invention and the second invention have kA.

Ti 、 V 、 Cr 、 Mn 、 Zr 、 i
f 、 Nb 、 T* 、 Mo。
Ti, V, Cr, Mn, Zr, i
f, Nb, T*, Mo.

G* 、 Sb 、 8n 、 Bl 、 N%、 W
 、 Cu 、 Ag等の元素を添加することができる
。これらの元素は保磁力をさらに改善する効果がある。
G*, Sb, 8n, Bl, N%, W
, Cu, Ag, and other elements can be added. These elements have the effect of further improving coercive force.

添加量はクレーム中のUが0.2を越えると残留磁束密
度が低下するので0≦u≦0.2となる。高保磁力と高
エネルギー積を考慮すると好ましくは0.001≦u≦
0.1、より好ましくは0.002≦u≦O,OSであ
る。
The amount to be added is 0≦u≦0.2 since the residual magnetic flux density decreases when U exceeds 0.2. Considering high coercive force and high energy product, preferably 0.001≦u≦
0.1, more preferably 0.002≦u≦O, OS.

さらに、第1発明および第2発明のBの一部を81 、
C,kl、P、N、G・、S等で置換しても、81等で
置換されたBはB単独と同様な効果を有する。
Furthermore, part of B of the first invention and the second invention is 81,
Even when substituted with C, kl, P, N, G., S, etc., B substituted with 81 etc. has the same effect as B alone.

加えて、Coを第1発明および第2発明に係る合金を添
加すると、キュリ一温度が上昇し、磁気的性質、特にB
r 、の温度特性が改善される。添加量はクレーム中の
Wが0.5を越えると安価な磁石としての特徴が薄れか
つ保磁力が低下するので、0(v≦0.5となる。好ま
しくは0.001≦W≦0.35である。
In addition, when Co is added to the alloys according to the first and second inventions, the Curie temperature increases and the magnetic properties, especially B
The temperature characteristics of r are improved. The amount of addition is 0 (v≦0.5. Preferably, 0.001≦W≦0. It is 35.

〔作用〕[Effect]

本発明に係る永久磁石の著しい特色は上述のように従来
の永久磁石と比較して組成上安価であるところにある。
As mentioned above, a remarkable feature of the permanent magnet according to the present invention is that it is less expensive in terms of composition than conventional permanent magnets.

すなわち、従来はF・−B−B系永久磁石の成分として
使用できないと考えられていたLa 、 C・を主体と
して極めて安価な永久磁石を製造することが本発明の特
色である。而して、本発明においては、 LaとCIの
原子比率が約0.35対約0.65において保磁力が最
大になシ、またかかる保磁力(xHa )はLa単独の
もの゛に比較して約35倍、C・単独のものに比較して
約3.5倍となる。本発明者等はかかるLaとC・の共
存による保磁力(the)の顕著な増大の原因を究明す
べく、第1図で説明したF・78(L’1−x”x)1
7B5の結晶構造をX線で調べ、R2F614B型結晶
の存在を確認した。この結晶は従来Nd−F・−B系合
金において検知されたものと同じ結晶形を有するもので
あった。
That is, the feature of the present invention is to produce an extremely inexpensive permanent magnet mainly using La and C, which were conventionally considered to be unusable as components of F.-B-B permanent magnets. Therefore, in the present invention, the coercive force is maximized when the atomic ratio of La and CI is about 0.35 to about 0.65, and this coercive force (xHa) is compared to that of La alone. It is about 35 times as much as C alone, and about 3.5 times as much as C alone. In order to investigate the cause of the remarkable increase in coercive force (the) due to the coexistence of La and C, the present inventors investigated the F・78(L′1−x”x)1
The crystal structure of 7B5 was examined using X-rays, and the existence of R2F614B type crystals was confirmed. This crystal had the same crystal form as that conventionally detected in Nd-F.-B alloys.

従来%LaはR2F・14B型結晶を作らないと考えら
れてお9、それ故LaはR−F・−B系永久磁石のR主
成分としては用いられていなかりた。ところがLaとC
・が共存する本発明の組成においてはR,F014B型
結晶の存在が確認されたために、LaとC・が共存する
とR2F014B型結晶が生成されることが分かった。
Conventionally, it has been thought that %La does not form R2F.14B type crystals9, and therefore La has not been used as the main R component of R-F.-B permanent magnets. However, La and C
Since the presence of R, F014B type crystals was confirmed in the composition of the present invention in which .

よって、この結晶が保磁力(IHc )の向上に寄与し
ていると考えられる。
Therefore, it is considered that this crystal contributes to the improvement of coercive force (IHc).

また、C*2F*、4Bは格子定数ao=0.877(
7)正方晶結晶を作夛、その保磁力< IHI! )は
La−F’・−Bよシは格段に高いことが知られている
。ところが、本発明によると、C・とLlを共存させる
ことによって、C・2F・14’よりもはるかに高い保
磁力(xHa )が得られている。この点を考慮すると
、本発明によシ得られる高い保磁力(rHe )はLm
とC・がR2F・14B結晶中にある特定の割合で存在
することによる寄与もあると考えられる。このようなL
&とC・が結晶構造にどのような影響を及ぼすかは解明
されていない。その結晶学的機構解明については今後の
研究を待たなければならない。
Also, C*2F*, 4B has a lattice constant ao=0.877(
7) Create a tetragonal crystal whose coercive force < IHI! ) is known to be much higher than La-F'・-B. However, according to the present invention, by coexisting C. and Ll, a much higher coercive force (xHa) than that of C.2F.14' is obtained. Considering this point, the high coercive force (rHe) obtained by the present invention is Lm
It is thought that there is also a contribution due to the presence of C and C in a certain ratio in the R2F·14B crystal. L like this
It has not been elucidated what effect & and C. have on the crystal structure. Elucidation of its crystallographic mechanism will have to wait for future research.

以下、単ロールを用いた液体急冷法によシ製造した本発
明の永久磁石の実施例を説明する。
Examples of permanent magnets of the present invention manufactured by a liquid quenching method using a single roll will be described below.

なお、本発明に係る永久磁石は、液体急冷法のほかに、
液体急冷一時効法および焼結法により製造することがで
きる。これらの方法について述拠ると、液体急冷一時効
法は、熱処理によって保磁力(*f(a)を高める方法
であシ、焼結法は所定組成の粉末を900−1150℃
で焼結することによシ任意の形状の永久磁石を製造する
方法である。
In addition to the liquid quenching method, the permanent magnet according to the present invention can be produced by
It can be manufactured by a liquid quenching temporary effect method and a sintering method. Regarding these methods, the liquid quenching temporary effect method is a method of increasing the coercive force (*f(a)) by heat treatment, and the sintering method is a method of increasing the coercive force (*f(a)) by heating powder of a predetermined composition at 900-1150°C.
This is a method of manufacturing permanent magnets of any shape by sintering them.

さらに、粉末結合法は、液体急冷法によ〕得たり、ボン
または粉末を必要ならばさらに時効処理および粉砕した
後に、樹脂等で結合して♂ンデイ、ド磁石とする方法で
ある。
Furthermore, the powder bonding method is a method in which a magnet is obtained by a liquid quenching method, or is bonded with a resin or the like after further aging treatment and pulverization of the bomb or powder, if necessary, to form a female or compact magnet.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 第1表に組成を示すインプットを溶解法によシ製造し、
インプットを小片に砕き、これを片ロールを用いた液体
急冷法によりロールの表面速度を変化させてり♂ン状の
試料を製造した。保磁力(wHe )が最大となるロー
ルの表面速度【おいて得られた試料の保磁力を第1表に
示す。
Example 1 The input whose composition is shown in Table 1 was manufactured by a dissolution method,
The input was crushed into small pieces, which were then subjected to a liquid quenching method using a single roll, and the surface speed of the roll was varied to produce a male-shaped sample. Table 1 shows the coercive force of the sample obtained at the surface speed of the roll at which the coercive force (wHe) is maximum.

以下余白 実施例2 第2表に組成を示すイン−/、)を溶解法によシ製造し
、インj’、)を小片に砕き、これを片ロールを用いた
液体急冷法によフロールの表面速度を変化させてIJ 
/ン状の試料を製造した。保磁力(*He )が最大と
なるロールの表面速度において得られた試料の保磁力を
第2表に示す。
Margin Example 2 Below, In-/,) whose composition is shown in Table 2 is manufactured by a melting method, Inj',) is crushed into small pieces, and this is fluorinated by a liquid quenching method using a single roll. IJ by changing surface speed
A sample in the form of 1/2 mm was produced. Table 2 shows the coercive forces of the samples obtained at the roll surface speed at which the coercive force (*He) is maximum.

以下余白 実施例3 第3表に組成を示す試料(21〜24)を実施例2と同
様に作製し、8rの温度係数を測定した。
Margin Example 3 Samples (21 to 24) whose compositions are shown in Table 3 were prepared in the same manner as in Example 2, and the temperature coefficient of 8r was measured.

第3表よシCoの添加はBrの温度係数を改善すること
がわかる。
Table 3 shows that the addition of Co improves the temperature coefficient of Br.

以下余白 〔発明の効果〕 本発明に係る永久磁石は極めて安価でありまた保磁力(
XHc )は満足すべき高い値を有するために各種用途
に使用されることが期待される。
The following margin [Effects of the invention] The permanent magnet according to the present invention is extremely inexpensive and has a coercive force (
XHc ) has a satisfactorily high value and is therefore expected to be used in various applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はF・7y(Lat−xC@x)t 7BbのX
値と保磁力(夏He )の関係を示すグラフ、 0.135 0.9550.15)0.11450減磁
第2図はR(F@B 外曲線、 第3図および第4図はF・75’15Bl。およびF・
78M17BSの半冷却ロールの周速(V)と保磁力(
xHc )の関係を示すグラフである。
Figure 1 shows F・7y(Lat-xC@x)t 7Bb
A graph showing the relationship between coercive force (summer He) and coercive force (He). 75'15Bl. and F.
Peripheral speed (V) and coercive force (of the semi-cooled roll of 78M17BS)
2 is a graph showing the relationship between xHc).

Claims (1)

【特許請求の範囲】 1、〔Ce_xLa_1_−_xR_1_−_7〕_z
〔(Fe_1_−_uM_u)_1_−_vB_v〕_
1_−_z−但し、RはCe、La以外の少なくとも1
種の希土類金属(Yを含む)、またMはAl、Ti、V
、Cr、Mn、Zr、Hf、Nb、Ta、Mo、Ge、
Sb、Sn、Bi、Ni、W、CuおよびAgよりなる
群の少なくとも1種の元素、 0.4≦x≦0.9、0.2<y≦1.0、0.05≦
z≦0.3、0.01≦v≦0.3、0≦u≦0.2−
なる組成を有し、4kOe以上の保磁力(iHc)を有
することを特徴とする永久磁石。 2、〔(Ce_xLa_1_−_x)_yR_1_−_
y〕_z〔(Fe_1_−_u_−_wCo_wM_u
)_1_−_vB_v〕_1_−_z−但し、Rは、C
e、La以外の少なくとも1種の希土類金属(Yを含む
)、またMは、Al、Ti、V、Cr、Mn、Zr、H
f、Nb、Ta、Mo、Ge、Sb、Sn、Bi、Ni
、W、CuおよびAgよりなる群の少なくとも1種の元
素、 0.4≦x≦0.9、0.2<y≦1.0、0.05≦
z≦0.3、0.01≦v≦0.3、0≦u≦0.2、
0<w≦0.5 −なる組成を有し、4kOe以上の保磁力(iHc)を
有することを特徴とする永久磁石。
[Claims] 1, [Ce_xLa_1_-_xR_1_-_7]_z
[(Fe_1_-_uM_u)_1_-_vB_v]_
1_-_z-However, R is at least 1 other than Ce or La
rare earth metals (including Y), and M is Al, Ti, V
, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge,
At least one element from the group consisting of Sb, Sn, Bi, Ni, W, Cu and Ag, 0.4≦x≦0.9, 0.2<y≦1.0, 0.05≦
z≦0.3, 0.01≦v≦0.3, 0≦u≦0.2-
A permanent magnet having a composition having a coercive force (iHc) of 4 kOe or more. 2, [(Ce_xLa_1_-_x)_yR_1_-_
y]_z[(Fe_1_-_u_-_wCo_wM_u
)_1_-_vB_v]_1_-_z-However, R is C
e, at least one rare earth metal other than La (including Y), and M is Al, Ti, V, Cr, Mn, Zr, H
f, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni
, W, at least one element of the group consisting of Cu and Ag, 0.4≦x≦0.9, 0.2<y≦1.0, 0.05≦
z≦0.3, 0.01≦v≦0.3, 0≦u≦0.2,
A permanent magnet having a composition such that 0<w≦0.5 − and a coercive force (iHc) of 4 kOe or more.
JP60205004A 1984-12-31 1985-09-17 permanent magnet Expired - Fee Related JPH0624163B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60205004A JPH0624163B2 (en) 1985-09-17 1985-09-17 permanent magnet
US07/572,568 USRE34838E (en) 1984-12-31 1990-08-23 Permanent magnet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205004A JPH0624163B2 (en) 1985-09-17 1985-09-17 permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59280125A Division JPH0630295B2 (en) 1984-12-31 1984-12-31 permanent magnet

Publications (2)

Publication Number Publication Date
JPS61159709A true JPS61159709A (en) 1986-07-19
JPH0624163B2 JPH0624163B2 (en) 1994-03-30

Family

ID=16499856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205004A Expired - Fee Related JPH0624163B2 (en) 1984-12-31 1985-09-17 permanent magnet

Country Status (1)

Country Link
JP (1) JPH0624163B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262805A (en) * 1987-04-06 1988-10-31 フォード モーター カンパニー Manufacture of iron base permanent magnet
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
JPH0851007A (en) * 1995-07-17 1996-02-20 Tdk Corp Permanent magnet and production thereof
JP2007524986A (en) * 2003-02-06 2007-08-30 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite
JP2018082177A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Rare earth magnet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS59132105A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59163803A (en) * 1983-03-08 1984-09-14 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59211558A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS59211559A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60224756A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS60224757A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS6180805A (en) * 1984-09-27 1986-04-24 Daido Steel Co Ltd Permanent magnet material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS59132105A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59163803A (en) * 1983-03-08 1984-09-14 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59211558A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS59211559A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60224756A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS60224757A (en) * 1984-04-23 1985-11-09 Seiko Epson Corp Permanent magnet alloy
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS6180805A (en) * 1984-09-27 1986-04-24 Daido Steel Co Ltd Permanent magnet material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262805A (en) * 1987-04-06 1988-10-31 フォード モーター カンパニー Manufacture of iron base permanent magnet
JPH023206A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Rare earth-iron system permanent magnet
JPH0851007A (en) * 1995-07-17 1996-02-20 Tdk Corp Permanent magnet and production thereof
JP2007524986A (en) * 2003-02-06 2007-08-30 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite
JP2011159981A (en) * 2003-02-06 2011-08-18 Magnequench Inc HIGHLY QUENCHABLE Fe-BASED RARE EARTH MATERIAL FOR FERRITE REPLACEMENT
JP4755080B2 (en) * 2003-02-06 2011-08-24 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite
JP2018082177A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Rare earth magnet

Also Published As

Publication number Publication date
JPH0624163B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS62192566A (en) Permanent magnet material and its production
JP2513994B2 (en) permanent magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS63190138A (en) Rare-earth permanent magnet material
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPS61159709A (en) Permanent magnet
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPS61159708A (en) Permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH01100242A (en) Permanent magnetic material
JPH0851007A (en) Permanent magnet and production thereof
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPS6362842A (en) Permanent magnet material containing rare earth element
JPS61159710A (en) Permanent magnet
JPH02201903A (en) Permanent magnet powder
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPS62257704A (en) Permanent magnet
JPH05267026A (en) Permanent magnet having excellent thermal stability and corrosion resistance and manufacture thereof
JPH01261801A (en) Rare-earth permanent magnet
JPH024939A (en) Rare earth-transition metallic magnetic alloy
JPH01184244A (en) Permanent magnetic material and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees