JPS6035180B2 - 酸化用触媒およびその調製法 - Google Patents

酸化用触媒およびその調製法

Info

Publication number
JPS6035180B2
JPS6035180B2 JP56061405A JP6140581A JPS6035180B2 JP S6035180 B2 JPS6035180 B2 JP S6035180B2 JP 56061405 A JP56061405 A JP 56061405A JP 6140581 A JP6140581 A JP 6140581A JP S6035180 B2 JPS6035180 B2 JP S6035180B2
Authority
JP
Japan
Prior art keywords
catalyst
atomic ratio
acid
heteropolyacid
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56061405A
Other languages
English (en)
Other versions
JPS57177348A (en
Inventor
陸男 植嶋
律男 北田
由幸 高橋
勲雄 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP56061405A priority Critical patent/JPS6035180B2/ja
Priority to US06/275,243 priority patent/US4419270A/en
Priority to EP81104896A priority patent/EP0043100B2/en
Priority to DE8181104896T priority patent/DE3166006D1/de
Priority to BR8104020A priority patent/BR8104020A/pt
Priority to KR1019810002304A priority patent/KR840001003B1/ko
Priority to SU813301551A priority patent/SU1243610A3/ru
Priority to CA000380559A priority patent/CA1161822A/en
Publication of JPS57177348A publication Critical patent/JPS57177348A/ja
Priority to US06/681,698 priority patent/US4621155A/en
Publication of JPS6035180B2 publication Critical patent/JPS6035180B2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は酸化用触媒およびその調製法に関する。
くわしく述べると、本発明は炭素数4の不飽和水素たと
えばィソブチレン、炭素数4のアルコールたとえば夕−
シャリブタノール、炭素数4の飽和脂肪族アルデヒドた
とえばィソブチルアルデヒドまたは炭素数4の不飽和脂
肪族アルデヒドたとえばメタクロレィンをそれぞれ接触
気相酸化し、対応する酸化物たとえばメタクリル酸を製
造するためのへテロポリ酸化合物触媒およびその調製法
に関する。へテロポリ酸はその強い酸性と酸化力とから
固体酸酸化触媒として注目され近年その応用のための技
術開発が広く行なわれている。
とくにへテロポリモリブデン酸の化合物は強い酸化剤と
なり他の化合物を容易に酸化し、それ自身は還元される
が適当な酸素源の存在下で容易に再酸化されることから
気相酸化用触媒としての能力が高く評価されその分野に
おける研究開発が活発になされている。イソブチレン、
スベントBB、夕−シヤリブタノールおよびィソブチル
アルデヒドのいずれかを原料としてメタクリル酸を製造
する方法にこのへテロポリ酸化合物が多く用いられ、と
くにィソブチレンあるいはターシヤリブタノールからメ
タクリル酸を製造する分野において研究が盛んである。
イソブチレンあるいはターシヤリブタノールを原料とし
てメタクリル酸を気相酸化で製造する方法においては2
段酸化工程が数多く提案されている。
すなわちイソブチレンあるいはターシヤリブタノールを
触媒上で気相酸化せしめてメタクロレィンを製造する第
一段目工程、さらにメタクロレィンを触媒上で気相酸化
せしめてメタクリル酸を製造する第二段目工程からなる
製造法が一般的であり、この2段目の工程において触媒
としてへテロポリ酸の一種であるへテロポリモリブデン
酸化合物の使用が数多〈提案されている。しかしながら
へテロポリモリブデン酸化合物は気相酸化において強い
酸化活性を有することを特徴とはしているが反面その強
い酸化力の故に目的生成物が更に酸化される逐次反応が
おこりやすく目的生成物を選択性よくかつ収率よくえる
ことが困難であるという欠点を有している。そして又へ
テロポリ酸化合物は、実用触媒の製造という点から見れ
ば触媒の成型性、機械的強度がひじように悪く、強度を
増す種々の製法を取った場合、一般的に収率が悪くなり
、工業触媒として十分耐えうる強度を持ちかつ収率も十
分満足なものを得るということが困難であった。近年こ
のへテロポリモリプヂン酸化合物について多くの研究が
なされているが工業的に実用化されるに十分な触媒は見
し、出されていない。へテロポリモリブデン酸の化合物
あるいはリン、モリブデンを主成分として他の元素を加
えたものを触媒とし、たとえばメタクロレィンの気相酸
化を行なった例としては特閥昭49−95921号、特
公昭52−31327号、特公昭53一14052号各
公報などの報告がある。
しかしながら目的物であるメタクリル酸の収率は低く、
工業的生産にとって満足できるものではない。本発明者
らは上記へテロポリ酸化合物の1つであるモリブドバナ
ドリン酸触媒の構造とメタクリル酸生成のための活性、
選択性および触媒の強度について研究を重ねた結果、含
窒素へテロ環化合物の存在下に調製されたはゞ塩の結晶
構造を持つリン、モリブデン、バナジウムおよび酸素か
らなるへテロポリ酸にベリリウム、カルシウム、マグネ
シウム、ストロンチウムおよびバリウムの中から選ばれ
た一種又はそれ以上の元素を加えたへテロポリ酸化合物
を触媒に用いたとえばメタク。
レインの気相酸化をおこなったところメタクリル酸の選
択性、収率ともひじようにすぐれており、しかも触媒強
度もひじように改善されると共に連続反応において経済
的変化もほとんどないことが見出され、さらにその改良
を行ない、ここに気相酸化用反応に有利な触媒およびそ
の調製法を完成するに至った。すなわち、本発明は一般
式PaM比VcXdYe○f(ここでPはリン、Moは
モリブデン、Vはバナジウム、Xはべりリウム、カルシ
ウム、マグネシウム、ストロンチウムおよびバリウムの
中から選ばれる一種又はそれ以上の元素、Yは銅、銀、
ヒ素、アンチモン、テルル、コバルト、ビスマスおよび
ジルコニウムの中から選ばれる1種又はそれ以上の元素
、0は酸素を示す。
また添字a,b,c,d,e,fはそれぞれ各元素の原
子比を表わし、b=12のときa=0.1〜3.0、好
ましくは0.1〜2.0、より好ましくは0.5〜1.
5、c=0〜6.0、好ましくは0.1〜4.0、より
好ましくは0.1〜2.5、d=0.05〜5.0、好
ましくは0.05〜3.5 より好ましくは0.1〜2
.0、e=0.01〜5.0、好ましくは0.05〜3
.0、より好ましくは0.1〜2.0、fは各元素の原
子価および原子により定まる数値である。)で表わされ
る触媒組成物であり、含窒素へテロ環化合物の存在下に
調製することにより、触媒組成物中にほ)、塩の結晶構
造を持つモリブドリン酸またはその1部置換体を含有す
ることを特徴とする炭素数4の不飽和炭化水素および/
またはアルコールおよび/または飽和脂肪族アルデヒド
および/または不飽和脂肪族アルデヒドの気相酸化用触
媒およびその調製法に関する。以下、さらにくわしく本
発明を説明する。
本発明において使用される含窒素へテロ環化合物は、ヘ
テロポリ酸と塩を形成するものでしかも脱離可能な化合
物が挙げられる。
とくに好ましい含窒素環化合物としてはピリジン、ピベ
リジン、ピベラジン、ピリミジンまたはこれらの誘導体
であり、とくに、これら化合物の硝酸塩、硫酸塩、塩酸
塩といった無機塩類の使用は触媒調製時の悪臭発生防止
や、これら化合物の回収再使用という面で推奨しうる。
上記特定の含窒素化合物以外の化合物、たとえばメチル
アミン、エチルアミン、トリエチルアミン、エタノール
アミン類などの脂肪族アミンあるいはヒドラジン、エチ
レンジアミンなどのポリアミンは触媒調製時へテロポリ
酸による分解反応が起ったりして目的とするほゞ塩の結
晶構造を有する遊離のへテロポリ酸とはならず、えられ
る触媒の活性も選択性もすぐれたものとはならない。
また触媒原料物質としては種々のものが使用できる。モ
リブデン化合物としてはたとえば三酸化モリブデン、モ
リブデン酸、モリブデン酸ナトリウム、パラモリブデン
酸アンモニウム、リンモリブデン酸など、バナジウム化
合物としてはたとえば五酸化バナジウム、メタバナジン
酸ナトリウム、メタバナジン酸アンモニウム、シュウ酸
バナジル、硫酸バナジルなど、リン化合物としてはたと
えばリン酸、リン酸水素二ナトリウム、リン酸ーァンモ
ニゥム、リン酸二アンモニウムなどである。また、X,
Y成分としてはそれぞれの水酸化物、酸化物、硝酸塩、
硫酸塩、炭酸塩、ハロゲン化物、オキシ酸、およびY金
属等の中からえらばれる。ほ)、塩の結晶構造を有する
モリブドバナドリン酸の調製に対する含窒素へテロ環化
合物の作用をたとえばピリジンの場合について述べる。
公知の方法で調製した原子比でP:Mo:V=1:11
:1で表わされるモリブドバナドリン酸は水浴・性の化
合物でX線回折(対陰極Cu−KQ)測定の結果ではそ
の回折線は28=8.926.8および27.1度等に
表われ、とくに10度以下の回折線の強度はひじように
大きいものである。モリブドバナドリン酸を水に溶かす
と赤褐色の溶液となるが、これにピリジンを添加してい
くと燈黄色の結晶が生成してくる。水相が無色透明にな
るまでピリジンを加えた後結晶を分取し、さらにこの結
晶を窒素気流中200〜60000の高温で処理すると
濃紺の還元色に変化しこれを空気中再び100〜400
00の高温で処理すると黄緑色の結晶となる。この結晶
の赤外線吸収スペクトルの測定結果ではピリジンおよび
ピリジゥムに帰属される吸収はなくモリプドバナドリン
酸の特性吸収のみであった。X線回折の測定結果では2
8=約26.2、約10.5、約21.3および約30
.3度等に回折線が現われとくに26.2度付近の回折
線強度はひじように強く出発物質である遊離のモリブド
バナドリン酸とは異なった回折線を示し、モリブドバナ
ドリン酸のナトリウム、カリウム、ルビジウム、セシウ
ムなどのアルカリ金属塩、あるいはアンモニウム塩など
よく似た回折線図であった。そしてまたこの結晶は水に
よく溶け、これの水溶液を蒸発乾燥後X線回折を測定し
たところ28=約8.9、約26.8および約27.1
度に回折線が変化しており出発物質である遊離のモリブ
ドバナドリン酸の回折図にひじように近いものであった
。このことからピリジンは遊離のモリブドバナドリン酸
の結晶構造をそれのアルカリ金属塩やアンモニウム塩な
どにひじように近い構造にかえる作用を有すると考えら
れる。
またピリジン以外の本発明記載の含窒素へテロ深化合物
についてもピリジンと同じような作用が認められた。本
発明による触媒の調製法は、たとえば含窒素へテロ環化
合物がピリジンの場合について述べると、公知の方法で
えられたモリブドバナドリン酸を水に熔解しそこヘビリ
ジンを加え水に不落性の結晶をえる。
もしくはモリブデン、バナジウムおよびリンそれぞれの
水溶性の化合物を用いそれらをピリジンを含む水溶液中
に溶解し溶液を酸性に調整後水に不溶性の結晶をえる。
この結晶のX線回折線および赤外線吸収スペクトルにお
ける結果からこの結晶はモリブドバナドリン酸の有する
解離性プロトンがピリジンの窒素原子と結合したモリブ
ド.バナドリン酸のピリジニウム塩と考えられる。また
この結晶の生成に消費されるピリジンはモリブドバナド
リン酸に対し3〜5倍モルないしそれ以上の量であるこ
とがわかったが、これはピリジンがへテロポリ酸に吸着
する分もあることを示すものである。
すなわち、この目的とする結晶の生成には、消費される
ピリジン量はモリブドバナドリン酸の3〜5倍モルない
しそれ以上あった方が好ましいことがわかった。またこ
の結晶は公知の方法でえられるこの種のへテロポリ酸の
アルカリ金属塩やアンモニウム塩と〈らべきわめて粒子
径が大きく、従来この種のへテロポリ酸塩がムナんだく
状であるため炉遇するのが困難であったのにくらべ容易
に炉過でき触媒調製上きわめて大きな有利性を有する。
かくしてえられた不溶性の結晶にベリリウム、カルシウ
ム、マグネシウム、ストロンチウムおよびバリウムの中
から選ばれる一種またはそれ以上の元素、さらに銅、銀
、ヒ素、アンチモン、テルル、コバルト、ビスマスおよ
びジルコニウムの中から選ばれる一種又はそれ以上の元
素の化合物を加え成型した後、乾燥する。
さらに不活性ガスたとえば窒素、ヘリウム、アルゴン、
炭酸ガスなどまた還元ガスたとえば炭化水素(メタン、
ェタン、プロパン、エチレン、プロピレンなど)、一酸
化炭素などの雰囲気中200〜60000の範囲で常圧
もしくは減圧下ピリジンを完全に脱離せしめ、さらに必
要に応じて空気気流中100〜40000の範囲で活性
化をおこない触媒とする。また成型後の触媒物質を空気
気流中で室温より40000まで昇温し触媒としてもよ
い。この触媒は主としてモリブドバナドリン酸の添加成
分金属塩と先に述べた塩構造に近い構造をもった遊離の
モリブドバナドリン酸の共存物と考えられる。
すなわちX線回折の測定結果ではいずれの金属を添加し
た触媒の場合についても28=26.0〜26.0、1
0.4〜10.5、21.2〜21.3および30.0
〜30.3度等の範囲において塩構造に近い構造をもつ
た遊離のモリブドバナドリン酸の特徴的な回折線が認め
られ、とくに約26.2度付近の回折線はひじように強
くピリジンを使用しない場合のX線回折線とはまった〈
異なっていた。しかもこの触媒を再び水に分散し乾燥後
高温で焼成したもののX線回折の結果では8.9度付近
にひじように強い回折線が現われピリジンを使用しない
場合のX線回折線図にむしろ近いものとなった。このこ
とはピリジンの作用で形成された触媒中の塩に近い構造
をもったモリブドバナドリン酸が水の存在下でその構造
が崩れた結果によるものと考えられる。この触媒はたと
えばメタクロレィンの気相酸化によるメタクリル酸の製
造に用いた場合、その選択性、収率ともピリジン処理を
ほどこさない触媒にくらべ非常にすぐれ、あわせて触媒
寿命の長いことを発見するに至った。しかもこの触媒は
性能がよいばかりでなく含窒素へテロ環化合物を用いる
ことにより触媒の成型性、機械的強度、さらには調製時
の再現性がひじように良いことも同時に発見したのであ
る。またメタクロレイン以外の原料たとえばイソブチレ
ン、タ一シヤリーブタノールあるいはイソブチルアルデ
ヒドのいずれを用いた場合でも、先と同様活性およびメ
タクリル酸への収率が向上することが認められた。
本発明における調製法に含窒素へテロ環化合物を用いな
い場合には、調製時の結晶海過および成型も困難であり
、たとえば打錠成型しても機械的強度、粉化度ともひじ
ように悪く、また成型助剤を添加し打錠成型した場合、
強度、粉化度ともわずかに改良されるものの性能面での
低下が大きく実用触媒としてとうてい使用できないもの
であり、本発明における含窒素へテロ環化合物の効果が
いかに大きいかがわかる。
本発明によるこれらの効果は含窒素へテロ環化合物によ
るへテロポリ酸の結晶構造および触媒の表面構造の変化
、さらにXおよびY成分元素の導入による相案8的な効
果と考えられる。
この触媒は性能が良いばかりでなくそれ自体成型性もよ
くまた機械的強度も強く無担体でも使用できるが、酸化
反応に使用した場合の触媒層での除熱効果を考えれば担
体の使用も可能である。
担体としては一般的には不活性なたとえばシリカ、アル
ミナ、セライト、シリコンカーバイドなどが好ましいが
これらに限定されるものではない。また、本発明による
触媒は硝酸アンモニウム、塩化アンモニウム、硫酸アン
モニウムなどのアンモニウム塩類を添加して調製される
ことによりさらに触媒性能の向上も計れる。本発明の調
製法において、含窒素へテロ環化合物の使用時期は先に
述べた例のほかモIJブドバナドリン酸にXおよびY成
分元素の化合物を添加した後に加える場合、あるいは触
媒原料物質すべてを水溶液中で混合する段階で加える場
合のいずれでもさしつかえない。
また使用量は用いる含窒素へテロ環化合物中の窒素原子
の数にもよるが、零を含まない雫以上からモリブドバナ
ドリン酸をベースとして2ぴ音モルの範囲で用いること
ができ、好ましくは1〜10倍モルの範囲である。本発
明による触媒を気相酸化に用いるに際し、原料としては
炭化水素たとえばィソブチレソ、スベントBBなど、ア
ルコールたとえばターシヤリブタノール、アルデヒドた
とえばメタクロレイン、ィソブーチルアルデヒドなど、
あるいは炭化水素、アルコールなどを酸化してアルデヒ
ドたとえばメタクロレィンなどを生成せしめてなる反応
力′スのいずれかを用いる。
原料ガスはこれらのいずれかに分子状酸素を混合して用
いる。酸素源としては工業的には空気が有利である。
その他希釈剤としては不活性ガスたとえば窒素、炭酸ガ
ス、ヘリウム、アルゴンなどおよび一酸化炭素、水蒸気
などを用いることができるが、とくに水蒸気の使用は副
生成物の生成をおさえ目的生成物の収率向上には有利な
ものである。酸化反応において対象とされる原料濃度は
0.5〜1戊容量%の範囲が好ましい。
また原料に対する酸素の容量比は0.5〜10の範囲で
好ましくは1〜5の範囲である。原料ガスの空間速度は
100〜5000hr‐1の範囲で好ましくは500〜
2000hr‐1の範囲が適当である。本発明による触
媒を用いるに際し反応装置は一般に固定床の形式で用い
るが、流動床、移動床のいずれの形式においても用いる
ことができる。
以下、本発明による触媒の調製法およびそれを用いての
反応例を具体的に説明するが、実施例および比較例中の
転化率、選択率、単流収率についてはつぎの定義に従が
うものとする。転化率:簿建≧三E圭三≦戸三霞王宮業
雷雲常幸手三E≧三三E秦暑三叢X・皿生成アルデヒド
または脂肪酸のモル数選択率=消費ァルデヒド、炭化水
素またはァルコ‐ル芥;薮XI00実施例 1三酸化モ
リブデン144.0夕、五酸化バナジウム8.279お
よびリン酸(85重量%)10.5夕を水1そに加え2
4時間加熱還流した。
えられた赤褐色の溶液を炉過し不落・性固体を炉過した
後濃縮し赤褐色の結晶をえた。この結晶のX線回折、蛍
光X線分析、赤外線吸収スペクトルによる測定結果から
この結晶はP:Mo:Vが原子比でほぼ1.09:i2
:1.09なる組成のモリブドバナドリン酸であること
を確認した。えられた結晶を乾燥し、そのうちの81.
0夕を水200の‘に溶かしそこヘビリジン20夕を加
えると燈黄色結晶が生成した。この結晶を炉過してえら
れたケーキ状物質に硝酸ストロンチウム0.88夕と硝
酸鋼1.0夕をそれぞれ20Mの水に溶かした溶液を加
えよく混合した後5側め×5肌その円柱型に成型し15
000で乾燥後窒素気流中43000で3時間つついて
空気気流中40000で3時間焼成し酸素を除く原子比
でP:Mo:V:Sr:Cu=1.09:12:1.0
9:0.1:0.1なる組成の触媒酸化物をえた。X線
回折の測定結果では20=26:1、10.5、21.
3、および30.3度等に回折線が認められた。なお、
この触媒を一部水に分散させ蒸発乾燥し焼成後X線回折
を測定したところ28=8.9、19.7、26.5お
よび29.0度等付近に回折線が認められ、モリブドバ
ナドリン酸の一部ストロンチウム塩置換体に示す回折線
図に近いものとなった。この触媒は成型性もよくまた圧
縮破壊強度も3.0kg/べレット以上あり十分な機械
的強度をもったものであった。この触媒50の乙を内径
25脚Cのステンレス製U字管に充填し26000の溶
融塩浴中に浸潰し該管内に容量比でメタクロレィン:酸
素:窒酸:水=1:5:34:10の原料混合ガスを空
間速度1000hr‐1で通じ連続反応をおこない10
畑寺岡および10008二;間経過時点での反応結果を
麦1に示した。
比較例 1 実施例1において、えられたモリブドバナドリン酸の結
晶81.0夕を200叫の水に溶かしそこへ硝酸ストロ
ンチウム0.88夕と硝酸銅1.0夕をそれぞれ20の
【の水に溶かした溶液を加え凝拝しながら加熱濃縮し乾
燥後5側め×5皿その円柱型に打錠成型しつづいて空気
気流中40000で3時間焼成し、ピリジン処理をせず
に実施例1と同じ組成の触媒を調製した。
X線回折の測定結果では28:8.9、19.7、26
.7および29.0度等に回折線が認められ実施例1の
触媒の回折線図とはまったく異なっていた。
なおこの触媒は吸湿性でかつひじようにもろいものであ
った。この触媒を用い実施例1と同じ条件で反応をおこ
ない10船寺間および100脚寺間経過時点で表2に示
す結果をえた。実施例 2 実施例1において使用したピリジンを同量のピベリジン
にかえまた硝酸ストロンチウムの量を5.29夕とした
以外は同様の調製をおこない酸素を除く原子比でP:M
o:V:Sr:Cu=1.09:12:1.09:0.
6:0.1なる組成の触媒酸化物をえた。
X線回折の測定結果は実施例1の触媒の回折線図とほぼ
同じであった。また触媒の圧縮破壊強度は3.0k9/
べレツト以上であった。この触媒を用い実施例1と同じ
条件で反応を行ない表1に示す結果をえた。
実施例 3 実施例1において使用したピリジンをピベラジン6水塩
にかえまたその使用量を12夕とし、さらに硝酸ストロ
ンチウムの量を5.29のこかえた以外は実施例1と同
様の調製をおこない酸素を除く原子比でP:Mo:V:
Sr:Cu=1.09:12:1.09:0.6:0.
1なる組成の触媒酸化物をえた。
X線回折の測定結果は実施例1の触媒の回折線図とほぼ
同じであった。また触媒の圧縮破壊強度3.0kg/べ
レット以上あった。この触媒を用い実施例1と同じ条件
で反応をおこない表1に示す結果をえた。実施例 4実
施例1において硝酸ストロンチウムおよび硝酸鋼を添加
する際、同時に硝酸アンモニウム5.0夕を加えて調製
し同様の組成の触媒を調製した。
この触媒のX線回折線図は実施例1の触媒のそれとはば
同じであった。またこの触媒は3.0k9/べレット以
上の圧縮破壊強度をもったものであつた。この触媒を用
い実施例1と同じ条件で反応をおこない表1に示す結果
をえた。実施例 5 加熱した水200Mにパラモリブデン酸アンモニウム8
8.3夕とメタバナジン酸アンモニウム4.87夕を溶
解し澱拝した。
この溶液にピリジン20夕とリン酸(85重量%)6.
25夕を加えつついて硝酸55.2夕と硝酸バリウム1
0.89夕および硝酸銀0.71夕を1100の‘の水
に溶かしたものを加え燈拝しながら加熱濃縮した。えら
れた粘土状物質を5側め×5伽その円柱型に成型し25
000で乾燥後窒素気流中450℃で4時間、つついて
空気気流中400qoで2時間焼成し酸素を除く原子比
でP:Mo:V:Ba:Ag=1.3:12:1:1:
0.1なる組成の触媒酸化物をえた。X線回折の測定結
果では20=26.1、10.4、21.2および30
.1度付近などに回折線が認められた。
またこの触媒の圧縮破壊強度は3.0k9/べレツト以
上であった。この触媒を用い実施例1において反応温度
を27000とかえた以外は同じ条件で反応をおこない
表3に示す結果をえた。
比較例 2 実施例5において使用したピリジンの量を零(ゼロ)と
した以外は実施例5と同様の調製をおこない酸素を除く
原子比でP:Mo:V:Ba:Ag=1.3:12:1
:1:0.1なる組成の触媒酸化物をえた。
この触媒はひじようにもろく圧縮破壊強度は0.5kg
/べレット以下であった。この触媒を用い実施例1にお
いて反応温度を27000とかえた以外は同じ条件で反
応をおこない表2に示す結果をえた。
実施例 6〜12 実施例5の調製法に従がい、用いるメタバナジン酸アン
モニウムおよびリン酸の量を変化させ、そして×成分の
化合物としては硝酸ベリリウム、硝酸カルシウム、硝酸
マグネシウム、硝酸ストロンチウムおよび硝酸バリウム
中から選ばれる一種又はそれ以上とし、Y成分の化合物
としては硝酸銅、硝酸銀、オルトヒ酸、三酸化アンチモ
ン、テルル酸、硝酸コバルト、硝酸ビスマスおよび硝酸
ジルコニウムの中から選ばれる一種又はそれ以上とし表
3に示す組成の触媒を調製した。
これらの触媒を用い、反応温度をかえた以外は実施例1
と同じ条件で反応をおこない10畑時間経過時点で表3
に示す結果をえた。
実施例 13 実施例5において調製した酸素を除く原子比でP:Mo
:V:Ba:Ag=1.3:12:1:1:0.1なる
組成の触媒酸化物を用い、実施例1の反応において用い
た原料メタクロレインをイソブチルアルデヒ日こかえま
た反応温度を28000とかえた以外は同じ条件で反応
をおこない10脚寺間経過時点で次に示す結果をえた。
なおメタクロレィン単流収率は供給ィソブチルアルデヒ
ドのモル数に対する生成メタクロレィンのモル数の百分
率で表わした。反応温度
28000ィソブチルアルデヒド転化率 100
%メタクリル酸単流収率 68.1%メタ
クロレィン単流収率 8.5%比較例 3比
較例2において調製した酸素を除く原子比でP:Mo:
V:Ba:Ag=1.3:12:1:1:0.1なる組
成の触媒酸化物を用い、実施例13と同じ条件で反応を
おこない次の結果をえた。
なおメタクロレィン単流収率は実施例13の定義に徒が
った。反応温度 2800
0ィソブーチルアルデヒド転化率 100%メタ
クリル酸単流収率 39.4%メタクロレィ
ン単流収率 13.8%実施例 14実施例
1においてピリジン20夕の代わりにピリミジン10.
1夕を用いる以外は同様に調製した触媒を用い、反応に
用いた原料のメタクロレィンをィソブチレンにかえて反
応をおこなった。
なお反応温度については250oo、原料混合ガスの容
量比をィソブチレン:酸素:窒素:水=1:5:29:
15と変えた以外は同様にして反応をおこない表4に示
す結果をえた。なお表中メタクロレィン選択率は反応し
た原料物質のモル数に対する生成メタクロレィンの生成
モル数の百分率を示したものである。比較例 4 実施例14の反応において使用した触媒(実施例1の触
媒)を比較例1による触媒にかえた以外は同機にしてィ
ソブチレンの酸化をおこない表5に示す結果をえた。
実施例 15 実施例14において反応に用いた原料ィソブチレンを夕
−シヤリーブタノールに変えた以外は同様の条件で反応
をおこない、ターンャリーブタノールの酸化をおこなっ
て表4の結果をえた。
比較例 5 実施例15において用いた触媒(実施例1の触媒)を比
較例1による触媒にかえた以外は同様にして夕‐シャリ
ーブタノールの酸化をおこない表5に示す結果をえた。
表 I表 2 表 3 表 4 表 5

Claims (1)

  1. 【特許請求の範囲】 1 ヘテロポリ酸がモリブドリン酸またはその一部置換
    体でX線回折線(対陰極Cu−Kα)において2θが約
    26.2、約10.5、約21.3および約30.3度
    付近であるほゞ塩の結晶構造を有するヘテロポリ酸を含
    む触媒組成物で、一般式 P_aMo_bV_cX_d
    Y_eO_f(ここでPはリン、Moはモリブデン、V
    はバナジウム、Xはベリリウム、カルシウム、マグネシ
    ウム、ストロンチウム、およびバリウムの中から選ばれ
    る一種又はそれ以上の元素、Yは銅、銀ヒ素、アンチモ
    ン、コバルト、ビスマスおよびジルコニウムの中から選
    ばれる一種又はそれ以上の元素、Oは酸素を示す。 また添字a,b,c,d,e,fはそれぞれ各元素の原
    子比を表わし、b=12のときa=0.1〜3.0、c
    =0〜6.0、d=0.05〜5.0、e=0.01〜
    5.0、fは各元素の原子価および原子比により定まる
    数値をとる。)で表わされる炭素数4の不飽和炭化水素
    および/またはアルコールおよび/または飽和脂肪族ア
    ルデヒドおよび/または不飽和脂肪族アルデヒドの気相
    酸化用触媒。2 下記一般式で表わされる組成物中に含
    まれるヘテロポリ酸化合物を含窒素ヘテロ環化合物の存
    在下に調製することを特徴とする、炭素数4の不飽和炭
    化水素および/またはアルコールおよび/または飽和脂
    肪族アルデヒドおよび/または不飽和脂肪族アルデヒド
    の気相酸化用触媒の調製法。 一般式 P_aMo_bV_cX_dY_eO_f(こ
    こでPはリン、Moはモリブデン、Vはバナジウム、X
    はベリリウム、カルシウム、マグネシウム、ストロンチ
    ウム、およびバリウムの中から選ばれる一種又はそれ以
    上の元素、Yは銅、銀、ヒ素、アンチモン、テルル、コ
    バルト、ビスマスおよびジルコニウムの中から選ばれる
    1種又はそれ以上の元素、Oは酸素を示す。 また添字a,b,c,d,e,fはそれぞれ各元素の原
    子比を表わし、b=12のときa=0.1〜3.0、c
    =0〜6.0、d=0.05〜5.0、e=0.01〜
    5.0、fは各元素の原子価および原子比により定まる
    数値をとる。)
JP56061405A 1980-06-26 1981-04-24 酸化用触媒およびその調製法 Expired JPS6035180B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP56061405A JPS6035180B2 (ja) 1981-04-24 1981-04-24 酸化用触媒およびその調製法
US06/275,243 US4419270A (en) 1980-06-26 1981-06-19 Oxidation catalyst
EP81104896A EP0043100B2 (en) 1980-06-26 1981-06-24 Oxidation catalyst and process for preparation thereof
DE8181104896T DE3166006D1 (en) 1980-06-26 1981-06-24 Oxidation catalyst and process for preparation thereof
KR1019810002304A KR840001003B1 (ko) 1980-06-26 1981-06-25 몰리브도바나도인산 촉매 조성물
BR8104020A BR8104020A (pt) 1980-06-26 1981-06-25 Catalisador para oxidacao,em fase de vapor,de um hidrocarboneto insaturado,alcool e aldeido alifatico saturado ou insaturado,e processo para a preparacao do catalisador
SU813301551A SU1243610A3 (ru) 1981-04-22 1981-06-25 Способ приготовлени катализатора дл окислени метакролеина и изомасл ного альдегида
CA000380559A CA1161822A (en) 1980-06-26 1981-06-25 Oxidation catalyst and process for preparation thereof
US06/681,698 US4621155A (en) 1980-06-26 1984-12-14 Process for preparation of methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56061405A JPS6035180B2 (ja) 1981-04-24 1981-04-24 酸化用触媒およびその調製法

Publications (2)

Publication Number Publication Date
JPS57177348A JPS57177348A (en) 1982-11-01
JPS6035180B2 true JPS6035180B2 (ja) 1985-08-13

Family

ID=13170187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56061405A Expired JPS6035180B2 (ja) 1980-06-26 1981-04-24 酸化用触媒およびその調製法

Country Status (1)

Country Link
JP (1) JPS6035180B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041678A1 (en) * 1995-06-08 1996-12-27 Nippon Shokubai Co., Ltd. Vanadium-containing catalyst, process for the production thereof, and use thereof
US6281378B1 (en) 1995-06-08 2001-08-28 Nippon Shokubai Co., Ltd. Vanadium-containing catalysts, process for manufacturing and use of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044042A (ja) * 1983-08-23 1985-03-08 Ube Ind Ltd メタクリル酸製造用触媒の製法
SG11201911738QA (en) 2017-07-31 2020-01-30 Mitsubishi Chem Corp Catalyst precursors, methods for producing catalysts, methods for producing methacrylic acid and acrylic acid, and methods for producing methacrylic acid esters and acrylic acid esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041678A1 (en) * 1995-06-08 1996-12-27 Nippon Shokubai Co., Ltd. Vanadium-containing catalyst, process for the production thereof, and use thereof
US6281378B1 (en) 1995-06-08 2001-08-28 Nippon Shokubai Co., Ltd. Vanadium-containing catalysts, process for manufacturing and use of the same

Also Published As

Publication number Publication date
JPS57177348A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
EP0043100B1 (en) Oxidation catalyst and process for preparation thereof
JPH0523596A (ja) メタクロレイン及びメタクリル酸製造用触媒の調製法
JPH0813332B2 (ja) メタクロレイン及びメタクリル酸の製造用触媒の調製法
JPS6123020B2 (ja)
JP2004298873A (ja) オレフィンから不飽和アルデヒドを製造するための混合金属酸化物触媒
JPS6033539B2 (ja) 酸化用触媒およびその調製法
JP2004008834A (ja) メタクリル酸製造用触媒の製造方法
JPH10128112A (ja) イソブタンの気相接触酸化反応用触媒およびその製造方法
JPH0791212B2 (ja) メタクリル酸の製造法
JPS6035179B2 (ja) 酸化用触媒およびその調製法
JPS6035180B2 (ja) 酸化用触媒およびその調製法
JP3995381B2 (ja) メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP3209778B2 (ja) メタクリル酸製造用触媒の調製法
JP2008229515A (ja) メタクリル酸製造用触媒の製造方法
JP3772389B2 (ja) 酸化触媒の製造方法及びメタクリル酸の製造方法
JP3316881B2 (ja) メタクリル酸製造用触媒の製造方法
KR900002454B1 (ko) 메타크릴산의 제조방법 및 이 방법에 사용되는 촉매
JP3855298B2 (ja) アルケンおよび/または含酸素化合物の製造方法
JP2004351297A (ja) メタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法
JPH0463139A (ja) メタクリル酸製造用触媒の製造方法
JPS6035178B2 (ja) 酸化用触媒およびその調製法
JP3316880B2 (ja) メタクリル酸製造用触媒の製造方法
JPH0133097B2 (ja)
JPH0924277A (ja) メタクリル酸製造用触媒及びメタクリル酸の製造方法
JP4273565B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用の複合酸化物触媒の製造法