JPS60113456A - Ic device - Google Patents

Ic device

Info

Publication number
JPS60113456A
JPS60113456A JP58220932A JP22093283A JPS60113456A JP S60113456 A JPS60113456 A JP S60113456A JP 58220932 A JP58220932 A JP 58220932A JP 22093283 A JP22093283 A JP 22093283A JP S60113456 A JPS60113456 A JP S60113456A
Authority
JP
Japan
Prior art keywords
electrode
thickness
insulation film
insulation
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58220932A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Masanori Kikuchi
菊地 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58220932A priority Critical patent/JPS60113456A/en
Publication of JPS60113456A publication Critical patent/JPS60113456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the leakage current of elements by a method wherein the thickness of the insulation film at the field section is set to an extremely low value, and a field electrode is provided thereon and then supplied with a fixed potential. CONSTITUTION:The thickness of the insulation film 12 of an element insulating region is formed equally to the thickness of a gate insulation film 7 of the active element or more thinly than it. contact apertures are formed above an electrode 11 and above the polycrystalline Si 5 of the element-insulating region. A metallic electrode 13 is adhered on the insulation film 12. In the operation of the elements, the electrode 13 is grounded or biased to a negative voltage, thus inhibiting the inversion of the surface of the element insulation region Si, resulting in element insulation. Then, the malfunction of the elements due to the conduction of a parasitic transistor can be prevented.

Description

【発明の詳細な説明】 近年、半導体集積回路が通信衛星等に組み込まれ、宇宙
空間内で使用される様になるに従い、宇百線による素子
特性の劣化が深刻な問題となってきた。時にMO8型集
積回路に於てば、γ線による閾値電圧の変動が著しく見
られる。これは、電離によってゲートm化膜中に発生し
た電子・正孔対のうち、正孔がゲート酸化膜中の電界に
よって移動し、Si Sing界面に捕促されるためで
ある。
DETAILED DESCRIPTION OF THE INVENTION In recent years, as semiconductor integrated circuits have been incorporated into communication satellites and used in outer space, deterioration of device characteristics due to ultraviolet radiation has become a serious problem. In MO8 type integrated circuits, significant fluctuations in threshold voltage due to gamma rays are sometimes observed. This is because, among the electron-hole pairs generated in the gate oxide film by ionization, the holes move due to the electric field in the gate oxide film and are trapped at the Si Sing interface.

閾値電圧の変動は活性素子領域でしまそれほど顕著で(
・主なく、γ線の吸収量が103〜10’Rad程L(
の場合でも0.5V以下であるのに対し、フィールドば
化膜部分の閾値電圧の変動は大きく、しばしばティブレ
ションムッとなり素子の正常な動作は全(不可能となる
。これは、酸化膜厚が厚くなる程電離によって発生する
電子・正孔対の数が増し、また、ゲートの容量も酸化膜
厚が厚い程小さくなるため、閾値電圧の変化がゲート膜
厚の増加と共に急激に増加するためである。
The variation in threshold voltage is more pronounced in the active device region (
・The absorption amount of gamma rays is about 103 to 10' Rad L (
Even in the case of As the thickness increases, the number of electron-hole pairs generated by ionization increases, and the gate capacitance also decreases as the oxide film thickness increases, so the change in threshold voltage increases rapidly as the gate film thickness increases. It's for a reason.

本発明は、上記欠点を除去し、γ線照射によってもフィ
ールド部分の閾値電圧の変動が極めて少いMO8型果潰
回路の構造を与えるものである。
The present invention eliminates the above-mentioned drawbacks and provides a MO8 type collapse circuit structure in which the threshold voltage of the field portion varies extremely little even when irradiated with gamma rays.

本発明では、フィールド部分の絶縁膜厚をxooA程度
以下の極めて薄い値にし、その上にシールド・電極を設
は一定の電位を与えることによって素子間の漏洩電流を
防止しようとするものである。次に図面に従って本発明
の一実施例を説明する。
The present invention attempts to prevent leakage current between elements by making the insulating film thickness in the field part extremely thin, about xooA or less, and providing a shield/electrode thereon to apply a constant potential. Next, one embodiment of the present invention will be described according to the drawings.

第1図に於icp型シリコン基板10表面部分にはp型
不純物層2がイオン注入により形成されている。このp
型層は、MOSトランジスタのバンチスルーを防止する
目的及びフィールドm 分の閾値′磁圧を高める目的の
為に設けられている。次に、第2図に示す様に酸化膜3
及び窒化膜4を被着し、更に多結晶シリコン5を被着す
る。多結晶シリコン5には導電性不純物がドープされて
いる。次に第3図に示す様に、素子間絶縁領域部分の前
記多結晶シリコン5を残して、フォトエツチング工程に
より、活性素子部分の前記多結晶シリコン5を除去する
。次に酸化性雰囲気中で熱処理を行い、多結晶シリコン
5表面を酸化膜で被覆する。
In FIG. 1, a p-type impurity layer 2 is formed on the surface of an icp-type silicon substrate 10 by ion implantation. This p
The type layer is provided for the purpose of preventing bunch-through of the MOS transistor and increasing the threshold 'magnetic pressure for field m. Next, as shown in FIG.
Then, a nitride film 4 is deposited, and polycrystalline silicon 5 is further deposited. Polycrystalline silicon 5 is doped with conductive impurities. Next, as shown in FIG. 3, the polycrystalline silicon 5 in the active element portion is removed by a photoetching process, leaving the polycrystalline silicon 5 in the inter-element insulation region. Next, heat treatment is performed in an oxidizing atmosphere to cover the surface of the polycrystalline silicon 5 with an oxide film.

活性素子領域は窒化膜4で被われているため、シリコン
基板が酸化されることは無い。次に、第4図に示す様に
、活性素子領域上の窒化膜4及び酸化膜3を除去した後
、新たにゲート酸化膜7を形成し、次に、多結晶シリコ
ンを被着した後、フォトエツチング工程によりゲート電
極8を形成する0次に、第5図に示す様に、イオン注入
或いは熱拡散により、n型不純物を導入し、ソース・ド
レイン9を形成する。次に、第6図に示す様に、コンタ
クト開口を形成し、ソース・ドレイン用電極11をフォ
トエツチング工程により形成する。
Since the active element region is covered with the nitride film 4, the silicon substrate is not oxidized. Next, as shown in FIG. 4, after removing the nitride film 4 and oxide film 3 on the active element region, a new gate oxide film 7 is formed, and then polycrystalline silicon is deposited. After the gate electrode 8 is formed by a photoetching process, as shown in FIG. 5, n-type impurities are introduced by ion implantation or thermal diffusion to form the source/drain 9. Next, as shown in FIG. 6, contact openings are formed and source/drain electrodes 11 are formed by a photoetching process.

次に、第7図に示した様に、層間絶縁膜、例えば酸化膜
12を被着した後、コンタクト開口を電極11上及び素
子間絶縁領域の多結晶シリコン5上に形成し、電極金属
13を被着しフォトエツチング工程により、最終的な外
部に対する取出し電極が形成される。素子の動作状態に
於ては、電極5は接地或いは負電圧にバイアスされ、素
子間領域シリコン表面の反転を押え、素子間絶縁を行う
ことができる。
Next, as shown in FIG. 7, after depositing an interlayer insulating film, for example, an oxide film 12, contact openings are formed on the electrode 11 and on the polycrystalline silicon 5 in the interelement insulating region, and the electrode metal 13 A final lead-out electrode to the outside is formed by depositing and photo-etching. When the device is in operation, the electrode 5 is grounded or biased to a negative voltage, suppressing inversion of the silicon surface in the inter-element region and providing insulation between the devices.

本発明では、素子間絶縁膜厚は極めて薄いため、γ線照
射に伴う固定電荷発生は抑制され、寄生トランジスタの
導電による素子の誤動作を完全に防止できる。
In the present invention, since the inter-element insulating film is extremely thin, generation of fixed charges due to γ-ray irradiation is suppressed, and malfunction of the element due to conduction of parasitic transistors can be completely prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は、本発明の一実施例を説明するため
の断面図である。 図に於て、 1・・・・・・p型シリコン基板、2・・・・・・p誠
不純物層、3・・・・・・酸化膜、4・・・・・・窒化
膜、5・・・・・・多結晶シリコン、6・・・・・・酸
化膜、7・・・・・・酸化膜、8・・・・・・多結晶シ
リコン、9・・・・・・nu不純物層、10・・・・・
・層間絶縁膜、11・・・・・・電極、12・・・・・
・層間絶縁膜、13・・・・・・電極。 5− lx さ k 囚 区 寸 喝 鍼 減 昏 \ 同 ( 減 口 区 N N S ぞ
1 to 7 are cross-sectional views for explaining one embodiment of the present invention. In the figure, 1...p-type silicon substrate, 2...p-type impurity layer, 3...oxide film, 4...nitride film, 5 ...Polycrystalline silicon, 6 ... Oxide film, 7 ... Oxide film, 8 ... Polycrystalline silicon, 9 ... Nu impurity Layer, 10...
・Interlayer insulating film, 11... Electrode, 12...
-Interlayer insulating film, 13...electrode. 5-lx sa k prisoner ku ku ku ku ku ku ku n s zo

Claims (1)

【特許請求の範囲】[Claims] 絶縁ゲート型電界効果トランジスタを主要な構成要素と
する集積回路装置に於て、素子間絶縁領域の絶縁膜厚を
活性素子のゲート絶縁膜厚と同じか或いは薄くし、前記
素子間絶縁領域の絶縁膜上に電極を設け、該電極に一定
の電位を与えることを%徴とした集積回路装置。
In an integrated circuit device having an insulated gate field effect transistor as a main component, the thickness of the insulating film in the inter-element insulating region is the same as or thinner than the thickness of the gate insulating film of the active element, and the insulating film in the inter-element insulating region is An integrated circuit device in which an electrode is provided on a membrane and a constant potential is applied to the electrode.
JP58220932A 1983-11-24 1983-11-24 Ic device Pending JPS60113456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220932A JPS60113456A (en) 1983-11-24 1983-11-24 Ic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220932A JPS60113456A (en) 1983-11-24 1983-11-24 Ic device

Publications (1)

Publication Number Publication Date
JPS60113456A true JPS60113456A (en) 1985-06-19

Family

ID=16758811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220932A Pending JPS60113456A (en) 1983-11-24 1983-11-24 Ic device

Country Status (1)

Country Link
JP (1) JPS60113456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244163A (en) * 1986-04-16 1987-10-24 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244163A (en) * 1986-04-16 1987-10-24 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4377819A (en) Semiconductor device
JPH0695563B2 (en) Semiconductor device
JPH01205470A (en) Semiconductor device and its manufacture
EP0028654B1 (en) Semiconductive memory device and fabricating method therefor
JP2001077356A (en) Vertical mos semiconductor device
JPS60113456A (en) Ic device
EP0110656B1 (en) Semiconductor device and method of manufacturing the same
US5219766A (en) Semiconductor device having a radiation resistance and method for manufacturing same
JPS60206040A (en) Insulation isolator for semiconductor ic
JPS62262462A (en) Semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JPS63307757A (en) Radiation-resistant semiconductor device
JP2826024B2 (en) Method for manufacturing MOS transistor
JP2515043B2 (en) Ultraviolet erasable nonvolatile semiconductor memory device
JPH0644590B2 (en) Semiconductor device
JPH06244428A (en) Mos device and manufacture thereof
JPH0582068B2 (en)
JPH04179162A (en) Semiconductor device and manufacture thereof
JPS60130136A (en) Semiconductor integrated circuit device
JPS6254959A (en) Manufacture of mis semiconductor device
JP2970376B2 (en) Method of manufacturing complementary semiconductor device
JP2676769B2 (en) Semiconductor device
JP2928076B2 (en) Semiconductor device and manufacturing method thereof
JPS59175157A (en) Metal insulator semiconductor type semiconductor memory device and manufacture thereof
JPH07183498A (en) Semiconductor device