JPH0644590B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0644590B2
JPH0644590B2 JP59215613A JP21561384A JPH0644590B2 JP H0644590 B2 JPH0644590 B2 JP H0644590B2 JP 59215613 A JP59215613 A JP 59215613A JP 21561384 A JP21561384 A JP 21561384A JP H0644590 B2 JPH0644590 B2 JP H0644590B2
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon
silicon oxide
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59215613A
Other languages
Japanese (ja)
Other versions
JPS6193641A (en
Inventor
邦彦 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59215613A priority Critical patent/JPH0644590B2/en
Publication of JPS6193641A publication Critical patent/JPS6193641A/en
Publication of JPH0644590B2 publication Critical patent/JPH0644590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 (発明の目的) 本発明は半導体装置にかかり、とくに半導体集積回路素
子間の電気的絶縁分離膜の耐放射線性向上に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) The present invention relates to a semiconductor device, and more particularly to improvement of radiation resistance of an electrically insulating separation film between semiconductor integrated circuit elements.

近年、半導体集積回路を宇宙空間、原子炉周辺などで使
用する機会が増加しつつある。そのような厳しい環境内
におかれた半導体集積回路は種々の放射線損傷を受け、
回路の誤動作および破壊を生じ、システムの機能低下を
受けやすい。したがって放射線に強い半導体集積回路の
開発が望まれる。高集積回路の基本素子である絶縁ゲー
ト電界効果トランジスタ(以後、MOSトランジスタと
略す)およびバイポーラトランジスタの放射線損傷の主
な原因はシリコン酸化膜中への正電荷の蓄積とシリコン
酸化膜一シリコン界面における界面準位密度の増加であ
る。その結果、しきい値電圧の変動とリーク電流の増
加、あるいは電流増幅率の低下をもたらす。すなわち電
離放射線がシリコン酸化膜に入射すると多量の電子−正
孔対が生成する。その後、その一部は再結合して消滅す
るが、一部はシリコン酸化膜中に捕獲される。電子の移
動度は大きく、正のゲート電圧のもとでは短時間で酸化
膜外に拡散するが、正孔は移動度が小さく、シリコン酸
化膜内に捕獲され、正の固定電荷が形成される。またシ
リコン酸化膜−シリコン界面に捕獲された正孔は界面準
位を形成すると言われている。特に電気的絶縁分離膜で
あるフィールド酸化膜はゲート酸化膜と比較して厚い酸
化膜厚を有するため多量の正孔が生成し、大きな闘値電
圧変化および界面準位生成もたらし、寄生MOSトラン
ジスタ発生と素子間リークの増大をひきおこす。
In recent years, there are increasing opportunities to use semiconductor integrated circuits in outer space, around nuclear reactors, and the like. A semiconductor integrated circuit placed in such a severe environment suffers various radiation damages,
Circuit malfunctions and breakdowns are likely to occur, and system functions are easily degraded. Therefore, development of a semiconductor integrated circuit resistant to radiation is desired. Radiation damage to insulated gate field effect transistors (hereinafter abbreviated as MOS transistors) and bipolar transistors, which are the basic elements of highly integrated circuits, is mainly caused by the accumulation of positive charges in the silicon oxide film and the silicon oxide-silicon interface. This is an increase in interface state density. As a result, the threshold voltage fluctuates and the leak current increases, or the current amplification factor decreases. That is, when ionizing radiation enters the silicon oxide film, a large number of electron-hole pairs are generated. After that, some of them recombine and disappear, but some of them are trapped in the silicon oxide film. Electrons have high mobility and diffuse out of the oxide film in a short time under positive gate voltage, but holes have low mobility and are trapped in the silicon oxide film to form positive fixed charges. . Further, it is said that the holes trapped at the silicon oxide film-silicon interface form an interface level. In particular, since the field oxide film, which is an electrically insulating isolation film, has a thick oxide film thickness as compared with the gate oxide film, a large amount of holes are generated, which causes a large threshold voltage change and interface state generation, which causes parasitic MOS transistor generation. And causes an increase in leakage between elements.

(従来技術) 従来、値電圧変化、および界面準位生成を抑えるため
に、(1):フィールド酸化膜の薄膜化、(2):低温アニー
ルが考えられている。しかしながらフィールド酸化膜の
薄膜化は確かに闘値電圧および界面準位生成量を減少さ
せるが、反面上を走る配線と基板間の容量増大をもたら
すので半導体集積回路の性能を低下させる。また低温ア
ニールによる改善はわずかである。
(Prior Art) Conventionally, (1): thinning of a field oxide film and (2): low temperature annealing have been considered in order to suppress change in value voltage and generation of interface state. However, thinning of the field oxide film surely reduces the threshold voltage and the amount of interface states generated, but on the other hand, it causes an increase in the capacitance between the wiring running on the upper surface and the substrate, thus degrading the performance of the semiconductor integrated circuit. Also, the improvement by low temperature annealing is slight.

(本発明の構成) 本発明の目的は、上記の問題点を解決するため新規のフ
ィールド酸化膜構造を持つ半導体装置を提供するもので
ある。新しいフィールド酸化膜は多層の絶縁膜構造をと
る。すなわち、初めに熱酸化したシリコン酸化膜を形成
し、以後化学気相成長したシリコン酸化膜(あるいはリ
ンガラス)とシリコン窒化膜を交互に堆積することを特
徴とする。
(Structure of the Present Invention) An object of the present invention is to provide a semiconductor device having a novel field oxide film structure in order to solve the above problems. The new field oxide film has a multi-layer insulating film structure. That is, it is characterized in that a thermally oxidized silicon oxide film is first formed, and then a chemically vapor-deposited silicon oxide film (or phosphorus glass) and a silicon nitride film are alternately deposited.

(本発明の原理) 次にその原理について述べる。フィールド酸化膜の膜厚
は通常500mm以上であり、発生した正孔の多くは酸化
膜外に拡散することは難しい。また正孔の捕獲位置がシ
リコン酸化膜−シリコン界面に近いほどしきい値電圧の
変動に与える影響は大きい。さらに酸化膜内部で生成し
た正孔が界面付近まで到達しやすいと界面準位増加量が
増える。したがって、電離放射線の入射により生成した
正孔はただちにその場所で捕獲されると闘値電圧の変動
は小さくてすむ。さらに同時に生成する電子も生成した
位置付近で捕獲されれば、酸化膜内の電荷は相殺され
る。また界面準位はシリコン膜−シリコン界面に達する
正孔量が減少するためその増加量は小さい。
(Principle of the Present Invention) Next, the principle will be described. The film thickness of the field oxide film is usually 500 mm or more, and it is difficult for most of the generated holes to diffuse outside the oxide film. Further, the closer the hole capturing position is to the silicon oxide film-silicon interface, the greater the influence on the fluctuation of the threshold voltage. Further, if holes generated inside the oxide film easily reach the vicinity of the interface, the interface state increase amount increases. Therefore, if the holes generated by the incidence of the ionizing radiation are immediately captured at that place, the change in the threshold voltage can be small. Furthermore, if the electrons generated at the same time are also captured in the vicinity of the generated position, the charges in the oxide film are offset. Further, the increase in the interface level is small because the number of holes reaching the silicon film-silicon interface decreases.

化学気相成長によるシリン酸化膜、リンガラス、および
シリコン窒化膜はその内部に高濃度の正孔および電子捕
獲中心を含んでいる。特にシリコン酸化膜とシリコン窒
化膜界面領域の正孔、電子捕獲中心の密度は高い。した
がって多層絶縁膜から形成された素子絶縁膜中の電荷量
は非常に少ない。また界面準位増加量もシリコン酸化膜
−シリコン界面へ到達する正孔量が少ないため大幅に減
少する。ただし化学気相成長したシリコン酸化膜あるい
はシリコン窒化膜は初期の界面準位密度が比較的高いた
め、リコン熱酸化膜を初めに形成し、放射線照射前の界
面密度を小さくしている。この熱酸化膜を薄膜化してゆ
けば熱酸化膜内に生成する正孔量は減少するので界面準
位増加量は著しく減少することができる。しかし、フィ
ールド酸化膜形成後の熱処理によって化学気相成長した
シリコン酸化膜およびシリコン窒化膜の成分がシリコン
酸化膜−シリコン界面まで拡散するのを抑制するための
膜厚は必要である。いずれにしても後の熱処理工程を考
慮した膜厚にする必要がある。この膜厚としては、10
0〜1000Åが好ましく、更には100〜500Åが
より好ましい。
The chemical vapor deposition silyl oxide film, phosphorus glass, and silicon nitride film contain a high concentration of holes and electron traps therein. In particular, the density of holes and electron traps in the interface region between the silicon oxide film and the silicon nitride film is high. Therefore, the amount of charges in the element insulating film formed from the multilayer insulating film is very small. Further, the interface state increase amount is also greatly reduced because the amount of holes reaching the silicon oxide film-silicon interface is small. However, since the chemical vapor grown silicon oxide film or silicon nitride film has a relatively high interface state density at the initial stage, the thermal oxide film of the recon is formed first to reduce the interface density before irradiation. If this thermal oxide film is made thinner, the amount of holes generated in the thermal oxide film will decrease, so that the interface state increase amount can be significantly reduced. However, a film thickness is necessary to prevent the components of the silicon oxide film and the silicon nitride film chemically vapor-deposited by the heat treatment after the formation of the field oxide film from diffusing to the silicon oxide film-silicon interface. In any case, it is necessary to make the film thickness in consideration of the subsequent heat treatment process. This film thickness is 10
0 to 1000Å is preferable, and 100 to 500Å is more preferable.

(発明の実施例) 次に実施例により本発明の詳細な説明を行う。以下、P
型シリコン基板上にMOSトランジスタを形成する場合
に本発明適用して述べるが、他の半導体集積回路につい
ても同様な構造を用いることができる。
(Examples of the Invention) Next, the present invention will be described in detail by examples. Below, P
The present invention is applied to the case where a MOS transistor is formed on a silicon substrate, but the same structure can be used for other semiconductor integrated circuits.

第1図から第8図は本発明の一形成例を各ステップごと
に示したものである。
1 to 8 show an example of the formation of the present invention for each step.

第1図に示すようにP型シリコン半導体基板101に表
面にパターニングされた薄い酸化膜102およびシリコ
ン窒化膜103を公知のホトレジストおよび蝕刻技術を
用いて形成する。次に第2図に示すように該シリコン窒
化膜103をマスク材として、異方性プラズマエッチン
グおよび湿式エッチングを組み合わせて該シリコン半導
体基板101表面を選択的に蝕刻する。その際、湿式エ
ッチング工程は蝕刻面を平滑にし、測壁にスロープをつ
け、さらにプラズマエッチングによるダメージを除去す
るために用いられる。また蝕刻溝の深さは作製する半導
体集積回路の集積度によって決定されるが数百n〜数
μ程度である。次にシリコン窒化膜103をイオン注
入のマスクとしてボロン等のP型不純物を蝕刻溝にイオ
ン注入104し、チャンネルストッパー領域105を形
成する。
As shown in FIG. 1, a thin oxide film 102 and a silicon nitride film 103 patterned on the surface of a P-type silicon semiconductor substrate 101 are formed by using a known photoresist and etching technique. Next, as shown in FIG. 2, using the silicon nitride film 103 as a mask, anisotropic plasma etching and wet etching are combined to selectively etch the surface of the silicon semiconductor substrate 101. At that time, the wet etching process is used for smoothing the etched surface, providing a slope on the wall, and further removing damage due to plasma etching. Although the depth of the etched groove is determined by the degree of integration of the semiconductor integrated circuit to produce a few hundred n m ~ several mu m. Next, using the silicon nitride film 103 as an ion implantation mask, P-type impurities such as boron are ion-implanted 104 into the etching groove to form a channel stopper region 105.

次に第3図に示した様に該チャンネルストッパー領域に
整合して蝕刻溝に低温熱酸化により膜厚100〜100
0Åのシリコン酸化膜106を形成する。
Next, as shown in FIG. 3, the etching groove is aligned with the channel stopper region and is formed into a film having a thickness of 100 to 100 by low temperature thermal oxidation.
A 0Å silicon oxide film 106 is formed.

さらに第4図に示すごとく、蝕刻溝に化学気相成長した
シリコン酸化膜(あるいはリンガラス)と化学気相成長
したシリコン窒化膜を交互に堆積するのであるがその一
例として次の方法がある。すなわち、化学気相成長法に
よってシリコン基板全面にシリコン酸化膜(あるいはリ
ンガラス)とシリコン窒化膜を数百Å〜数千Å間隔で堆
積した後、ホトレジストを塗布し、化学気相成長したシ
リコン酸化膜(あるいはリンガラス)とシリコン窒化膜
をプラズマエッチングしてゆき蝕刻溝部分にのみ残す方
法である。次にシリコン窒化膜103と薄いシリコン酸
化膜102を公知のエッチング法で除去すると第5図に
示した姿態になる。
Further, as shown in FIG. 4, a chemically vapor-deposited silicon oxide film (or phosphorus glass) and a chemically vapor-deposited silicon nitride film are alternately deposited in the etching groove. One example thereof is the following method. That is, a silicon oxide film (or phosphorus glass) and a silicon nitride film are deposited on the entire surface of a silicon substrate by a chemical vapor deposition method at intervals of several hundred Å to several thousand Å, and then a photoresist is applied to the silicon oxide film grown by chemical vapor deposition. This is a method in which the film (or phosphorus glass) and the silicon nitride film are plasma-etched and left only in the etched groove portion. Then, the silicon nitride film 103 and the thin silicon oxide film 102 are removed by a known etching method to obtain the state shown in FIG.

第6図以降はnチャンネルMOSトランジスタを形成す
る工程である。すなわち第6図はMOSトランジスタの
ゲート酸化膜を新たに熱酸化で形成した後、リンを含有
するポリシリコンあるいは高融点金属等でゲート電極1
09を公知の蝕刻技術で形成した姿態を示している。次
に第7図に示すようにゲート電極109の側面酸化を行
った後、砒素等のイオン注入によりソース領域111、
およびドレイン領域112を形成する。
FIG. 6 and subsequent steps are steps for forming an n-channel MOS transistor. That is, FIG. 6 shows that after the gate oxide film of the MOS transistor is newly formed by thermal oxidation, the gate electrode 1 is made of polysilicon containing phosphorus or refractory metal.
9 shows a state in which 09 is formed by a known etching technique. Next, as shown in FIG. 7, after the side surface of the gate electrode 109 is oxidized, the source region 111,
And the drain region 112 is formed.

最後に第8図に示すようにリンガラス等の保護絶縁膜1
13で全体を被覆した後、MOSトランジスタのソース
電極114、およびドレイン電極115を形成し、MO
Sトランジスタ構造が完成する。さらに完成したMOS
トランジスタはシリコン窒化膜などで保護されることに
なる。
Finally, as shown in FIG. 8, a protective insulating film 1 such as phosphor glass is used.
After covering the whole with 13, the source electrode 114 and the drain electrode 115 of the MOS transistor are formed, and MO
The S transistor structure is completed. Further completed MOS
The transistor will be protected by a silicon nitride film or the like.

斯くのごとく、本発明をMOSトランジスタを適用する
と、電離放射線が絶縁素子分離領域に照射しても生成し
た電子および正孔は拡散することなくただちに捕獲さ
れ、その電荷が相殺されるため、絶縁膜内の帯電は生じ
難く、また正孔がシリコン酸化膜−シリコン界面まで拡
散しにくいため界面準位も増加しない。したがって隣接
したMOSトランジスタ間のリーク電流は抑えられ、耐
放射線能は大幅に向上する。
As described above, when the present invention is applied to the MOS transistor, even if the insulating element isolation region is irradiated with the ionizing radiation, the generated electrons and holes are immediately captured without being diffused, and the charges are offset, so that the insulating film is formed. The internal charge is less likely to occur, and holes are less likely to diffuse to the silicon oxide film-silicon interface, so that the interface level does not increase. Therefore, the leak current between the adjacent MOS transistors is suppressed, and the radiation resistance is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第8図は本発明の実施例の製造を工程順に示
した断面図である。 101……シリコン半導体基板,102……薄いシリコ
ン酸化膜,103……マスク用シリコン窒化膜,104
……チャンネルストッパー領域生成のためのイオン,1
05……チャンネルストッパー領域,106……熱酸化
により生成したシリコン酸化膜,107……化学気相成
長したシリコン酸化膜(あるいはリンガラス)とシリコ
ン窒化膜が交互に層となった絶縁膜,108……ゲート
酸化膜,109……ゲート電極,110……側面酸化
膜,111……ソース領域,112……ドレイン領域,
113……保護絶縁膜,114……ソース電極,115
……ドレイン電極。
1 to 8 are cross-sectional views showing manufacturing steps of the embodiment of the present invention in the order of steps. 101 ... Silicon semiconductor substrate, 102 ... Thin silicon oxide film, 103 ... Masking silicon nitride film, 104
... Ions for generating channel stopper region, 1
05 ... Channel stopper region, 106 ... Silicon oxide film generated by thermal oxidation, 107 ... Insulating film in which chemical vapor deposition silicon oxide film (or phosphorus glass) and silicon nitride film are alternately layered, 108 ...... Gate oxide film, 109 ・ ・ ・ Gate electrode, 110 ・ ・ ・ Side oxide film, 111 ・ ・ ・ Source region, 112 ・ ・ ・ Drain region,
113 ... Protective insulating film, 114 ... Source electrode, 115
...... Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面に選択的に形成された前記
半導体基板と同じ導電型の埋め込み領域と、半導体素子
間の電気的絶縁分離膜であって、前記埋め込み領域の表
面に形成された熱酸化によるシリコン酸化膜、前記シリ
コン酸化膜の表面に交互に化学気相成長法により形成さ
れたシリコン酸化膜もしくはリンガラス膜及びシリコン
窒化膜を含んだ電気的絶縁分離膜とを有することを特徴
とする半導体装置。
1. A buried region of the same conductivity type as that of the semiconductor substrate, which is selectively formed on the surface of the semiconductor substrate, and an electrically insulating separation film between semiconductor elements, the heat being formed on the surface of the buried region. A silicon oxide film formed by oxidation, and a silicon oxide film formed on the surface of the silicon oxide film alternately by chemical vapor deposition or an electrically insulating separation film containing a phosphorus glass film and a silicon nitride film. Semiconductor device.
JP59215613A 1984-10-15 1984-10-15 Semiconductor device Expired - Fee Related JPH0644590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215613A JPH0644590B2 (en) 1984-10-15 1984-10-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215613A JPH0644590B2 (en) 1984-10-15 1984-10-15 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7140994A Division JPH07302883A (en) 1995-04-28 1995-04-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6193641A JPS6193641A (en) 1986-05-12
JPH0644590B2 true JPH0644590B2 (en) 1994-06-08

Family

ID=16675312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215613A Expired - Fee Related JPH0644590B2 (en) 1984-10-15 1984-10-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0644590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891504A (en) * 1994-09-21 1996-04-09 Yashima Denki Kk Carrying device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302883A (en) * 1995-04-28 1995-11-14 Nec Corp Semiconductor device
US6882025B2 (en) * 2003-04-25 2005-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Strained-channel transistor and methods of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093781A (en) * 1973-12-21 1975-07-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891504A (en) * 1994-09-21 1996-04-09 Yashima Denki Kk Carrying device

Also Published As

Publication number Publication date
JPS6193641A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6503826B1 (en) Semiconductor device and method for manufacturing the same
JP2508818B2 (en) Method for manufacturing semiconductor device
US4825278A (en) Radiation hardened semiconductor devices
US4377819A (en) Semiconductor device
KR950010054B1 (en) Semiconductor device comprising an analogue element and a digital element
JPH05865B2 (en)
JP2730535B2 (en) Method for manufacturing semiconductor device
JPH0644590B2 (en) Semiconductor device
JP2002057330A (en) Insulated gate semiconductor device and its manufacturing method
JPH0656855B2 (en) Insulated gate type field effect transistor
JPH0831928A (en) Manufacture of semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP3248305B2 (en) Method for manufacturing BiCMOS semiconductor device
JPH07302883A (en) Semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JPH0637106A (en) Manufacture of semiconductor device
EP0427285B1 (en) Method of manufacturing radiation resistant semiconductor device
JPH0695550B2 (en) Semiconductor device
JPS6331944B2 (en)
JP2595982B2 (en) Semiconductor device
JPS6240741A (en) Semiconductor device
KR100271801B1 (en) Manufacturing Method of Semiconductor Device
JPH0556663B2 (en)
JPH11345947A (en) Semiconductor integrated circuit device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees