KR100271801B1 - Manufacturing Method of Semiconductor Device - Google Patents

Manufacturing Method of Semiconductor Device Download PDF

Info

Publication number
KR100271801B1
KR100271801B1 KR1019980016694A KR19980016694A KR100271801B1 KR 100271801 B1 KR100271801 B1 KR 100271801B1 KR 1019980016694 A KR1019980016694 A KR 1019980016694A KR 19980016694 A KR19980016694 A KR 19980016694A KR 100271801 B1 KR100271801 B1 KR 100271801B1
Authority
KR
South Korea
Prior art keywords
layer
gate
substrate
ion implantation
forming
Prior art date
Application number
KR1019980016694A
Other languages
Korean (ko)
Other versions
KR19990084727A (en
Inventor
라사균
김홍석
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019980016694A priority Critical patent/KR100271801B1/en
Publication of KR19990084727A publication Critical patent/KR19990084727A/en
Application granted granted Critical
Publication of KR100271801B1 publication Critical patent/KR100271801B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to restrain efficiently a short channel effect and prevent a channeling effect by forming a double self HLDD(Halo Lightly Doped Drain) transistor. CONSTITUTION: A field oxide layer(22) for defining an active region and a field region is formed on a semiconductor substrate(21). A gate oxide layer(23) is formed by performing a thermal oxidation process for a surface of the semiconductor substrate(21). A polysilicon layer(24) is deposited on the gate oxide layer(23) by using a CVD(Chemical Vapor Deposition) method. A gate meta layer(25) and a nitride layer(26) are formed thereon. Gates(25,24) are defined by stripping parts of the nitride layer(26), the gate metal layer(25), the polysilicon layer(24), and the gate oxide layer(23). Halo ions are implanted on the whole surface of the substrate(21). A semi-LDD(Lightly Doped Drain) layer(31) is formed by depositing an oxide layer and a nitride layer or an SiON layer on the surface of the substrate. An LDD ion implantation process is performed on the substrate(21). A gate sidewall(29) is formed by depositing and etching a nitride layer and an oxide layer on the whole surface of the substrate(21). A source/drain is formed by performing an ion implantation process. An interlayer dielectric, a metal line, and a passivation layer are formed sequentially thereon.

Description

반도체장치의 제조방법Manufacturing Method of Semiconductor Device

본 발명은 반도체장치의 제조방법에 관한 것으로서, 특히, 고집적소자의 소스/드레인에 적당하도록 종래의 에이치엘디디 방식의 소스/드레인 형성시 문제점으로 나타나는 게이트 라인의 단차가 높아져 소스/드레인 형성용 불순물 이온과 반대 타입의 이온주입을 실시하는 할로이온주입 방식에 있어서 쉐도우효과로 인한 바람직하지 못한 결과를 초래하여 쇼트채널효과(short channel effect)를 효과적으로 억제하지 못하는 문제를 게이트라인 형성 후 종래의 할로이온주입을 실시하고 다시 박막을 형성하여 게이트측벽의 두께를 연장시킨 후 엘디디를 형성하므로서 쇼트채널효과를 억제함은 물론 엘디디 이온주입이나 소스/드레인 이온주입시 채널링효과(channeling effect)를 방지하도록한 더블셀프 에이치엘디디(double self HLDD) 트랜지스터 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and in particular, an impurity for forming a source / drain due to an increase in the level of a gate line, which is a problem when forming a source / drain of a conventional HDL type so as to be suitable for a source / drain of a highly integrated device. In the halo ion implantation method that performs ion implantation of the opposite type to the ion, the conventional halo ion after the gate line is formed, which causes undesirable effects due to the shadow effect, and thus does not effectively suppress the short channel effect. Injecting and forming a thin film to extend the thickness of the gate sidewall and then forming an LED to suppress the short channel effect and to prevent the channeling effect during the LED injection or source / drain ion injection. A method of forming a double self HLDD transistor The.

반도체장치가 고집적화 됨에 따라 각각의 셀은 미세해져 내부의 전계 강도가 증가된다. 이러한 전계 강도의 증가는 소자 동작시 드레인 부근의 공핍층에서 채널영역의 캐리어를 가속시켜 게이트산화막으로 주입시키는 핫-캐리어 효과(hot-carrier effect)를 일으킨다. 상기 게이트산화막에 주입된 캐리어는 반도체기판과 게이트산화막의 계면에 준위를 생성시켜 드레쉬홀드전압(threshold voltage : VTH)을 변화시키거나 상호 컨덕턴스를 저하시켜 소자 특성을 저하시킨다. 그러므로, 핫-캐리어 효과에 의한 소자 특성의 저하를 감소시키기 위해 LDD(Lightly Doped Drain) 등과 같이 드레인 구조를 변화시킨 구조를 사용하여야 한다.As the semiconductor device is highly integrated, each cell becomes finer and the internal electric field strength is increased. This increase in electric field strength causes a hot-carrier effect in which the carrier of the channel region is accelerated and injected into the gate oxide layer in the depletion layer near the drain during operation of the device. The carrier injected into the gate oxide film creates a level at the interface between the semiconductor substrate and the gate oxide film, thereby changing the threshold voltage (VTH) or decreasing mutual conductance, thereby degrading device characteristics. Therefore, in order to reduce the deterioration of device characteristics due to the hot-carrier effect, a structure in which the drain structure is changed such as a lightly doped drain (LDD) or the like should be used.

그리고, 채널의 길이가 짧아짐에 따른 펀치-스루 현상을 방지하기 위하여 게이트 형성 후 엘디디 형성전에 기판의 활성영역의 농도를 높이기 위하여 소스/드레인 형성용 불순물 이온과 반대 타입의 할로이온주입을 실시한다.In order to prevent the punch-through phenomenon due to the shortening of the channel, halo ion implantation of the source / drain formation impurity ions is performed to increase the concentration of the active region of the substrate after the gate formation and before the LED formation. .

소자의 고집적도가 요구됨에 따라 종래 엘디디 방식의 솟/드레인 형성방법 역시 쇼트채널효과로 인하여 그 한계에 이르게 되었다. 이 문제를 해결하기 위하여 할로 엘디디방식을 도입하고 있으나, 소자 형성에 있어서 워드 라인으로 사용하는 게이트 라인의 단차가 커지게 되어 할로이온주입시 게이트라인에 의한 쉐도우 효과로 인하여 원하는 이온주입부위인 게이트측벽 하단부의 기판에 이온주입이 효과적으로 이루어지지 아니한다.그리고 엘디디이온주입 후 좁은 거리에서 pn 졍션 또는 np 졍션이 형성되므로 졍션누설전류가 발생한다.As the high integration of the device is required, the conventional method of forming the soot / drain of the LED method also reaches its limit due to the short channel effect. In order to solve this problem, a halo aldi method is introduced, but the step of the gate line used as a word line increases in forming a device, and the gate, which is a desired ion implantation region, is increased due to the shadow effect caused by the gate line when the halo ion is injected. Ion implantation is not effectively performed on the substrate at the lower side of the sidewall, and a pn caption or an np caption is formed at a narrow distance after the insertion of the eldiion, causing a leakage current.

종래의 에이치엘디디 방식의 MISFET(Metal Insulated Semiconductor Field Effect Transistor) 소자 형성 방법은 다음과 같다.A conventional method of forming a MEDI element of a metal insulated semiconductor field effect transistor (MISFET) is as follows.

도 1a 내지 도 1c는 종래 기술에 따른 반도체장치의 에이치엘디디(Halo Lightly Doped Drain) 트랜지스터 제조공정 단면도이다.1A to 1C are cross-sectional views illustrating a process of manufacturing a halo lightly doped drain transistor of a semiconductor device according to the related art.

도 1a를 참조하면, 반도체기판(1) 표면의 소정 부분에 STI(Shallow Trench Isolation) 등의 통상적인 선택산화방법에 의해 필드산화막(2)을 형성하여 소자의 활성영역 및 필드영역을 한정한다.Referring to FIG. 1A, a field oxide film 2 is formed on a predetermined portion of the surface of a semiconductor substrate 1 by a conventional selective oxidation method such as shallow trench isolation (STI) to define an active region and a field region of a device.

그 다음, 반도체기판(1)의 표면을 열산화하여 게이트산화막(3)을 형성한다.Then, the surface of the semiconductor substrate 1 is thermally oxidized to form a gate oxide film 3.

게이트산화막(3)의 상부에 도핑된 다결정실리콘층(4)을 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 증착한 다음 다시 그 위에 게이트금속층(5)과 캡핑용 질화막(6)을 차례로 증착하여 형성한다. 이때 질화막 대신 에이치엘디(high temperature low pressure dielectric)를 이용할 수 있다.The doped polysilicon layer 4 on the gate oxide film 3 is deposited by chemical vapor deposition (CVD), and then the gate metal layer 5 and the capping nitride film 6 are deposited thereon. ) Is formed by depositing one after the other. In this case, a high temperature low pressure dielectric (HL) may be used instead of the nitride film.

그리고, 포토리쏘그래피(photolithography) 방법으로 패터닝하여 즉 질화막(6)과 게이트금속층(5) 그리고 다결정실리콘층(4) 및 게이트산화막(3)의 일부를 제거하여 게이트(5, 4)를 한정한다.The gates 5 and 4 are defined by patterning by photolithography, i.e., removing the nitride film 6, the gate metal layer 5, and a part of the polysilicon layer 4 and the gate oxide film 3. .

그 다음 마스킹공정을 실시하고 할로이온주입을 노출된 기판(1)의 전면에 실시하여 게이트 하단 모서리 부위의 기판의 불순물 농도를 높인다. 이때 주입되는 이온은 소스/드레인 형성용 이온과 반대 타입의 이온으로서 p 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, n 채널인 경우에는 B+ 또는 BF2+를 5E14 ions/㎠ 이하의 농도로 기판에 비스듬히 이온주입을 실시한다.Then, a masking process is performed and a halo ion implantation is performed on the entire surface of the exposed substrate 1 to increase the impurity concentration of the substrate at the lower edge portion of the gate. In this case, the implanted ions are opposite to the source / drain formation ions, and P + or As + ions are used in the p-channel, and B + or BF2 + is inclined to the substrate at a concentration of 5E14 ions / cm 2 or less in the n-channel. Ion implantation is performed.

도 1b에 있어서, 게이트 alc 잔류한 질화막(6)을 마스크로 사용하여 반도체기판(11)의 노출된 부분에 n 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, p 채널인 경우에는 B+ 또는 BF2+를 1E15 ions/㎠ 이하의 농도로 기판에 엘디디 이온주입을 실시한다.In FIG. 1B, P + or As + ions are used for the n-channel exposed portion of the semiconductor substrate 11 using the nitride film 6 remaining in the gate alc as a mask, and B + or BF2 + for the p-channel. LED implantation is performed on the substrate at a concentration of 1E15 ions / cm 2 or less.

도 1c에 있어서, 이와 같은 기판(1)의 전면에 질화막 또는 산화막을 증착한 다음 이를 에치백하여 게이트측벽(9)을 형성한다.In FIG. 1C, a nitride film or an oxide film is deposited on the entire surface of the substrate 1 and then etched back to form the gate side wall 9.

그리고 게이트 및 게이트측벽(9)을 마스크로 이용한 이온주입을 실시하여 소스/드레인을 형성한다. 이때 n 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, p 채널인 경우에는 B+ 또는 BF2+를 사용하여 1E17 ions/㎠ 이하의 농도로 기판에 소스/드레인 형성용 이온주입을 실시한다.Then, ion implantation using the gate and the gate side wall 9 as a mask is performed to form a source / drain. In the case of n channel, P + or As + ions are used, and in the case of p channel, B + or BF2 + is used to perform ion implantation for source / drain formation on a substrate at a concentration of 1E17 ions / cm 2 or less.

그리고 층간절연층(도시안함)을 형성한 다음 소스/드레인전극을 연결하는 금속배선(도시 안함)을 형성한 다음 보호막으로 패시베이션층(도시안함)을 형성한다.Then, an interlayer insulating layer (not shown) is formed, a metal wiring (not shown) connecting source / drain electrodes is formed, and then a passivation layer (not shown) is formed of a protective film.

그러나, 상술한 바와 같이 종래 기술에서는 소자가 고집적화 됨에 따라 엘디디방식을 사용하지만 쇼트채널효과로 인하여 한계에 이르러 할로 엘디디 방식을 도입하였지만, 소자형성에 있어서 워드라인으로 사용되는 게이트라인의 단차가 커져서 할로 이온주입시 게이트 라인에 의한 쉐도우 효과로 인하여 원하는 부위인 게이트측벽 아래에 할로 이온주입이 되지 아니하고 엘디디 형성부위와 동일한 장소에 할로 이온주입이 되어 쇼트채널효과를 억제하기 곤란하고, 또한 엘디디 이온주입 후 좁은 공간에서 np 혹은 pn 졍션을 형성하게 되어 졍션누설전류가 증가하는 문제점이 있다.However, as described above, in the prior art, the LED is used as the device is highly integrated. However, due to the short channel effect, the LED is introduced. However, the step of the gate line used as the word line in forming the device is increased. It is difficult to suppress the short channel effect due to the halo ion implantation at the same place as the LED formation site, instead of the halo ion implantation under the gate side wall, which is a desired part, due to the shadow effect caused by the gate line during the halo ion implantation. Since the np or pn caption is formed in the narrow space after the DI ion implantation, there is a problem that the caption leakage current increases.

따라서, 본 발명의 목적은 고집적소자의 소스/드레인에 적당하도록 종래의 에이치엘디디 방식의 소스/드레인 형성시 문제점으로 나타나는 게이트 라인의 단차가 높아져 소스/드레인 형성용 불순물 이온과 반대 타입의 이온주입을 실시하는 할로이온주입 방식에 있어서 쉐도우효과로 인한 바람직하지 못한 결과를 초래하여 쇼트채널효과(short channel effect)를 효과적으로 억제하지 못하는 문제를 게이트라인 형성 후 종래의 할로이온주입을 실시하고 다시 박막을 형성하여 게이트측벽의 두께를 연장시킨 후 엘디디를 형성하므로서 쇼트채널효과를 억제함은 물론 엘디디 이온주입이나 소스/드레인 이온주입시 채널링효과(channeling effect)를 방지하도록한 더블셀프 에이치엘디디(double self HLDD) 트랜지스터 형성방법을 제공하는데 있다.Accordingly, an object of the present invention is to increase the level of the gate line, which is a problem in the formation of a source of the conventional HDL-type method, so as to be suitable for the source / drain of the highly integrated device, so that the ion implantation of the opposite type to the impurity ion for the source / drain formation In the halo ion implantation method, which causes undesired effects due to the shadow effect, the short channel effect is not effectively suppressed. Double-self HMD to prevent short channel effects and to prevent channeling effects during the injection of ELD ions or source / drain ions. It provides a method of forming a double self HLDD) transistor.

상기 목적을 달성하기 위한 본 발명에 따른 반도체장치의 제조방법은 활성영역과 필드영역을 격리한 제 1 도전형 반도체기판상의 소정부위에 게이트절연막/게이트/캡절연층으로 이루어진 게이트 패턴을 형성하는 단계와, 게이트 하단 모서리 부위의 기판에 제 1 도전형 불순물 제 1 이온층을 형성하는 단계와, 노출된 기판 표면 및 게이트 패턴의 표면 및 측면에 제 1 절연막을 형성하는 단계와, 기판의 전면에 저농도로 제 2 도전형 불순물 이온주입하는 단계와, 게이트 패턴 측면에 형성된 절연막 표면에 제 2 절연막으로 이루어진 게이트측벽을 형성하는 단계와, 기판의 전면에 고농도로 제 2 도전형 불순물 이온주입하는 단계와, 불순물 이온을 확산시키는 단계를 포함하여 이루어진다.A semiconductor device manufacturing method according to the present invention for achieving the above object is formed by forming a gate pattern consisting of a gate insulating film / gate / cap insulating layer on a predetermined portion on a first conductive type semiconductor substrate isolating the active region and the field region Forming a first conductivity type impurity first ion layer on the substrate at the lower edge portion of the gate; forming a first insulating film on the exposed substrate surface and on the surface and side surfaces of the gate pattern; Implanting a second conductivity type impurity ion, forming a gate side wall made of a second insulating film on the surface of the insulating film formed on the side of the gate pattern, implanting a second conductivity type impurity ion on the entire surface of the substrate, and Diffusing ions.

도 1a 내지 도 1c는 종래 기술에 따른 반도체장치의 에이치엘디디(Halo Lightly Doped Drain) 트랜지스터 제조공정 단면도1A to 1C are cross-sectional views of a halo lightly doped drain transistor manufacturing process of a semiconductor device according to the related art.

도 2a 내지 도 2c는 본 발명에 따른 반도체장치의 에이치엘디디(Halo Lightly Doped Drain) 트랜지스터 제조공정 단면도2A to 2C are cross-sectional views of a halo lightly doped drain transistor manufacturing process of a semiconductor device according to the present invention.

본 발명은 더블 셀프 에이치엘디디 트랜지스터 형성방법에 관한 것으로서 MISFET 소자형성을 실시예로 한다.The present invention relates to a method of forming a double self-HDD transistor, and the MISFET device formation is an embodiment.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2c는 본 발명에 따른 반도체장치의 에이치엘디디(Halo Lightly Doped Drain) 트랜지스터 제조공정 단면도이다.2A to 2C are cross-sectional views of a halo lightly doped drain transistor manufacturing process of a semiconductor device according to the present invention.

도 2a를 참조하면, 반도체기판(21) 표면의 소정 부분에 STI(Shallow Trench Isolation) 등의 통상적인 선택산화방법에 의해 필드산화막(22)을 형성하여 소자의 활성영역 및 필드영역을 한정한다.Referring to FIG. 2A, a field oxide film 22 is formed on a predetermined portion of the surface of the semiconductor substrate 21 by a conventional selective oxidation method such as shallow trench isolation (STI) to define an active region and a field region of the device.

그 다음, 반도체기판(21)의 표면을 열산화하여 게이트산화막(23)을 형성한다.Thereafter, the surface of the semiconductor substrate 21 is thermally oxidized to form a gate oxide film 23.

게이트산화막(23)의 상부에 불순물이 도핑된 다결정실리콘층(24)을 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 증착한 다음 다시 그 위에 게이트금속층(25)과 캡핑용 질화막(26)을 차례로 증착하여 형성한다. 이때 질화막 대신 에이치엘디(high temperature low pressure dielectric)를 이용할 수 있다.A polysilicon layer 24 doped with impurities on the gate oxide layer 23 is deposited by chemical vapor deposition (CVD), and then the gate metal layer 25 and the capping nitride layer are formed thereon. (26) is formed by depositing one after another. In this case, a high temperature low pressure dielectric (HL) may be used instead of the nitride film.

그리고, 포토리쏘그래피(photolithography) 방법으로 패터닝하여 즉 질화막(26)과 게이트금속층(25) 그리고 다결정실리콘층(24) 및 게이트산화막(23)의 일부를 제거하여 게이트(25, 24)를 한정한다.The gates 25 and 24 are defined by patterning by photolithography, that is, removing part of the nitride film 26, the gate metal layer 25, and the polysilicon layer 24 and the gate oxide film 23. .

그 다음 할로이온주입(27)을 노출된 기판(21)의 전면에 실시하여 게이트 하단 모서리 부위의 기판의 불순물 농도를 높인다. 이때 주입되는 이온은 소스/드레인 형성용 이온과 반대 타입의 이온으로서 p 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, n 채널인 경우에는 B+ 또는 BF2+를 5E14 ions/㎠ 이하의 농도로 기판에 경사지게 이온주입을 실시하며, 이러한 이온들은 기판 자체의 불순물 농도를 높여서 펀치-스루 현상을 방지하는 역할을 한다.The haloion implant 27 is then applied to the entire surface of the exposed substrate 21 to increase the impurity concentration of the substrate at the bottom edge of the gate. In this case, the implanted ions are opposite to the source / drain formation ions, and P + or As + ions are used in the p-channel and B + or BF2 + is inclined to the substrate at a concentration of 5E14 ions / cm 2 or less in the n-channel. Ion implantation is performed, and these ions increase the impurity concentration of the substrate itself to prevent punch-through.

도 2b에 있어서, 형성된 구조물들의 노출된 표면 및 기판(21)의 표면에 산화막, 질화막 또는 SiON막을 증착하여 세미 엘디디층(31)을 형성한다. 이때 세미 엘디디층(31)은 게이트 측면에 형성된 부위는 게이트의 측벽 역할을 하며 기판(21) 부위에 형성된 부위는 이온주입시 채널링 효과를 억제하는 층으로 작용한다.In FIG. 2B, an oxide film, a nitride film, or a SiON film is deposited on the exposed surfaces of the formed structures and the surface of the substrate 21 to form a semi LED layer 31. In this case, the semi-LEDi layer 31 has a portion formed on the side of the gate serving as a sidewall of the gate and a portion formed on the portion of the substrate 21 serves as a layer for suppressing channeling effect during ion implantation.

게이트 측면 부위에 형성된 세미 엘디디층(31)과 잔류한 질화막(26) 상부에 형성된 세미 엘디디층(31)을 마스크로 이용하여 반도체기판(21) 표면부위에 n 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, p 채널인 경우에는 B+ 또는 BF2+를 1E15 ions/㎠ 이하의 농도로 기판에 엘디디 이온주입(28)을 실시한다.P + or As + in the case of the n-channel on the surface of the semiconductor substrate 21 using the semi LED layer 31 formed on the side surface of the gate and the semi LED layer 31 formed on the remaining nitride film 26 as a mask. In the case of the p-channel, ions are used, and the eddy ion implantation 28 is performed on the substrate at a concentration of 1 + 15 ions / cm 2 or less for B + or BF2 +.

도 2c에 있어서, 이와 같은 기판(21)의 전면에 질화막 또는 산화막을 증착한 다음 이를 에치백하여 게이트측벽(29)을 형성한다.In FIG. 2C, a nitride film or an oxide film is deposited on the entire surface of the substrate 21 and then etched back to form the gate sidewall 29.

그리고 게이트 패턴의 상부 및 측면에 형성된 세미 엘디디층(31) 및 게이트측벽(29)을 마스크로 이용한 이온주입을 실시하여 소스/드레인을 형성한다. 이때 n 채널인 경우에는 P+ 혹은 As+ 이온을 사용하고, p 채널인 경우에는 B+ 또는 BF2+를 사용하여 1E17 ions/㎠ 이하의 농도로 기판에 소스/드레인 형성용 이온주입(30)을 실시한다.A source / drain is formed by performing ion implantation using the semi LED layer 31 and the gate side wall 29 formed as a mask on the top and side surfaces of the gate pattern. In this case, P + or As + ions are used in the case of n-channel, and source / drain formation ion implantation 30 is performed on the substrate at a concentration of 1E17 ions / cm 2 or less using B + or BF2 + in the case of p-channel.

그리고 층간절연층(도시안함)을 형성한 다음 소스/드레인전극을 연결하는 금속배선(도시 안함)을 형성한 다음 보호막으로 패시베이션층(도시안함)을 형성한다.Then, an interlayer insulating layer (not shown) is formed, a metal wiring (not shown) connecting source / drain electrodes is formed, and then a passivation layer (not shown) is formed of a protective film.

따라서, 본 발명은 게이트라인을 형성한 다음 마스킹작업을 통해 할로이온주입을 한 다음 박막을 형성하여 게이트라인 측면에 세미 측벽을 형성하고 기판의 노출부위에는 채널링효과를 억제하는 이온주입 방해층을 형성한 다음이온주입을 실시하여 이미 형성된 할로 이온주입 부위의 바깥 지역에 이온주입층을 형성하므로서 쇼트채널효과 억제효과와 졍션누설전류를 감소시키는 장점이 있고, 또한 엘디디 형성 이온주입이나 고농도의 소스/드레인 형성을 위한 이온주입시 채널링 효과를 억제하는 장점이 있다.Accordingly, the present invention forms a gate line and then implants a halo ion through a masking operation and then forms a thin film to form semi-sidewalls on the side of the gate line and to form an ion implantation barrier layer on the exposed portion of the substrate to suppress channeling effects. Then, ion implantation is performed to form an ion implantation layer outside the previously formed halo ion implantation site, thereby reducing the short channel effect and reducing the cushion leakage current, and in addition to the LED formation ion implantation or high concentration source / There is an advantage of suppressing the channeling effect during ion implantation for forming the drain.

Claims (5)

활성영역과 필드영역을 격리한 제 1 도전형 반도체기판상의 소정부위에 게이트절연막/게이트/캡절연층으로 이루어진 게이트 패턴을 형성하는 단계와,Forming a gate pattern formed of a gate insulating film / gate / cap insulating layer on a predetermined portion of the first conductive semiconductor substrate insulated from the active region and the field region; 상기 게이트 하단 모서리 부위의 상기 기판에 제 1 도전형 불순물 제 1 이온층을 형성하는 단계와,Forming a first conductivity type impurity first ion layer on the substrate at the lower edge portion of the gate; 노출된 상기 기판 표면 및 상기 게이트 패턴의 표면 및 측면에 제 1 절연막을 형성하는 단계와,Forming a first insulating film on the exposed surface of the substrate and on the surface and side surfaces of the gate pattern; 상기 기판의 전면에 저농도로 제 2 도전형 불순물 이온주입하는 단계와,Implanting second conductivity type impurity ions at low concentration onto the front surface of the substrate; 상기 게이트 패턴 측면에 형성된 상기 절연막 표면에 제 2 절연막으로 이루어진 게이트측벽을 형성하는 단계와,Forming a gate side wall formed of a second insulating film on a surface of the insulating film formed on the side of the gate pattern; 상기 기판의 전면에 고농도로 제 2 도전형 불순물 이온주입하는 단계와,Implanting second conductivity type impurity ions into the front of the substrate at a high concentration; 상기 불순물 이온을 확산시키는 단계로 이루어진 반도체장치의 제조방법.And diffusing the impurity ions. 청구항 1에 있어서, 상기 제 1 이온층은 상기 기판 표면과 경사지게 이온주입을 5E14 ions/㎠ 이하의 농도를 갖도록 실시하여 형성하는 것이 특징인 반도체장치의 제조방법.The method of claim 1, wherein the first ion layer is formed by performing ion implantation at an inclination angle with the surface of the substrate to have a concentration of 5E14 ions / cm 2 or less. 청구항 1에 있어서, 상기 게이트는 불순물이 도핑된 폴리실리콘과 금속층으로 이루어진 적층구조를 갖는 것이 특징인 반도체장치의 제조방법.The method of claim 1, wherein the gate has a laminate structure of a polysilicon doped with an impurity and a metal layer. 청구항 1에 있어서, 상기 제 1 절연막은 산화막, 질화막 또는 SiON막을 사용하여 700 Å 이하로 형성하는 것이 특징인 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the first insulating film is formed to be 700 Å or less using an oxide film, a nitride film, or a SiON film. 청구항 1 에 있어서, 상기 제 1 도전형은 p 형이고 상기 제 2 도전형은 n 형인 것이 특징인 반도체장치의 제조방법.The method according to claim 1, wherein the first conductivity type is p type and the second conductivity type is n type.
KR1019980016694A 1998-05-11 1998-05-11 Manufacturing Method of Semiconductor Device KR100271801B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980016694A KR100271801B1 (en) 1998-05-11 1998-05-11 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980016694A KR100271801B1 (en) 1998-05-11 1998-05-11 Manufacturing Method of Semiconductor Device

Publications (2)

Publication Number Publication Date
KR19990084727A KR19990084727A (en) 1999-12-06
KR100271801B1 true KR100271801B1 (en) 2000-11-15

Family

ID=19537193

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980016694A KR100271801B1 (en) 1998-05-11 1998-05-11 Manufacturing Method of Semiconductor Device

Country Status (1)

Country Link
KR (1) KR100271801B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057381A (en) * 1999-12-22 2001-07-04 박종섭 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR19990084727A (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
JPH10200110A (en) Semiconductor device and manufacture of the same
KR100391959B1 (en) Semiconductor apparatus and method of manufacture
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
KR100608368B1 (en) Method of manufacturing semiconductor device
US20070105295A1 (en) Method for forming lightly-doped-drain metal-oxide-semiconductor (LDD MOS) device
KR20010016838A (en) Method of forming impurity doped region of MOS transistor
KR100271801B1 (en) Manufacturing Method of Semiconductor Device
KR100463044B1 (en) Method of manufacturing semiconductor device
JP2845186B2 (en) Semiconductor device and manufacturing method thereof
KR100519507B1 (en) Method for Forming Semi-conductor Device
KR100431324B1 (en) Manufacturing Method of Semiconductor Device
KR100333356B1 (en) A method of fabricating a semiconductor device
KR100311177B1 (en) A method of fabricating semiconductor device
KR100269280B1 (en) Manufacture method of ldd type mos transistor
US6936517B2 (en) Method for fabricating transistor of semiconductor device
KR20010065915A (en) A method for forming dual-implanted polysilicon gate of semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100254045B1 (en) Method for manufacturing semiconductor device
KR100613341B1 (en) Semiconductor device and method of manufacturing the same
US20030222289A1 (en) Semiconductor device and method of fabricating the same
KR100772115B1 (en) Method of manufacturing mosfet device
KR20010045183A (en) Method for manufacturing dual gate electrodes of CMOS device
KR100679810B1 (en) Semiconductor device prohibited from penetration of boron, and manufacturing method thereof
KR100223994B1 (en) N type field effect metal oxide semiconductor device and manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100726

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee