JPS60130136A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS60130136A
JPS60130136A JP23740683A JP23740683A JPS60130136A JP S60130136 A JPS60130136 A JP S60130136A JP 23740683 A JP23740683 A JP 23740683A JP 23740683 A JP23740683 A JP 23740683A JP S60130136 A JPS60130136 A JP S60130136A
Authority
JP
Japan
Prior art keywords
film
oxide film
region
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23740683A
Other languages
Japanese (ja)
Inventor
Michio Komatsu
小松 理夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23740683A priority Critical patent/JPS60130136A/en
Publication of JPS60130136A publication Critical patent/JPS60130136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain an IC element having high resistance to radiation by a method in which, before separating an MIS-type IC element, the periphery of the element is surrounded by a thick insulation film, a thin gate oxide film is provided in an element forming region, an annular shield electrode is formed on the gate oxide film, and a region having the same type of conductance with the substrate and a high impurity concentration is provided under the shield electrode through the gate oxide film. CONSTITUTION:A thin SiO2 film 33 is adhered on the surface of a P type Si substrate 31. Ions are implanted into the periphery of the substrate to form a P<+> type region 32. An Si3N4 film 35 is then provided on the film 33 such that the both ends thereof overlap with the regions 32. The substrate is heat treated to change the uppermost layer of the region 32 into a thick field SiO2 film 36, while the inner end of the region 32 is caused to penetrate in the active region. After that, the film 35 required no more is removed and the film 33 connected to the film 36 is renewed to a gate oxide film 33', on which an annular shield electrode 37 is provided and covered with an SiO2 film connected to the films 36 and 33'. A gate electrode 38 is then adhered on the electrode 37. In such a manner, an IC element resistant to ionizing radiation can be obtained.

Description

【発明の詳細な説明】 本発明はMIS型半導体集積回路装置の素子分離手段に
関し、とくに対称保柱の同程装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element isolation means for an MIS type semiconductor integrated circuit device, and more particularly to a symmetrical support device.

一般にNch−MIS 型トランジスタは第1図(a)
の平面配置図および同図(b)の断面図に示したような
構造を持っておシ、ソース17およびドレイン16は周
囲の厚い分離絶縁膜(フィールド酸化膜)12とゲート
電極材14の両方をマスクとしてイオン注入によって自
己整合的に形成される。従ってゲート電極下の活性領域
、即ちチャンネル領域15はフィールド酸化膜12の端
部と境を接している。このような構造のNCh トラン
ジスタに電離性放射線(γ線、X線、電子線、陽子線等
)を照射すると、素子間分離耐圧、即ち寄生フィールド
トランジスタの閾値電圧の低下が起とシフイールド酸化
膜下にチャンネル形成が起こるようになるため、ドレイ
ン−ソース間に電圧を印加した場合第1図(a)の矢印
で示したようにリーク電流が流 ゛れトランジスタ特性
が劣化する。また、素子間分離耐圧の低下によシ他のト
ランジスタへのリーク電流も生じる為、回路を構成した
場合に特性の劣化や、其の回路が相補型MIS構成であ
る場合にば、リーク電流が引き金となってラッチアップ
現象が生じたシするという欠点を有していた。
In general, Nch-MIS type transistors are shown in Figure 1(a).
The source 17 and the drain 16 are connected to both the surrounding thick isolation insulating film (field oxide film) 12 and the gate electrode material 14. is formed in a self-aligned manner by ion implantation using as a mask. Therefore, the active region under the gate electrode, ie, the channel region 15, borders on the edge of the field oxide film 12. When an NCh transistor with such a structure is irradiated with ionizing radiation (gamma rays, As a result, when a voltage is applied between the drain and the source, a leakage current flows as shown by the arrow in FIG. 1(a), deteriorating the transistor characteristics. In addition, leakage current to other transistors also occurs due to a decrease in isolation voltage between elements, so if the circuit is configured, characteristics may deteriorate, or if the circuit has a complementary MIS configuration, leakage current may This had the disadvantage of causing a latch-up phenomenon.

上述のような電離性放射性照射による素子間分離耐圧の
低下は、照射時に酸化膜中に発生する電子−正孔対のう
ち正孔が酸化膜一基板界面の捕獲準位に捕えられ蓄積さ
れることによって生じるものであるが、蓄積される電荷
量は酸化膜が厚いほど太きい。一般的にMOS(金属−
酸化膜一半導体)構造のトランジスタの閾値電圧の放射
線照射後の変動量ΔvTil−1,、酸化膜厚をtox
 とすると、おおよそ次式の関係で表わされることが知
られている。
The above-mentioned decrease in isolation voltage due to ionizing radiation irradiation is due to the fact that holes among the electron-hole pairs generated in the oxide film during irradiation are captured and accumulated in the trap level at the oxide film-substrate interface. However, the thicker the oxide film, the greater the amount of charge accumulated. Generally MOS (metal-
The amount of variation after radiation irradiation in the threshold voltage of a transistor with an oxide film-semiconductor structure is ΔvTil-1, and the oxide film thickness is tox
It is known that the relationship is approximately expressed by the following equation.

△vT ■t0X′4 (1) 従って、閾値電圧の変動はゲート酸化膜でもフィールド
酸化膜でも有るものの、従来ゲート酸化膜の10〜20
倍もの厚さを持つフィールド酸化膜の閾値電圧変動の方
が回路機能維持の点からより重要な問題となっていた。
△vT ■t0X'4 (1) Therefore, although the threshold voltage varies with both gate oxide film and field oxide film, it is
The threshold voltage fluctuation of the field oxide film, which is twice as thick, has become a more important issue from the standpoint of maintaining circuit functionality.

本発明は、以上の!うな状況を鑑みて行なわれたもので
あり、素子分離領域をゲート酸化膜の下にまで延ばすこ
とによシ、上記の欠点を解決し、耐放射線性を向上させ
た半導体集積回路装置を提供するものである。
The present invention covers the above! This was done in view of the above situation, and by extending the element isolation region below the gate oxide film, the above-mentioned drawbacks are solved and a semiconductor integrated circuit device with improved radiation resistance is provided. It is something.

以下、本発明の実施例について図面を用いて駒間する。Hereinafter, embodiments of the present invention will be explained using drawings.

第2図は本発明の実施例を表わすもので、Ca1図はM
IS)ランジスタの平面配置図、(b)図は(a)図の
A−A’に沿って切った断面図を示している。
FIG. 2 shows an embodiment of the present invention, and Ca1 diagram is M
IS) Planar arrangement of transistors, (b) is a sectional view taken along line AA' in (a).

図で21は半導体基板、22はフィールド酸化膜、23
はゲート酸化膜、24はゲート電極材、25は素子分離
用の高濃度不純物領域であシ、ソース、ドレイン領域2
7.28は素子分離耐圧低下防止用の遮蔽電極26と其
の上のゲート電極24をマスクとして自己整合的に形成
される。ゲート酸化膜上に形成されるとの遮蔽電極26
と其の下の高濃度不純物領域25とが、放射線照射時に
膨大な閾値電圧変動が生じてチャンネルの出来るフィー
ルド酸化膜下の領域とトランジスタのソース、ドレイン
領域27.28とを分離する役目を果たすことになる。
In the figure, 21 is a semiconductor substrate, 22 is a field oxide film, and 23
2 is a gate oxide film, 24 is a gate electrode material, 25 is a high concentration impurity region for element isolation, and source and drain regions 2
7.28 is formed in a self-aligned manner using the shield electrode 26 for preventing a drop in element isolation breakdown voltage and the gate electrode 24 thereon as a mask. A shield electrode 26 is formed on the gate oxide film.
and the high-concentration impurity region 25 thereunder serve to separate the region under the field oxide film, where a channel is formed due to a huge threshold voltage fluctuation during radiation irradiation, from the source and drain regions 27 and 28 of the transistor. It turns out.

何となれば、遮幣電極下の酸化膜厚はフィールド酸化膜
厚よシ薄いので前述の(1)式に示した通シ放射線照射
による閾値変動が小さいからである。勿論、放射線照射
後の当刻部の閾値電圧は遮蔽電極下にチャンネルリーク
が生じないくらい充分大きくしておく必要があるが、遮
蔽電極が基板と同電位になるよう配線接続をしておけば
、放射線照射による閾値変動量が初期設定値の大きさよ
りも小さい限シチャンネル形成は行なわれず素子間分離
の機能を果たすから安全である。
This is because the thickness of the oxide film under the shield electrode is thinner than the thickness of the field oxide film, so that the fluctuation in the threshold value due to continuous radiation irradiation as shown in equation (1) above is small. Of course, the threshold voltage of the current part after radiation irradiation needs to be high enough to prevent channel leakage from occurring under the shield electrode, but if the wiring is connected so that the shield electrode has the same potential as the substrate. As long as the amount of threshold variation due to radiation irradiation is smaller than the initial setting value, channel formation is not performed and the function of isolation between elements is achieved, so it is safe.

従って素子分離用の高濃度不純物領域25の不純物濃度
を極端に高く、例えば1010〜1020arL−s程
度を極端に高く、例えば1010〜1020CrIL 
程度にしなくても良いためプロセス的な自由度が大きく
製造しやすい。また素子分離用の高濃度不純物領域25
をソース、ドレイン領域と1部重なる構造とすることに
よシ、放射線照射時の遮蔽電極近傍のゲート電極下での
ソース、ドレイン間リークを防止している。なお、第2
図において遮蔽電極26はゲート酸化膜23上に形成さ
れているが、ゲート酸化膜とフィールド酸化膜22との
上にまたがっても効果は同じである。
Therefore, the impurity concentration of the high concentration impurity region 25 for element isolation is extremely high, for example, about 1010 to 1020 arL-s, for example, 1010 to 1020 CrIL.
Since it does not need to be made to a certain degree, there is a large degree of freedom in the process and it is easy to manufacture. Also, a high concentration impurity region 25 for element isolation.
By having a structure that partially overlaps with the source and drain regions, leakage between the source and drain under the gate electrode near the shield electrode during radiation irradiation is prevented. In addition, the second
In the figure, the shield electrode 26 is formed on the gate oxide film 23, but the same effect can be obtained even if it straddles the gate oxide film and the field oxide film 22.

第3図は本実施例のNch MOS l・ランジスタの
製造方法の一例を示したものである。まずP型半導体基
板31の上に数100A程度の薄い酸化膜23を成長さ
せ、感光性レジストを塗布した後にフォトリソグラフィ
技術を用いてレジストのバターニングを行ない、欺かる
レジスト34をマスクとしてイオン注入を行なうことに
よシ基板内に基板と同導電型の高不純物濃度領域32を
形成する。この領域は寄生フィールドトランジスタの閾
値電圧を上げる為のものであると同時に後の工程で形成
される遮蔽電極部の分離耐圧を上げる為のものである。
FIG. 3 shows an example of a method for manufacturing the Nch MOS l transistor of this embodiment. First, a thin oxide film 23 of about several hundred amps is grown on the P-type semiconductor substrate 31, a photosensitive resist is applied, the resist is patterned using photolithography, and ions are implanted using the deceptive resist 34 as a mask. By performing this step, a high impurity concentration region 32 having the same conductivity type as the substrate is formed in the substrate. This region is used to increase the threshold voltage of the parasitic field transistor and at the same time to increase the isolation breakdown voltage of the shield electrode portion to be formed in a later step.

(第3図(a))次にレジストを剥離した後、薄い酸化
膜33上に1000〜zoooX程度の厚さの窒化膜を
成長させ、フォトリングラフィ技術を用いて窒化膜のバ
ターニングを行ない第3図(b)の構造を得る。ここで
注意する点は素子分離用の高不純物濃度領域32に重な
るように窒化膜35が形成されることであシ、引き続く
長時間の酸化工程によって0.5〜1μm程度のフィー
ルド酸化膜を形成すると、第3図(C)に示したように
高不純物濃度領域は窒化膜35の下の活性領域、いわゆ
る拡散層領域にも残ることになる。次に、窒化膜を除去
し、遮蔽電極37を高不純物濃度の拡散層領域上に形成
するが、これは第2図(a)に示したように拡散層領域
の周囲を取シ囲むような形状に作る。この際、先に述べ
たように遮蔽電極の周囲は厚いフィールド酸化膜と重な
っても重ならなくても差し支えない。段差を極力抑える
ため遮蔽電極は低抵抗性の材料を薄く付けることが望ま
しいが、例えば2000〜5000A 程度の厚さの多
結晶シリコンでも良い。(第3図(d))この後、薄い
酸化膜33を除去し、再度数100A程度の厚さのゲー
ト酸化膜33′を成長させてゲート電極を形成すると第
3図(e)の構造が得られる。さらに、遮蔽電極材、ゲ
ート電極材をマスクとしてイオン注入にLシソース、ド
レインの形成を行なうと、第2図に示したNCh トラ
ンジスタ構造が出来る。
(FIG. 3(a)) Next, after peeling off the resist, a nitride film with a thickness of about 1000 to zoooX is grown on the thin oxide film 33, and the nitride film is buttered using photolithography technology. The structure shown in FIG. 3(b) is obtained. The point to note here is that the nitride film 35 is formed so as to overlap the high impurity concentration region 32 for element isolation, and a field oxide film of about 0.5 to 1 μm is formed by the subsequent long oxidation process. Then, as shown in FIG. 3C, the high impurity concentration region remains in the active region under the nitride film 35, that is, the so-called diffusion layer region. Next, the nitride film is removed and a shielding electrode 37 is formed on the diffusion layer region with a high impurity concentration, but this electrode 37 is formed so as to surround the diffusion layer region as shown in FIG. 2(a). Make it into a shape. At this time, as described above, the periphery of the shield electrode may or may not overlap with the thick field oxide film. In order to suppress the step difference as much as possible, it is desirable that the shield electrode be made of a thin material with low resistance, but it may be made of polycrystalline silicon having a thickness of about 2000 to 5000 Å, for example. (Fig. 3(d)) After this, the thin oxide film 33 is removed and a gate oxide film 33' with a thickness of several hundred amps is grown again to form a gate electrode, resulting in the structure shown in Fig. 3(e). can get. Furthermore, by performing ion implantation to form an L source and a drain using the shield electrode material and gate electrode material as masks, the NCh transistor structure shown in FIG. 2 is obtained.

尚上記の実施例に於いてはゲート絶縁膜として酸化膜を
用いる場合を示したが、他の絶縁膜を用いても良いこと
は明らカ・である。ぼた、遮蔽電極は基板と常に同電位
となるように配涛さhることか望ましいが、フローディ
ングにした場合でも(1)式からある程度の効果を得る
ことができる。さらに上記の説明では、■)型半専体基
板上にNCII l・ランジスタを形成する方法を示し
たが、N型半導体基板上にP型不純物層(P−ウェル)
を形成し、その中にNCII )ランジスクを形成する
場合でも適用可能である。
In the above embodiment, an oxide film is used as the gate insulating film, but it is obvious that other insulating films may be used. It is desirable that the shield electrode and the shield electrode are always at the same potential as the substrate, but even if they are floating, a certain degree of effect can be obtained from equation (1). Furthermore, in the above explanation, a method of forming an NCII l transistor on a semi-dedicated (■) type substrate was shown, but a P type impurity layer (P-well) was
It is also applicable to the case where an NCII) run disk is formed within the NCII.

以上説明したよう例、本発明は遮f電極7i:剤い酸化
膜上に形成し、且つ遮蔽電極下の基板領域を高不純物濃
度領域とすることにより、電離性放射線照射時のNCh
 トランジスタの素子分離耐圧の低下を抑制することを
可能としたものであり、耐放射線性に優れたMIS型半
導体集積回路装置を実現するものである。特に、NCh
 トランジスタ両方を同一基板上に形成して回路を構成
する相補型MI8半導体集積回路装置に於いて本実施例
を適用した場合には、素子間分離耐圧低下によって生ず
るリーク電流が引き金となって生ずる機構のラッチアッ
プを防止する効果があシ、本発明が非常に有効となる。
As explained above, in the present invention, the shielding electrode 7i is formed on a hard oxide film, and the substrate region under the shielding electrode is made into a high impurity concentration region.
This makes it possible to suppress a decrease in the element isolation breakdown voltage of transistors, and realizes an MIS type semiconductor integrated circuit device with excellent radiation resistance. In particular, NCh
When this embodiment is applied to a complementary MI8 semiconductor integrated circuit device in which both transistors are formed on the same substrate to form a circuit, a mechanism occurs that is triggered by leakage current caused by a drop in isolation voltage between elements. This invention is very effective in preventing latch-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)はそれぞれ従来のNch M I 
S トランジスタの平面配置図および断面図、第2図(
a)(b)はそれぞれ本発明の一実施例のトランジスタ
の平面配置図および断面図、第3図(a)乃至(e)は
各々本発明のトランジスタの製造プロセスの工程断面図
の一例を示したものである。 11、21・・・・・・半導体基板、12.22・・・
・・・フィールド絶縁膜、13.23・・・・・・ゲー
ト絶縁膜、14、24・・・・・・ゲート雷,極、15
.25・・・・・・素子分離用高濃度不純物領域、16
,17・・・・・・ソース、ドレイン領域、26・・・
・・・遮蔽量,極、27.28・・・・・・ソース、ド
レイン領域、31・・・・・・半導体基板、32・・・
・・・素子分離用高濃度不純物領域、33・・・・・・
ゲート酸化膜、34・・・・・・感光性レジスト、35
・・・・・・窒化膜、36・・・・・・フィールド酸化
膜、37・・・・・・遮蔽電極、38・・・・・・ゲー
ト電極。 (o、)″ (b) 第1 ゾ 第2 図 (〔L) 第3 図
Figures 1 (a) and (b) show the conventional Nch MI
Planar layout and cross-sectional view of S transistor, Figure 2 (
a) and (b) respectively show a plan layout diagram and a cross-sectional view of a transistor according to an embodiment of the present invention, and FIGS. It is something that 11, 21... Semiconductor substrate, 12.22...
...Field insulating film, 13.23...Gate insulating film, 14, 24...Gate lightning, pole, 15
.. 25...High concentration impurity region for element isolation, 16
, 17...source, drain region, 26...
... Shielding amount, pole, 27.28 ... Source, drain region, 31 ... Semiconductor substrate, 32 ...
...High concentration impurity region for element isolation, 33...
Gate oxide film, 34...Photosensitive resist, 35
. . . Nitride film, 36 . . . Field oxide film, 37 . . . Shield electrode, 38 . . . Gate electrode. (o,)'' (b) 1st zo 2nd figure ([L) 3rd figure

Claims (2)

【特許請求の範囲】[Claims] (1)厚い絶縁膜に周囲を取シ囲まれたMIS(金属−
絶縁膜一半導体)型構造トランジスタ素子を複数個有し
、素子間分離手段とじてソース、ドレイン領域の周囲の
薄い酸化膜上に形成された遮蔽電極および、当該電極の
下の基板と同導電型の高濃度不純物領域を含むことを特
徴とする半導体集積回路装置。
(1) MIS (metallic) surrounded by a thick insulating film
It has a plurality of insulating film-semiconductor type transistor elements, and has a shielding electrode formed on a thin oxide film around the source and drain regions as an element isolation means, and a shielding electrode of the same conductivity type as the substrate under the electrode. A semiconductor integrated circuit device comprising a high concentration impurity region.
(2)遮蔽電極が基板と同電位になるように接続が行な
われていることを特徴とする特許請求の範囲第(1)項
記載の半導体集積回路装置。
(2) The semiconductor integrated circuit device according to claim (1), wherein the shield electrode is connected to the substrate so that it has the same potential.
JP23740683A 1983-12-16 1983-12-16 Semiconductor integrated circuit device Pending JPS60130136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23740683A JPS60130136A (en) 1983-12-16 1983-12-16 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23740683A JPS60130136A (en) 1983-12-16 1983-12-16 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60130136A true JPS60130136A (en) 1985-07-11

Family

ID=17014912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23740683A Pending JPS60130136A (en) 1983-12-16 1983-12-16 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60130136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054367A (en) * 1992-03-13 2000-04-25 Texas Instruments Incorporated Ion implant of the moat encroachment region of a LOCOS field isolation to increase the radiation hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054367A (en) * 1992-03-13 2000-04-25 Texas Instruments Incorporated Ion implant of the moat encroachment region of a LOCOS field isolation to increase the radiation hardness

Similar Documents

Publication Publication Date Title
JP3954140B2 (en) Semiconductor device and manufacturing method thereof
JPS59121976A (en) Semiconductor device
JPH0265254A (en) Semiconductor device
JPH0575187B2 (en)
JPS60130136A (en) Semiconductor integrated circuit device
JPS62262462A (en) Semiconductor device
JP2001077356A (en) Vertical mos semiconductor device
JPS61164265A (en) Mis type semiconductor integrated circuit device
JPH07106571A (en) Semiconductor device
JPS60206040A (en) Insulation isolator for semiconductor ic
JPS59224141A (en) Manufacture of semiconductor device
JP2826024B2 (en) Method for manufacturing MOS transistor
JPH05259450A (en) Semiconductor device and manufacture thereof
JPH0422345B2 (en)
JP2676769B2 (en) Semiconductor device
JPS58139471A (en) Mis field effect transistor
JP3279827B2 (en) Method for manufacturing MOS type semiconductor device
JP2970376B2 (en) Method of manufacturing complementary semiconductor device
JPS625654A (en) Semiconductor integrated circuit device and manufacture thereof
JPS60113456A (en) Ic device
JPS62122174A (en) Field effect semiconductor device and manufacture thereof
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPS5837989B2 (en) field effect semiconductor device
JPH07183498A (en) Semiconductor device
JPH03120870A (en) Insulated-gate type semiconductor device