JPS627148A - Complementary semiconductor device and manufacture thereof - Google Patents
Complementary semiconductor device and manufacture thereofInfo
- Publication number
- JPS627148A JPS627148A JP60144569A JP14456985A JPS627148A JP S627148 A JPS627148 A JP S627148A JP 60144569 A JP60144569 A JP 60144569A JP 14456985 A JP14456985 A JP 14456985A JP S627148 A JPS627148 A JP S627148A
- Authority
- JP
- Japan
- Prior art keywords
- region
- well
- source
- substrate
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000000295 complement effect Effects 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 230000003647 oxidation Effects 0.000 claims abstract description 11
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims 4
- 230000003071 parasitic effect Effects 0.000 abstract description 9
- 238000011109 contamination Methods 0.000 abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0927—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は相補型半導体装置及びその製造方法に関し、特
に放射線を浴びる環境下で使用されるCMO3型半導体
装置及びその製造方法に係わる。 ′(発明の技
術的背景〕
従来、nチャネルMOSトランジスタにおいては、放D
Aiを浴びることにより奇生MO8反転リーク電流が生
じる。そこで、このリーク電流を低減するため、第5図
に示すnチャネルMOSトランジスタが提案されている
(T、 V、 N0rdStrO1、and F、 W
、 5exton、”A THREE MlCRO
N 0MO8TECHNOLOGYFORCUST
OM HIGHRELIBILITY AND
RADIATION )−IARDEND
INTEGRATED CIRCUITS″
、 I E3.1983 Cu5tol I n
tearatedC1rcuits Con4enc
e、May (1983)) 。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a complementary semiconductor device and a method for manufacturing the same, and more particularly to a CMO3 semiconductor device used in an environment exposed to radiation and a method for manufacturing the same. (Technical Background of the Invention) Conventionally, in an n-channel MOS transistor, the
Exposure to Ai causes an anomalous MO8 inversion leakage current. Therefore, in order to reduce this leakage current, an n-channel MOS transistor shown in FIG. 5 has been proposed (T, V, N0rdStrO1, and F, W
, 5exton, “A THREE MlCRO
N 0MO8TECHNOLOGY FORCUST
OM HIGHRELIBILITY AND
RADIATION )-IARDEND
INTEGRATED CIRCUITS
, I E3.1983 Cu5tol In
tearatedC1rcuits Con4enc
e, May (1983)).
図中の1は、P−型のシリコン基板である。この基板1
の表面にはフィールド酸化膜2が形成さ−れている。こ
のフィールド酸化112で囲まれた素子領域には、N+
型のソース、ドレイン領域3.4が形成されている。前
記フィールド酸化膜2の下でかつ素子領域に近接した領
域には、寄生リーク防止用のP+領域5が形成されてい
る。このP+領域5はフィールド酸化膜2の形成前に形
成する。前記素子領域上には、ゲート酸化116を介し
て多結晶シリコンからなるゲート電極7がフィールド酸
化II!2上に延出するように形成されている。1 in the figure is a P-type silicon substrate. This board 1
A field oxide film 2 is formed on the surface. In the device region surrounded by this field oxide 112, N+
Type source and drain regions 3.4 are formed. A P+ region 5 for preventing parasitic leakage is formed under the field oxide film 2 and in a region close to the element region. This P+ region 5 is formed before field oxide film 2 is formed. On the element region, a gate electrode 7 made of polycrystalline silicon is formed via a gate oxide 116 via field oxidation II! It is formed so as to extend over 2.
(背景技術の問題点〕
しかしながら、従来技術によれば、次に示す問題を有す
る。(Problems of the Background Art) However, the prior art has the following problems.
■、奇生リーク防止用のP+領域5を形成するために、
マスク合せ、イオン注入工程が必要であり、通常のCM
O8L−8I工程より工程数が増える。■ To form the P+ region 5 for preventing accidental leaks,
Requires mask alignment and ion implantation process, compared to normal CM
The number of steps is increased compared to the O8L-8I process.
■、フィールド酸化[12の形成前にP+領域5を形成
するため、フィールド酸化炉が汚染される。(2) Field oxidation [Since the P+ region 5 is formed before the formation of the field oxidation furnace 12, the field oxidation furnace is contaminated.
本発明は上記事情に鑑みてなされたもので、放射線の照
射による寄生MO8反転リークを低減できるとともに、
工程数が少なくかつ炉の汚染が少ない半導体装置及びそ
の製造方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and is capable of reducing parasitic MO8 inversion leakage caused by radiation irradiation, and
It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that requires fewer steps and less contamination of a furnace.
本願筒1の一発明は、第1導電型の半導体基板と、イン
領域と、同素子領域でかつチャネル冥方向に設けられた
高濃度不純物層と、同素子領域上にゲート酸化膜を介し
て設けられたゲート電極とを具備することを特徴とする
もので、前記目的を達成することを図ったものである。One invention of the present invention includes a semiconductor substrate of a first conductivity type, an in region, a high concentration impurity layer provided in the same element region and in the direction of the channel, and a gate oxide film provided on the same element region. The device is characterized in that it includes a gate electrode provided therein, and is intended to achieve the above object.
本願筒2の発明は、高濃度不純物層を、nチャネルMo
Sトランジスタのソース、ドレイン領域形成用のn型不
純物を同じ量導入することにより同時に形成することを
特徴とし、これにより本願筒1の発明と同様な効果を得
ることを図ったことを骨子とする。The invention of cylinder 2 of the present application has a high concentration impurity layer formed of n-channel Mo.
The main feature is that the source and drain regions of the S transistor are formed simultaneously by introducing the same amount of n-type impurities, thereby achieving the same effect as the invention of the present invention. .
以下、本発明の一実施例に係るCMOSトランジスタを
第1因(a)〜(C)、第2図〜第4図を参照して説明
する。ここで、第1図は工程断面図、第2図は第1図(
b)のnチャネルMOSトランジスタ領域の平面図、第
3図は第1図(C)のnチャネルMOSトランジスタ領
域の平面図、第4図は第1図(C)のnチャネルMOS
トランジスタ領域の斜視図を夫々示す。Hereinafter, a CMOS transistor according to an embodiment of the present invention will be described with reference to factors 1 (a) to (C) and FIGS. 2 to 4. Here, Fig. 1 is a process cross-sectional view, and Fig. 2 is Fig. 1 (
b) A plan view of the n-channel MOS transistor region, FIG. 3 is a plan view of the n-channel MOS transistor region of FIG. 1(C), and FIG. 4 is a plan view of the n-channel MOS transistor region of FIG. 1(C).
3A and 3B respectively show perspective views of transistor regions.
まず、N型のシリコン基板21の表面にPつエル22を
形成した後、前記基板21、Pウェル22上に通常のL
OCO8法によりフィールド酸化膜23を形成した。つ
づいて、これらフィールド酸イヒ膜23で囲まれた素子
領域に上にゲート酸化膜24を形成した(第1図(a)
図示)。First, after forming a P well 22 on the surface of an N type silicon substrate 21, a normal L well 22 is formed on the substrate 21 and the P well 22.
A field oxide film 23 was formed by the OCO8 method. Subsequently, a gate oxide film 24 was formed on the device region surrounded by these field oxide films 23 (see FIG. 1(a)).
(Illustrated).
次に、レジストの形成、バターニングにより所定のマス
クを形成し、前記Pウェル22及び基板21に夫々異な
る導電型のチャネルイオン注入層25.26を夫々形成
した。更に、全面に多結晶シリコン層を形成した後、リ
ン拡散、バターニングを行なってnチャネルMOSトラ
ンジスタ用のゲート電極27、nチャネルMoSトラン
ジスタ用のゲート電極28を夫々形成した。しかる後、
pチャネル側の素子領域をマスクした状態でウェル22
にn型不純物を導入し、N+型のソース、ドレイン領域
2つ、30を形成した(第1図(b)及び第2図図示)
。なお、第1図(b)において、N+型のソース、ドレ
イン領域29.30.ゲート電極27によりnチャネル
MoSトランジスタが構成される。Next, a prescribed mask was formed by resist formation and patterning, and channel ion implantation layers 25 and 26 of different conductivity types were formed in the P well 22 and the substrate 21, respectively. Further, after forming a polycrystalline silicon layer on the entire surface, phosphorus diffusion and buttering were performed to form a gate electrode 27 for an n-channel MOS transistor and a gate electrode 28 for an n-channel MoS transistor, respectively. After that,
The well 22 is masked with the device region on the p-channel side.
An n-type impurity was introduced into the structure to form two N+ type source and drain regions 30 (as shown in FIG. 1(b) and FIG. 2).
. Note that in FIG. 1(b), N+ type source and drain regions 29, 30, . The gate electrode 27 constitutes an n-channel MoS transistor.
次に、全面にレジストを形成した後、pチャネル側の素
子領域に対応する部分及び後記P+領域に対応するレジ
スト部分を開口した。つづいて、このレジストをマスク
としてボロンを加速電圧40KeV、ドーズ12X10
”a’の条件でpチャネル側の素子領域及びPウェル2
2に導入し、基板21の表面にP0型のソース、ドレイ
ン領域31.32を形成すると同時に、Pウェル22に
P+領域33を形成した。ここで、P“領域33は、ソ
ース、ドレイン領域29.30の境界から3譚離れた場
所まで、形成されるとともに、フィールド酸化1I23
の素子領域の境界から素子領域の方に1mの領域まで形
成されている(第1図(C)及び第3図図示)。なお、
第1図(C)において、P+型のソース、ドレイン領域
31.32、及びゲート電極28よりpチャネルMOS
トランジスタが構成される。次いで、図示しないが、C
VD−8i02膜、8PSG膜の堆積、リフロー、コン
タクトの形成、A2配線の形成、PSG膜の堆積、パッ
ド開口を行ない、CMOSトランジスタを製造した。Next, after forming a resist over the entire surface, a portion of the resist corresponding to an element region on the p-channel side and a portion of the resist corresponding to a P+ region described later were opened. Next, using this resist as a mask, boron was applied at an acceleration voltage of 40KeV and a dose of 12X10.
Under the condition "a", the p-channel side element region and P well 2
P0 type source and drain regions 31 and 32 were formed on the surface of the substrate 21, and at the same time, a P+ region 33 was formed in the P well 22. Here, the P" region 33 is formed up to a location three degrees away from the boundary between the source and drain regions 29 and 30, and the field oxidation region 1I23
It is formed in an area of 1 m from the boundary of the element region toward the element region (as shown in FIGS. 1(C) and 3). In addition,
In FIG. 1(C), the p-channel MOS is
A transistor is configured. Next, although not shown, C
A CMOS transistor was manufactured by depositing a VD-8i02 film and an 8PSG film, reflowing, forming a contact, forming an A2 wiring, depositing a PSG film, and opening a pad.
しかして、本発明によれば、nチャネルMOSトランジ
スタ領域の奇生リーク防止用のP+領域33を、pチャ
ネルM−OSトランジスタのP“型□のソース、ドレイ
ン領域31.32の形成と同時に形成するため、従来と
比べ、P+領域33を形成するための特別なマスク合せ
、イオン注入工程が不要となり、工程数を減少できる。According to the present invention, the P+ region 33 for preventing accidental leakage in the n-channel MOS transistor region is formed at the same time as the P" type square source and drain regions 31 and 32 of the p-channel M-OS transistor are formed. Therefore, compared to the conventional method, special mask alignment and ion implantation steps for forming the P+ region 33 are not required, and the number of steps can be reduced.
また、P+領域33はフィールド酸化後に形成するため
、フィールド酸化炉の汚染を回避できる。Furthermore, since the P+ region 33 is formed after field oxidation, contamination of the field oxidation furnace can be avoided.
更に、P+領域33の存在により、放射線を浴びた場合
でも、寄生MO8反転リーク電流を低減できる。Furthermore, the presence of the P+ region 33 can reduce the parasitic MO8 inversion leakage current even when exposed to radiation.
末だ、上記実施例に係るCMOSトランジスタは、第1
図(−C)に示す如く、N型のシリコン基板21の表面
にPウェル22を設け、このPウェル22の素子領域に
N9型のソース、ドレイン領域29.30を設け、同素
子領域のフィールド酸 −化膜23のエツジ寄りでかつ
ソース、トレイン領域29.30の境界から適宜離間し
た場所まで寄生リーク防止用のP”領域33を設け、更
に同素子領域上にゲート酸化I!lI24を介してゲー
ト電極27を設けた構造となっている。従って、P+領
域33がフィールド酸化膜23の下方まで延出して形成
されていないため、従来の如<P”領域33をフィール
ド酸化の前に形成することなく、工程数の減少、フィー
ルド酸化炉の汚染の回避を図ることができる。また、P
+領域33の存在により寄生MO8反転リーク電流を防
止できる。Finally, the CMOS transistor according to the above embodiment is
As shown in FIG. A P'' region 33 for preventing parasitic leakage is provided close to the edge of the oxide film 23 and appropriately spaced from the boundary between the source and train regions 29 and 30, and is further provided with a gate oxide I!lI 24 over the same element region. Therefore, since the P+ region 33 is not formed extending below the field oxide film 23, the <P" region 33 is formed before field oxidation as in the conventional method. Without this, it is possible to reduce the number of steps and avoid contamination of the field oxidation furnace. Also, P
The presence of the + region 33 can prevent parasitic MO8 inversion leakage current.
なお、本発明に係るCMOSトランジスタは、第1図(
C)の構造のものに限らず、第6図〜第11図に示す構
造のものでも上記と同様な効果を得ることができる。こ
こで、上記実施例と同部材のものは同符号を付して説明
を省略する。第6図は、P1領域33のチャネル長方向
の長さをソース、ドレイン領1m!29.30の境界帯
りに多少短くした構造となっている。第7図は、P“領
域33のチャネル長方向の長さをソース、ドレイン領域
29.30の境界帯りに多少短くするとともに、P+領
R33をフィールド酸化膜23と素子領域の境界42か
ら素子領域側に多少ずらした構造のものである。第8図
は、第7図においてゲート電極27の一端をフィールド
酸化膜23上まで延出させず、素子領域の途中まで設け
た構造のものである。第9図は、第6図においてフィー
ルド酸化膜23の領域をソース、ドレイン領域29.3
0の境界方向に多少広げた構造である。第10図は、第
7図においてフィールド酸化1123の領域をソース、
ドレイン領域29.30の境界帯りに多少広げた構造と
なっている。第11図は、第8図においてフィールド酸
化膜23の領域をソース、ドレイン領域29.30の境
界帯りに多少広げた構造となっている。Note that the CMOS transistor according to the present invention is shown in FIG.
The same effect as described above can be obtained not only with the structure shown in C) but also with the structures shown in FIGS. 6 to 11. Here, the same members as those in the above embodiment are given the same reference numerals, and the description thereof will be omitted. In FIG. 6, the length of the P1 region 33 in the channel length direction is 1 m for the source and drain regions! It has a structure that is somewhat shortened to the boundary band of 29.30. In FIG. 7, the length of the P" region 33 in the channel length direction is somewhat shortened to the boundary zone between the source and drain regions 29, 30, and the P+ region R33 is extended from the boundary 42 between the field oxide film 23 and the device region to the device region. 8 shows a structure in which one end of the gate electrode 27 in FIG. 7 is not extended to the top of the field oxide film 23, but is provided halfway into the element region. 9, the region of the field oxide film 23 in FIG. 6 is replaced with the source and drain regions 29.3.
It has a structure that is slightly expanded in the direction of the 0 boundary. FIG. 10 shows the area of field oxide 1123 in FIG.
It has a structure in which the boundary zone between the drain regions 29 and 30 is slightly widened. FIG. 11 has a structure in which the region of the field oxide film 23 in FIG. 8 is slightly expanded to the boundary zone between the source and drain regions 29 and 30.
以上詳述した如く本発明によれば、放射線の照射による
寄生MO8反転リークを低減できるとともに、工程数が
少なくかつ炉の汚染が少ない高信頼性の相補型半導体装
置及びその製造方法を提供できるものである。As detailed above, according to the present invention, it is possible to reduce the parasitic MO8 inversion leakage caused by radiation irradiation, and to provide a highly reliable complementary semiconductor device and its manufacturing method with a small number of steps and less contamination of the furnace. It is.
第1図(a)〜(C)は本発明の一実施例に係るCMO
Sトランジスタの製造方法を工程順に示す断面図、第2
図は第1図(b)の部分的な平面図、第3図は第1図(
C)の部分的な平面図、第4図は第1図(C)の部分的
な斜視図、第5図は従来のnチャネルMO5トランジス
タの斜視図、第6図〜第11図は夫々本発明に係るその
他のCMOSトランジスタの部分的な平面図である。
21・・・N型のシリコン基板、22・・・Pウェル、
23・・・フィールド酸化膜、24・・・ゲート酸化膜
、25.26・・・チャネルイオン注入層、27.28
・・・ゲート電極、29.31・・・ソース領域、30
.32・・・ドレイン領域、33・・・p”am、41
・・・境界。
(a)
(b)
(c)
第1図
第V 図
第8図
第10図
第9図
フ7
第11図FIGS. 1(a) to (C) show a CMO according to an embodiment of the present invention.
Cross-sectional diagram showing the manufacturing method of the S transistor in order of steps, 2nd
The figure is a partial plan view of Figure 1(b), and Figure 3 is a partial plan view of Figure 1(b).
FIG. 4 is a partial perspective view of FIG. 1(C), FIG. 5 is a perspective view of a conventional n-channel MO5 transistor, and FIGS. 6 to 11 are each a partial plan view of FIG. FIG. 3 is a partial plan view of another CMOS transistor according to the invention. 21...N type silicon substrate, 22...P well,
23...Field oxide film, 24...Gate oxide film, 25.26...Channel ion implantation layer, 27.28
... Gate electrode, 29.31 ... Source region, 30
.. 32...Drain region, 33...p"am, 41
···boundary. (a) (b) (c) Fig. 1 Fig. V Fig. 8 Fig. 10 Fig. 9 Fig. 7 Fig. 11
Claims (2)
られた第2導電型のウェルと、前記基板及びウェル表面
に設けられた素子分離領域と、この素子分離領域で囲ま
れた前記基部及びウェルの素子領域表面に設けられたソ
ース、ドレイン領域と、同素子領域表面でかつチャネル
幅方向に前記ソース、ドレイン領域と離間して設けられ
た高濃度の不純物層と、同素子領域上にゲート酸化膜を
介して設けられたゲート電極とを具備することを特徴と
する相補型半導体装置。(1) A semiconductor substrate of a first conductivity type, a well of a second conductivity type provided on the surface of the substrate, an element isolation region provided on the surfaces of the substrate and the well, and a semiconductor substrate surrounded by the element isolation region. A source and drain region provided on the surface of the element region of the base and well, a high concentration impurity layer provided on the surface of the same element region and spaced apart from the source and drain region in the channel width direction, and a high concentration impurity layer provided on the same element region. 1. A complementary semiconductor device comprising: a gate electrode provided through a gate oxide film; and a gate electrode provided through a gate oxide film.
られた第2導電型のウェルと、前記基板及びウェル表面
に設けられた素子分離領域と、この素子分離領域で囲ま
れた基板及びウェルの素子領域表面に設けられたソース
、ドレイン領域と、同素子領域でかつチャネル幅方向に
前記ソース、ドレイン領域と離間して設けられた高濃度
不純物層と、同素子領域上にゲート酸化膜を介して設け
られたゲート電極とを具備した相補型半導体装置半導体
装置の製造方法において、高濃度不純物層を、pチャネ
ルMOSトランジスタのソース、ドレイン領域形成用の
p型不純物を同じ量導入することにより同時に形成する
ことを特徴とする相補型半導体装置の製造方法。(2) A semiconductor substrate of a first conductivity type, a well of a second conductivity type provided on the surface of the substrate, an element isolation region provided on the surfaces of the substrate and the well, and a substrate surrounded by the element isolation region. and a source and drain region provided on the surface of the element region of the well, a high concentration impurity layer provided in the same element region and spaced apart from the source and drain region in the channel width direction, and a gate oxidation layer on the same element region. In a method for manufacturing a semiconductor device of a complementary semiconductor device having a gate electrode provided through a film, a high concentration impurity layer is introduced with the same amount of p-type impurities for forming source and drain regions of a p-channel MOS transistor. 1. A method for manufacturing a complementary semiconductor device, characterized in that the semiconductor devices are formed simultaneously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60144569A JPS627148A (en) | 1985-07-03 | 1985-07-03 | Complementary semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60144569A JPS627148A (en) | 1985-07-03 | 1985-07-03 | Complementary semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS627148A true JPS627148A (en) | 1987-01-14 |
Family
ID=15365262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60144569A Pending JPS627148A (en) | 1985-07-03 | 1985-07-03 | Complementary semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS627148A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63278374A (en) * | 1987-05-11 | 1988-11-16 | Nec Corp | Mis semiconductor integrated circuit device |
EP0581085A1 (en) * | 1992-07-10 | 1994-02-02 | Lsi Logic Corporation | Radiation hardened CMOS structure using an implanted P guard structure and method for the manufacture thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5357775A (en) * | 1976-11-04 | 1978-05-25 | Mitsubishi Electric Corp | Semiconductor ingegrated circuit device |
JPS56148861A (en) * | 1980-04-18 | 1981-11-18 | Fujitsu Ltd | Field effect semiconductor device |
JPS587855A (en) * | 1981-07-06 | 1983-01-17 | Nippon Telegr & Teleph Corp <Ntt> | Complementary mis circuit device |
JPS5848960A (en) * | 1982-09-03 | 1983-03-23 | Hitachi Ltd | Semiconductor device |
-
1985
- 1985-07-03 JP JP60144569A patent/JPS627148A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5357775A (en) * | 1976-11-04 | 1978-05-25 | Mitsubishi Electric Corp | Semiconductor ingegrated circuit device |
JPS56148861A (en) * | 1980-04-18 | 1981-11-18 | Fujitsu Ltd | Field effect semiconductor device |
JPS587855A (en) * | 1981-07-06 | 1983-01-17 | Nippon Telegr & Teleph Corp <Ntt> | Complementary mis circuit device |
JPS5848960A (en) * | 1982-09-03 | 1983-03-23 | Hitachi Ltd | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63278374A (en) * | 1987-05-11 | 1988-11-16 | Nec Corp | Mis semiconductor integrated circuit device |
EP0581085A1 (en) * | 1992-07-10 | 1994-02-02 | Lsi Logic Corporation | Radiation hardened CMOS structure using an implanted P guard structure and method for the manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4477197B2 (en) | Manufacturing method of semiconductor device | |
JPS627148A (en) | Complementary semiconductor device and manufacture thereof | |
JPS62262462A (en) | Semiconductor device | |
JPS61164265A (en) | Mis type semiconductor integrated circuit device | |
JPS62265765A (en) | Semiconductor device and manufacture thereof | |
JP2554361B2 (en) | Method for manufacturing semiconductor device | |
JPH0492449A (en) | Semiconductor device | |
JPS62154622A (en) | Manufacture of semiconductor device | |
JP2808620B2 (en) | Method for manufacturing semiconductor device | |
JP2948256B2 (en) | Method for manufacturing semiconductor memory device | |
JPH04356965A (en) | Semiconductor device | |
JPH02219237A (en) | Mis type semiconductor device | |
JPH09260590A (en) | Semiconductor device and manufacture thereof | |
JPS61131476A (en) | Semiconductor device | |
JPS61156830A (en) | Semiconductor device and manufacture thereof | |
JPS625654A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH0462975A (en) | Semiconductor device | |
JPH03296275A (en) | Mis type semiconductor device | |
JPH0214561A (en) | Manufacture of semiconductor device | |
JPH01248555A (en) | Semiconductor device | |
JPS61198746A (en) | Manufacture of semiconductor device | |
JPH0736441B2 (en) | Method for manufacturing vertical field effect transistor | |
JPH03257846A (en) | Manufacture of semiconductor device | |
JPH0456280A (en) | Semiconductor device and manufacture thereof | |
JPH06151579A (en) | Semiconductor device and its manufacture |