JPH07183498A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07183498A
JPH07183498A JP32905493A JP32905493A JPH07183498A JP H07183498 A JPH07183498 A JP H07183498A JP 32905493 A JP32905493 A JP 32905493A JP 32905493 A JP32905493 A JP 32905493A JP H07183498 A JPH07183498 A JP H07183498A
Authority
JP
Japan
Prior art keywords
region
drain region
concentration
low
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32905493A
Other languages
Japanese (ja)
Inventor
Kanji Hirano
幹二 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP32905493A priority Critical patent/JPH07183498A/en
Publication of JPH07183498A publication Critical patent/JPH07183498A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure a sufficient saturation current while a stable high breakdown strength is maintained by a method wherein the drain offset region of a high-voltage MIS transistor is composed of an upper layer and a lower layer and the upper layer is a low impurity concentration region and the lower layer is a medium impurity concentration region. CONSTITUTION:After a P<-->-type offset region (low impurity concentration drain region) 7 is formed over a whole drain forming region by low acceleration ion implantation, a P<->-type offset region (medium impurity concentration drain region) 8 is formed under the region 7 by high acceleration ion implantation. Or, the counter-doping of N<-->-type which is the opposite conductivity type is applied over the whole drain forming region beforehand by low acceleration ion implantation and then a P<->-type offset region (medium impurity concentration drain region) 8 is formed to form a P<-->-type low impurity concentration drain region 7 near the surface only. Finally, a P<+>-type high impurity concentration drain region 6b is formed in the center part of the drain region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高耐圧トランジスタを有
する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high breakdown voltage transistor.

【0002】[0002]

【従来の技術】高耐圧トランジスタ、たとえばMIS型
高耐圧トランジスタでは、耐圧として−50〜−60V
が要求される。このような高耐圧を達成するためには高
電圧の印加されるドレイン領域にオフセット構造が必須
となる。オフセット構造ではゲート領域と接するドレイ
ン領域を低濃度とし、電極となる高濃度ドレイン領域を
ゲートから離して形成する。
2. Description of the Related Art In a high breakdown voltage transistor, for example, a MIS type high breakdown voltage transistor, the breakdown voltage is -50 to -60V.
Is required. In order to achieve such a high breakdown voltage, an offset structure is essential in the drain region to which a high voltage is applied. In the offset structure, the drain region in contact with the gate region has a low concentration, and the high concentration drain region serving as an electrode is formed apart from the gate.

【0003】従来の半導体装置について図6を参照しな
がら説明する。図6は、従来の半導体装置の構成を示す
断面図である。
A conventional semiconductor device will be described with reference to FIG. FIG. 6 is a sectional view showing the structure of a conventional semiconductor device.

【0004】図6において、1はN型半導体基板、2は
素子分離領域であるLOCOS領域、3は高耐圧トラン
ジスタのゲート絶縁膜、4は高耐圧トランジスタのポリ
シリコンゲート電極、5はサイドウォール、6aはP型
の高濃度ソース領域である。6bはP型の高濃度ドレイ
ン領域、7は低濃度ドレイン領域で、ドレイン領域はオ
フセット構造となっている。
In FIG. 6, 1 is an N-type semiconductor substrate, 2 is a LOCOS region which is an element isolation region, 3 is a gate insulating film of a high breakdown voltage transistor, 4 is a polysilicon gate electrode of a high breakdown voltage transistor, 5 is a sidewall, 6a is a P-type high-concentration source region. 6b is a P-type high-concentration drain region, 7 is a low-concentration drain region, and the drain region has an offset structure.

【0005】[0005]

【発明が解決しようとする課題】このような従来の半導
体装置では、低濃度ドレイン領域7の不純物濃度を低濃
度、たとえば約1016〜1017個/cm3にすると、低
濃度ドレイン領域7が高抵抗となり、高耐圧トランジス
タのチャネル電流が流れにくくなる。すなわちオン電流
の確保がむずかしくなる。この場合、ゲート幅を広げる
ことでオン電流を確保することができるが、ゲート幅を
広げたためにトランジスタサイズが大きくなってしまい
回路規模が大きくなるという問題があった。
In such a conventional semiconductor device, when the impurity concentration of the low concentration drain region 7 is set to a low concentration, for example, about 10 16 to 10 17 / cm 3 , the low concentration drain region 7 is formed. The resistance becomes high, and it becomes difficult for the channel current of the high breakdown voltage transistor to flow. That is, it becomes difficult to secure the on-current. In this case, the ON current can be secured by widening the gate width, but there is a problem that the circuit size becomes large because the transistor size becomes large due to the widening of the gate width.

【0006】他方、低濃度ドレイン領域の不純物濃度を
増加させると、たとえば不純物濃度を約1017〜1018
個/cm3まで増加させるとオン電流の確保は容易にな
るが、ドレイン領域に高電圧が印加されたとき、ゲート
絶縁膜3と低濃度ドレイン領域7の境界近傍に電界密度
が集中するため、境界領域では電気的ストレスが増大
し、ブレークダウンが発生しやすくなる。したがって、
電気的ストレスの増大やブレークダウンに伴って発生す
る電荷が、ゲート絶縁膜の劣化および破壊を誘発し、高
耐圧トランジスタの特性劣化をひき起こすこととなる。
よって信頼性を維持できなくなるという問題があった。
On the other hand, when the impurity concentration in the low concentration drain region is increased, the impurity concentration is increased to about 10 17 to 10 18 , for example.
It is easy to secure the on-current by increasing the number to the number / cm 3 , but when a high voltage is applied to the drain region, the electric field density is concentrated near the boundary between the gate insulating film 3 and the low-concentration drain region 7. In the boundary area, electrical stress increases and breakdown easily occurs. Therefore,
The electric charge generated due to the increase of the electrical stress and the breakdown induces the deterioration and the breakdown of the gate insulating film, which causes the deterioration of the characteristics of the high breakdown voltage transistor.
Therefore, there is a problem that reliability cannot be maintained.

【0007】本発明は上記課題を解決するもので、高信
頼性を維持しつつ、トランジスタのオン電流を十分に確
保できる高耐圧トランジスタを有する半導体装置を提供
することを目的とする。
An object of the present invention is to solve the above problems, and an object of the present invention is to provide a semiconductor device having a high breakdown voltage transistor capable of ensuring a sufficient on-current of the transistor while maintaining high reliability.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、第一導電型の半導体基板表面に離間して設
けられた第二導電型のソース領域およびドレイン領域
と、前記ソース領域およびドレイン領域に挟まれた前記
半導体基板表面上にゲート絶縁膜を介して設けられたゲ
ート電極で構成されたトランジスタを有し、トランジス
タを構成するドレイン領域のうちゲート絶縁膜に接する
領域および前記半導体基板表面に接する領域の一部が低
濃度領域で、半導体基板表面に接する残りの領域が高濃
度領域で、前記低濃度領域および前記高濃度領域の直下
の領域が中濃度領域となっていることを特徴とするもの
である。
In order to achieve the above object, the present invention provides a source region and a drain region of a second conductivity type which are provided on a surface of a semiconductor substrate of a first conductivity type and are separated from each other, and the source region. And a semiconductor having a transistor formed of a gate electrode provided on the surface of the semiconductor substrate sandwiched between the drain region and a gate insulating film, and a region of the drain region forming the transistor in contact with the gate insulating film and the semiconductor Part of the region in contact with the substrate surface is a low concentration region, the remaining region in contact with the semiconductor substrate surface is a high concentration region, and the regions immediately below the low concentration region and the high concentration region are medium concentration regions. It is characterized by.

【0009】[0009]

【作用】本発明は上記した構成により、ドレイン領域の
うち絶縁膜に接する領域が低濃度、その下方の領域が中
濃度、半導体基板表面に接しかつ中濃度領域に接する領
域が高濃度になっているので、トランジスタがオン状態
になったときには、ドレイン領域に流れ込んだ電流は低
濃度領域より抵抗の低い中濃度領域を流れ、高濃度ドレ
イン領域に達するため、ゲート絶縁膜に接する低濃度領
域の不純物濃度を増加させることなく十分なオン電流を
確保できる。
According to the present invention, the region of the drain region in contact with the insulating film has a low concentration, the region below the drain region has a medium concentration, and the region in contact with the semiconductor substrate surface and in contact with the medium concentration region has a high concentration. Therefore, when the transistor is turned on, the current flowing into the drain region flows through the medium-concentration region having a lower resistance than the low-concentration region and reaches the high-concentration drain region. A sufficient on-current can be secured without increasing the concentration.

【0010】[0010]

【実施例】以下、本発明の半導体装置の一実施例につい
て、図1を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the semiconductor device of the present invention will be described below with reference to FIG.

【0011】図1は本発明の第一の実施例の構成を示す
断面図である。図1において、1はN型半導体基板、2
は素子分離領域であるLOCOS領域、3は高耐圧トラ
ンジスタのゲート絶縁膜、4は高耐圧トランジスタのポ
リシリコンゲート電極、5はサイドウォール、6aはP
型の高濃度ソース領域である。6bはP型の高濃度ドレ
イン領域、7はP型の低濃度ドレイン領域、8はP型の
中濃度ドレイン領域である。高濃度ドレイン領域6b、
低濃度ドレイン領域7、および中濃度ドレイン領域8に
より、オフセット構造のドレイン領域を形成している。
ドレイン領域がオフセット領域を形成しているので、図
1に示したトランジスタは、MIS型高耐圧トランジス
タとして用いることができる。
FIG. 1 is a sectional view showing the construction of the first embodiment of the present invention. In FIG. 1, 1 is an N-type semiconductor substrate, 2
Is a LOCOS region which is an element isolation region, 3 is a gate insulating film of a high breakdown voltage transistor, 4 is a polysilicon gate electrode of a high breakdown voltage transistor, 5 is a sidewall, and 6a is P.
High concentration source region of the mold. 6b is a P-type high-concentration drain region, 7 is a P-type low-concentration drain region, and 8 is a P-type medium-concentration drain region. High-concentration drain region 6b,
The low-concentration drain region 7 and the medium-concentration drain region 8 form a drain region having an offset structure.
Since the drain region forms the offset region, the transistor shown in FIG. 1 can be used as a MIS type high breakdown voltage transistor.

【0012】次に、図1を用いて説明した実施例の製造
方法について、図2〜図5を参照しながら説明する。
Next, a manufacturing method of the embodiment described with reference to FIG. 1 will be described with reference to FIGS.

【0013】図2〜図5は半導体装置の製造方法の工程
図である。図2に示すように、N型半導体基板1上に素
子分離領域であるLOCOS領域2を形成し、高耐圧ト
ランジスタを搭載する基板領域を形成する。次にゲート
絶縁膜3、絶縁膜3上にポリシリコンゲート電極4を、
フォトレジスト9を利用した通常のフォトリソグラフィ
ー技術およびエッチング技術を用いて形成する。このと
き、後に形成される高耐圧トランジスタのドレイン領域
がLOCOS領域2と接しないように、図2に示すよう
にトランジスタ構造をオープンドレイン構造にパターニ
ングする。次に図3に示すように、フォトレジスト9を
除去し、基板1およびポリシリコンゲート電極4上を薄
く酸化して熱酸化膜10を形成する。続いて、加速度4
0〜50keVで5.0×10〜10.0×1011cm-2
程度のBイオン注入を行ない、ドレイン領域全面に低濃
度ドレイン領域7を形成する。次に図4に示すように、
たとえばTEOS酸化膜のデポジションおよび通常の異
方性ドライエッチング技術を用いて、サイドウォール5
を形成する。その後、たとえば加速電圧80〜100k
eVで1.0×1012〜3.0×1012cm-2程度のBイ
オン注入を行ない、ソースおよびドレイン領域内の低濃
度ドレイン領域7の直下に、低濃度ドレイン領域7に接
して中濃度ドレイン領域8を形成する。次に図5に示す
ように、まずフォトレジスト9を利用した通常のフォト
リソグラフィー技術を用いて、基板1の表面付近の低濃
度ドレイン領域7にBF2イオン注入し、高濃度ソース
領域6aおよび高濃度ドレイン領域6bを形成する。そ
の後、フォトレジスト9を除去してから通常使用されて
いるプロセス条件で層間絶縁膜、コンタクト窓、金属配
線、表面保護膜等を形成して半導体装置として完成す
る。
2 to 5 are process diagrams of a method of manufacturing a semiconductor device. As shown in FIG. 2, a LOCOS region 2 which is an element isolation region is formed on the N-type semiconductor substrate 1, and a substrate region for mounting a high breakdown voltage transistor is formed. Next, the gate insulating film 3 and the polysilicon gate electrode 4 on the insulating film 3,
It is formed by using the usual photolithography technique and etching technique using the photoresist 9. At this time, the transistor structure is patterned into an open drain structure as shown in FIG. 2 so that the drain region of the high breakdown voltage transistor to be formed later does not contact the LOCOS region 2. Next, as shown in FIG. 3, the photoresist 9 is removed, and the substrate 1 and the polysilicon gate electrode 4 are thinly oxidized to form a thermal oxide film 10. Then acceleration 4
5.0 x 10 to 10.0 x 10 11 cm -2 at 0 to 50 keV
B ions are implanted to some extent to form a low concentration drain region 7 on the entire drain region. Next, as shown in FIG.
For example, by using TEOS oxide film deposition and a usual anisotropic dry etching technique, the sidewalls 5 are formed.
To form. After that, for example, acceleration voltage 80 to 100 k
B ion implantation of about 1.0 × 10 12 to 3.0 × 10 12 cm −2 was performed at eV, and directly below the low concentration drain region 7 in the source and drain regions and in contact with the low concentration drain region 7. The concentration drain region 8 is formed. Next, as shown in FIG. 5, BF 2 ions are first implanted into the low-concentration drain region 7 near the surface of the substrate 1 by using a normal photolithography technique using the photoresist 9, and the high-concentration source region 6a and the high-concentration source region 6a are formed. The concentration drain region 6b is formed. After that, the photoresist 9 is removed, and then an interlayer insulating film, a contact window, a metal wiring, a surface protective film, and the like are formed under process conditions that are normally used, to complete a semiconductor device.

【0014】次に、図3および図4を参照して低濃度ド
レイン領域7と中濃度ドレイン領域8の別の形成方法を
説明する。上記方法では、低濃度ドレイン領域7を形成
するのにBイオンの注入を行ったが、その代わりに反対
導電型(N型)のPイオンもしくはAsイオンを、たと
えば40〜100keVで5.0×1011〜10.0×1
11cm-2程度注入して、基板1の表面付近の低濃度ド
レイン領域7のみあらかじめN型の不純物濃度を上げて
おく。次に図4に示すように、たとえばTEOS酸化膜
のデポジションと通常の異方性ドライエッチング技術を
用いて、サイドウォール5を形成する。その後、たとえ
ば加速電圧50〜80keVで2.0×1012〜5.0×
1012cm-2程度のBイオン注入を行ない、ドレイン領
域内に中濃度ドレイン領域8を形成する。このとき、ド
レイン領域全面のごく表面近傍はあらかじめN型として
の不純物濃度を上げているためにP型不純物濃度が低下
し、結果的に低濃度ドレイン領域7が形成される。ただ
し、ここで実施するイオン注入は、半導体装置として完
成した状態で低濃度ドレイン領域7および中濃度ドレイ
ン領域8の不純物濃度がそれぞれ1016〜1017個/c
3オーダー、1017〜1018個/cm3オーダーになる
ように、さらに後に形成する高濃度ドレイン領域6bが
低濃度ドレイン領域7を貫通し中濃度ドレイン領域8内
にまたがるようにその注入条件を最適化しておく必要が
ある。
Next, another method for forming the low concentration drain region 7 and the medium concentration drain region 8 will be described with reference to FIGS. In the above method, B ions are implanted to form the low-concentration drain region 7. Instead, P ions or As ions of the opposite conductivity type (N type) are used, for example, at 40 to 100 keV and 5.0 ×. 10 11 ~ 10.0 x 1
Implantation of about 0 11 cm -2 is made to raise the N-type impurity concentration only in the low concentration drain region 7 near the surface of the substrate 1 in advance. Next, as shown in FIG. 4, the sidewall 5 is formed by using, for example, the deposition of the TEOS oxide film and the usual anisotropic dry etching technique. Then, for example, 2.0 × 10 12 to 5.0 × at an acceleration voltage of 50 to 80 keV.
B ion implantation of about 10 12 cm -2 is performed to form a medium-concentration drain region 8 in the drain region. At this time, since the N-type impurity concentration has been raised in the vicinity of the entire surface of the drain region in advance, the P-type impurity concentration decreases, and as a result, the low-concentration drain region 7 is formed. However, in the ion implantation performed here, the impurity concentration of the low-concentration drain region 7 and the medium-concentration drain region 8 is 10 16 to 10 17 / c in the completed semiconductor device, respectively.
The implantation conditions are such that the high-concentration drain region 6b to be formed later penetrates the low-concentration drain region 7 and extends over the middle-concentration drain region 8 so as to have the m 3 order, 10 17 to 10 18 pieces / cm 3 order. Need to be optimized.

【0015】以上の実施例から明らかなように、本発明
によればドレイン領域のうち絶縁膜に接する領域が低濃
度、その下方の領域が中濃度、半導体基板表面に接しか
つ中濃度領域に接する領域が高濃度になっているので、
トランジスタがオン状態になったときにはドレイン領域
に流れ込んだ電流は低濃度領域より抵抗値の低い中濃度
領域を流れ、高濃度ドレイン領域に達するため、ゲート
絶縁膜に接する低濃度領域の不純物濃度を増加させるこ
となく十分なオン電流を確保できる。
As is apparent from the above embodiments, according to the present invention, the region of the drain region in contact with the insulating film has a low concentration, and the region below it has a medium concentration, is in contact with the surface of the semiconductor substrate and is in contact with the medium concentration region. Since the area is highly concentrated,
When the transistor is turned on, the current flowing into the drain region flows in the medium concentration region where the resistance value is lower than the low concentration region and reaches the high concentration drain region, increasing the impurity concentration in the low concentration region in contact with the gate insulating film. It is possible to secure a sufficient on-current without causing it.

【0016】なお、低濃度ドレイン領域7を形成する際
フォトレジストを使用しなければ、後に形成される高濃
度ソース領域6aおよび高濃度ドレイン領域6bにも低
濃度ドレイン領域を形成するための不純物イオンが注入
されていることになるが、低濃度ドレイン領域を形成す
るために注入するイオン濃度と高濃度ドレイン領域を形
成するために注入するイオン濃度では、濃度比が十分大
きいためなんら問題はない。
If a photoresist is not used when forming the low concentration drain region 7, impurity ions for forming the low concentration drain region are also formed in the high concentration source region 6a and the high concentration drain region 6b which will be formed later. However, since there is a sufficiently large concentration ratio between the ion concentration injected to form the low concentration drain region and the ion concentration injected to form the high concentration drain region, there is no problem.

【0017】[0017]

【発明の効果】本発明の半導体装置では、トランジスタ
のドレイン領域の上層領域のうちゲート絶縁膜に接する
領域を低濃度領域、下層領域を中濃度領域とすることに
より、第一にドレインに高電圧が印加されたときに電界
密度が集中するのが高濃度領域のエッジとなり、すなわ
ちゲート絶縁膜から離れたところで電気的ストレスの増
大およびブレークダウンが起こるため、高電気的ストレ
ス印加時およびブレークダウンのときに発生する電荷が
ゲート絶縁膜の劣化および破壊を誘発し高耐圧トランジ
スタの特性劣化を引き起こすことを防止でき、この結果
安定した高耐圧とその高信頼性を維持することができ
る。
According to the semiconductor device of the present invention, the region of the upper region of the drain region of the transistor which is in contact with the gate insulating film is the low concentration region and the lower region thereof is the medium concentration region. Is applied to the edge of the high-concentration region, that is, electrical stress increases and breaks away from the gate insulating film. It is possible to prevent the electric charges that are sometimes generated from causing deterioration and destruction of the gate insulating film and causing characteristic deterioration of the high breakdown voltage transistor, and as a result, it is possible to maintain stable high breakdown voltage and its high reliability.

【0018】第二にドレイン領域の下層が中濃度である
ことで高耐圧トランジスタがオン状態になったときには
低濃度ドレイン領域に流れ込んだ電流は抵抗値の低い下
層の中濃度ドレイン領域を流れて高濃度ドレイン領域に
達するため、ゲート幅を広げなくても十分なオン電流を
確保することができる。以上の効果により、本発明は優
れたMIS型高耐圧トランジスタを搭載する半導体装置
を実現できるものである。
Secondly, when the high breakdown voltage transistor is turned on because the lower layer of the drain region is of medium concentration, the current flowing into the low concentration drain region flows through the medium concentration drain region of the lower layer of low resistance and becomes high. Since it reaches the concentration drain region, a sufficient on-current can be secured without widening the gate width. With the above effects, the present invention can realize a semiconductor device having an excellent MIS type high voltage transistor.

【0019】なお、本発明においてはPチャネル型高耐
圧トランジスタの場合を説明したが、Nチャネル型高耐
圧トランジスタの場合においても各領域の不純物タイプ
を変更することによってまったく同様に成立する。
Although the case of the P-channel type high breakdown voltage transistor has been described in the present invention, the same holds true for the N channel type high breakdown voltage transistor by changing the impurity type of each region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体装置の断面図FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例における製造方法の工程図FIG. 2 is a process diagram of a manufacturing method according to an embodiment of the present invention.

【図3】本発明の一実施例における製造方法の工程図FIG. 3 is a process diagram of a manufacturing method according to an embodiment of the present invention.

【図4】本発明の一実施例における製造方法の工程図FIG. 4 is a process chart of a manufacturing method according to an embodiment of the present invention.

【図5】本発明の一実施例における製造方法の工程図FIG. 5 is a process diagram of a manufacturing method according to an embodiment of the present invention.

【図6】従来の半導体装置の構成を示す断面図FIG. 6 is a sectional view showing the configuration of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 基板 2 LOCOS領域 3 ゲート絶縁膜 4 ポリシリコンゲート電極 5 サイドウォール 6a 高濃度ソース領域 6b 高濃度ドレイン領域 7 低濃度ドレイン領域 8 中濃度ドレイン領域 9 フォトレジスト 10 熱酸化膜 1 substrate 2 LOCOS region 3 gate insulating film 4 polysilicon gate electrode 5 sidewall 6a high concentration source region 6b high concentration drain region 7 low concentration drain region 8 medium concentration drain region 9 photoresist 10 thermal oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型の半導体基板と、前記半導体
基板表面に離間して設けられた第二導電型のソース領域
およびドレイン領域と、前記ソース領域およびドレイン
領域に挟まれた前記半導体基板表面上にゲート絶縁膜を
介して設けられたゲート電極で構成されたトランジスタ
を有し、前記ドレイン領域が低濃度領域、中濃度領域、
および高濃度領域で構成され、前記ドレイン領域のうち
前記ゲート絶縁膜に接する領域および前記半導体基板表
面に接する領域の一部が低濃度領域で、前記低濃度領域
に接しかつ前記半導体基板表面に接する残りの領域が高
濃度領域で、前記低濃度領域および前記高濃度領域の直
下の領域が中濃度領域となっていることを特徴とする半
導体装置。
1. A semiconductor substrate of a first conductivity type, a source region and a drain region of a second conductivity type provided on the surface of the semiconductor substrate at a distance from each other, and the semiconductor substrate sandwiched between the source region and the drain region. A transistor having a gate electrode provided on the surface via a gate insulating film, wherein the drain region is a low concentration region, a medium concentration region,
And a part of a region of the drain region which is in contact with the gate insulating film and a part of the drain region which is in contact with the semiconductor substrate surface is a low concentration region which is in contact with the low concentration region and in contact with the semiconductor substrate surface. A semiconductor device, wherein the remaining region is a high-concentration region, and the regions immediately below the low-concentration region and the high-concentration region are medium-concentration regions.
JP32905493A 1993-12-24 1993-12-24 Semiconductor device Pending JPH07183498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32905493A JPH07183498A (en) 1993-12-24 1993-12-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32905493A JPH07183498A (en) 1993-12-24 1993-12-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07183498A true JPH07183498A (en) 1995-07-21

Family

ID=18217103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32905493A Pending JPH07183498A (en) 1993-12-24 1993-12-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07183498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004493A (en) * 2007-06-20 2009-01-08 Toshiba Corp Semiconductor device and its manufacturing method
CN103050532A (en) * 2012-08-13 2013-04-17 上海华虹Nec电子有限公司 RF LDMOS (ratio frequency laterally diffused metal oxide semiconductor) device and manufacture method of RF LDMOS device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004493A (en) * 2007-06-20 2009-01-08 Toshiba Corp Semiconductor device and its manufacturing method
US8159036B2 (en) 2007-06-20 2012-04-17 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
CN103050532A (en) * 2012-08-13 2013-04-17 上海华虹Nec电子有限公司 RF LDMOS (ratio frequency laterally diffused metal oxide semiconductor) device and manufacture method of RF LDMOS device

Similar Documents

Publication Publication Date Title
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
JP2835216B2 (en) Method for manufacturing semiconductor device
US4070687A (en) Composite channel field effect transistor and method of fabrication
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH10150195A (en) Mosfet and its manufacture
JPH01205470A (en) Semiconductor device and its manufacture
JPH04188633A (en) Semiconductor device and manufacture thereof
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
JPH0730107A (en) High voltage withstand transistor and its manufacture
JP2903892B2 (en) Method for manufacturing field effect transistor
JPH05218415A (en) Semiconductor device
JPH05102179A (en) Semiconductor device and its manufacture
JP3057792B2 (en) Method for manufacturing thin film transistor
JP2001217418A (en) Mos transistor and its manufacturing method
JPH07183498A (en) Semiconductor device
JPH05283687A (en) Production of semiconductor element
JP2519541B2 (en) Semiconductor device
JPH06302819A (en) Semiconductor device
JPH06302817A (en) Semiconductor device
JPH0316154A (en) Integrated circuit device and manufacture thereof
JPH06244428A (en) Mos device and manufacture thereof
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JPH02296342A (en) Manufacture of mosfet
JPH06151842A (en) Semiconductor device and its manufacture