JPH06244428A - Mos device and manufacture thereof - Google Patents

Mos device and manufacture thereof

Info

Publication number
JPH06244428A
JPH06244428A JP2457593A JP2457593A JPH06244428A JP H06244428 A JPH06244428 A JP H06244428A JP 2457593 A JP2457593 A JP 2457593A JP 2457593 A JP2457593 A JP 2457593A JP H06244428 A JPH06244428 A JP H06244428A
Authority
JP
Japan
Prior art keywords
layer
region
forming
insulating film
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2457593A
Other languages
Japanese (ja)
Other versions
JP3186298B2 (en
Inventor
Takashi Kobayashi
小林  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP02457593A priority Critical patent/JP3186298B2/en
Publication of JPH06244428A publication Critical patent/JPH06244428A/en
Application granted granted Critical
Publication of JP3186298B2 publication Critical patent/JP3186298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a MOS device from deteriorating in characteristics due to radioactive exposure or an increased channel length by using the same mask to introduce impurity for forming first and second regions and then forming a gate oxide and a gate, electrode at relatively low temperature. CONSTITUTION:A thick oxide layer 13 is grown on an n<-> silicon substrate that includes a deep, p' diffused layer 8. A thin oxide film 14 is formed with a mask remaining so that B<+> 15 may be implanted only into the thin oxide film. A p-type diffused base layer 3 is formed, and a resist mask 16 is formed. After B<+> 15 is implanted, the resist mask 16 is removed and p<+> layer 9 is formed through annealing. A resist mask 17 is formed, and it is used, together with the oxide layer 13, as a mask to implant As<+> 18. After the resist mask is removed, an n<+> source layer 4 is formed through annealing. The oxide layers 14 and 13 are removed. Then, a gate oxide 51 is formed and a polycrystalline silicon layer is formed for a gate electrode 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静止衛星に搭載される
など、宇宙空間で使用されたり、あるいは原子力施設で
使用されるMOS型半導体素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOS type semiconductor device used in outer space such as being mounted on a geostationary satellite or used in a nuclear facility.

【0002】[0002]

【従来の技術】MOS型半導体素子にはキャリアのみを
利用する電力用MOSFETと、電子と正孔の2種類の
キャリアによる伝導度変調を利用する絶縁ゲート型バイ
ポーラトランジスタなどがある。絶縁ゲート型バイポー
ラトランジスタはIGTあるいはCOMFETとも呼ば
れているが以下IGBTと記す。
2. Description of the Related Art MOS type semiconductor devices include a power MOSFET that uses only carriers and an insulated gate bipolar transistor that uses conductivity modulation by two types of carriers, electrons and holes. The insulated gate bipolar transistor is also called an IGT or COMFET, but will be referred to as an IGBT hereinafter.

【0003】図2は従来の電力用MOSFETの断面構
造を示し、一側にドレイン層としてのn+ 層2が隣接す
るn- 高抵抗層1の表面層にはp形ベース層3が選択的
に形成され、またそのベース層3の表面層にn+ ソース
層4が選択的に形成されている。n- 層1の露出面上か
らn+ ソース層4の表面上にかけてゲート絶縁膜51を介
してゲート電極6が設けられ、このゲート電極6と絶縁
膜52で絶縁されるソース電極7はp形ベース層3とn+
ソース層4に共通に接触するが、その接触部には深いp
+ 拡散層8と浅いp+ 拡散層9が形成されている。そし
てn+ ドレイン層2にはドレイン電極10が接触してい
る。このMOSFETは、通常次に示すような工程で製
造される。
FIG. 2 shows a cross-sectional structure of a conventional power MOSFET. A p-type base layer 3 is selectively formed on the surface layer of an n high resistance layer 1 which is adjacent to an n + layer 2 as a drain layer on one side. And the n + source layer 4 is selectively formed on the surface layer of the base layer 3. A gate electrode 6 is provided from the exposed surface of the n layer 1 to the surface of the n + source layer 4 via a gate insulating film 51, and the source electrode 7 insulated from the gate electrode 6 and the insulating film 52 is a p-type. Base layer 3 and n +
It makes a common contact with the source layer 4, but has a deep p
A + diffusion layer 8 and a shallow p + diffusion layer 9 are formed. The drain electrode 10 is in contact with the n + drain layer 2. This MOSFET is usually manufactured by the following steps.

【0004】先ず、n+ ドレイン層2とn- 高抵抗層1
からなる半導体基板のn- 層1の表面からの不純物拡散
で深いp+ 拡散層8と浅いp+ 拡散層9を形成する。次
いで同じく高抵抗層1の表面にゲート絶縁膜51を介して
ゲート電極6を形成した後、フォトリソグラフィによっ
てゲート電極6に窓開けを行う。この窓開けしたゲート
電極6をマスクとしてp形ベース層3を拡散で形成す
る。このあと、再びゲート電極6をマスクの一部として
用いてn+ 形ソース層4を形成し、表面を絶縁膜52で覆
い接続のための窓開けを行ってソース電極7を、また裏
面のn+ 層2に接触させてドレイン電極10を形成する。
このようにして製造される半導体素子は、ゲート電極6
にソース電極7に対してしきい値を超える正の電圧を印
加すると、ゲート絶縁膜51直下のp形ベース層3の表面
にチャネル11が形成され、ソース層4からチャネル11を
通って高抵抗層1と低抵抗層2からなるドレイン層へと
電子が注入されることによって導通状態となり、またゲ
ート電極6をソース電極7と同電位または負にバイアス
することによって阻止状態となる、いわゆるスイッチン
グ素子としてのはたらきを持つ。
First, the n + drain layer 2 and the n high resistance layer 1
A deep p + diffusion layer 8 and a shallow p + diffusion layer 9 are formed by impurity diffusion from the surface of the n layer 1 of the semiconductor substrate made of. Next, after the gate electrode 6 is formed on the surface of the high resistance layer 1 via the gate insulating film 51, a window is opened in the gate electrode 6 by photolithography. The p-type base layer 3 is formed by diffusion using the gate electrode 6 having the window opened as a mask. After that, the gate electrode 6 is again used as a part of the mask to form the n + -type source layer 4, the front surface is covered with the insulating film 52, and a window for connection is opened to form the source electrode 7 and the back surface n. The drain electrode 10 is formed in contact with the + layer 2.
The semiconductor element manufactured in this way has the gate electrode 6
When a positive voltage exceeding the threshold value is applied to the source electrode 7, a channel 11 is formed on the surface of the p-type base layer 3 directly below the gate insulating film 51, and a high resistance is obtained from the source layer 4 through the channel 11. A so-called switching element is brought into a conducting state by injecting electrons into a drain layer composed of the layer 1 and the low resistance layer 2, and is brought into a blocking state by biasing the gate electrode 6 at the same potential as the source electrode 7 or negatively. Have a function as.

【0005】図3は従来のIGBTを示し、n- 高抵抗
層1の下側にはバッファ層としてのn+ 層2を介してp
+ ドレイン層12が存在し、このドレイン層12にドレイン
電極10が接触している。この素子は、p+ ドレイン層12
とn+ バッファ層2およびn - 高抵抗層1からなる半導
体基板を用いて電力用MOSFETと同様の工程を通し
て製造することができる。IGBTが電力用MOSFE
Tと動作の異なる点は、ドレイン層12がp+ 層であるた
めに、ソース層4からチャネル11、n- 層1、n+ バッ
ファ層2を通ってp+ 層12に電子が注入されると、これ
に呼応してp+ドレイン層12からn+ バッファ層2を通
ってn- 層1に正孔が注入され、n- 層1が伝導度変調
を起こして低抵抗となる点である。
FIG. 3 shows a conventional IGBT, n-High resistance
Below the layer 1, n as a buffer layer is provided.+P through layer 2
+There is a drain layer 12, and the drain is in this drain layer 12.
The electrode 10 is in contact. This element is p+Drain layer 12
And n+Buffer layers 2 and n -Semi-conductor consisting of high resistance layer 1
Through the process similar to power MOSFET using the body substrate
Can be manufactured. IGBT is power MOSFET
The difference in operation from T is that the drain layer 12 is p+It is a layer
From the source layer 4 to the channels 11, n-Layer 1, n+Bag
P through the layer 2+When electrons are injected into layer 12, this
In response to p+Drain layer 12 to n+Through the buffer layer 2
That's n-Holes are injected into layer 1, n-Layer 1 is conductivity modulated
Is a point that causes low resistance.

【0006】[0006]

【発明が解決しようとする課題】図2に示したMOSF
ETが、原子炉周囲のような多量の放射線が存在する雰
囲気中で用いられて放射線照射を受けた場合、しばしば
しきい値電圧の変動が生じ、スイッチング素子としての
機能をはたさなくなる。このしきい値電圧の変動の原因
を図4を用いて説明する。
SUMMARY OF THE INVENTION The MOSF shown in FIG.
When ET is used in an atmosphere in which a large amount of radiation exists, such as around a nuclear reactor, and is irradiated with radiation, the threshold voltage often changes, and the ET does not function as a switching element. The cause of the change in the threshold voltage will be described with reference to FIG.

【0007】MOSFETのスイッチ機能の動作原理
は、ゲート電極6に、ソース電極7に対して正の電圧を
印加すると、ゲート絶縁膜51が誘電体として機能し、そ
の直下のp形ベース層3の表面に負電荷が誘起される。
さらにゲート電極6に印加する電圧を上げると、p形ベ
ース層3の表面に誘起される負電荷の量も増加し、つい
に誘起された負電荷量濃度がp形ベース層3の不純物濃
度を超えるとチャネル11が形成され、n+ ソース層4か
ら注入される電子が、チャネル11を通って、高抵抗層1
と低抵抗層2からなるn形ドレイン層へと流れ導通状態
となる。一方、ゲート電極6をソース電極7と同電位ま
たはソース電極に対して負にバイアスすると、p形ベー
ス層3に負電荷は誘起されず、阻止状態となる。
The operating principle of the switch function of the MOSFET is that when a positive voltage is applied to the gate electrode 6 with respect to the source electrode 7, the gate insulating film 51 functions as a dielectric, and the p-type base layer 3 immediately below the gate insulating film 51 functions. A negative charge is induced on the surface.
When the voltage applied to the gate electrode 6 is further increased, the amount of negative charges induced on the surface of the p-type base layer 3 also increases, and finally the concentration of the induced negative charges exceeds the impurity concentration of the p-type base layer 3. And a channel 11 are formed, and electrons injected from the n + source layer 4 pass through the channel 11 and reach the high resistance layer 1
And to the n-type drain layer composed of the low resistance layer 2 and becomes conductive. On the other hand, when the gate electrode 6 is biased at the same potential as the source electrode 7 or negatively with respect to the source electrode, negative charges are not induced in the p-type base layer 3 and the gate electrode 6 enters a blocking state.

【0008】このような動作原理を持つMOSFETに
放射線20が照射されると、ゲート絶縁膜51中に、電子と
正孔が誘起される。その内、特に正孔がゲート絶縁膜51
中にトラップされ、正電荷の固定電荷21が形成される。
このためp形ベース層3には、固定電荷21に相当する負
電荷22が誘起されることになり、あたかもゲート電極に
正電荷を印加したと同様な状態となる。結果として、ゲ
ート電極6に印加する電圧のしきい値の低下をもたら
す。例えば、吸収線量が106 rad 以上となる放射線照射
条件によっては、ゲート絶縁膜51中に発生する固定電荷
21の量が多く、ゲート電極とソース電極が同電位の場合
でも導電状態が生じ、見かけ上耐圧が無くなるような現
象が見られ、スイッチング機能の喪失をもたらすという
問題がある。
When the MOSFET 20 having such an operating principle is irradiated with the radiation 20, electrons and holes are induced in the gate insulating film 51. Among them, holes are especially the gate insulating film 51.
Trapped inside, a positive fixed charge 21 is formed.
Therefore, the negative charge 22 corresponding to the fixed charge 21 is induced in the p-type base layer 3, and the state is as if a positive charge was applied to the gate electrode. As a result, the threshold voltage of the voltage applied to the gate electrode 6 is lowered. For example, the fixed charge generated in the gate insulating film 51 may be changed depending on the irradiation condition that the absorbed dose is 10 6 rad or more.
There is a problem that a large amount of 21 causes a conductive state even when the gate electrode and the source electrode have the same potential, and a phenomenon in which the breakdown voltage apparently disappears is caused, resulting in loss of the switching function.

【0009】このMOS型素子に対する放射線照射によ
るしきい値電圧の変動もしくはスイッチング機能の喪失
の対策として、ゲート絶縁膜51の成膜工程およびゲート
絶縁膜成膜以後の工程における最高温度を、約900 ℃以
下の低温化することでゲート絶縁膜中に発生する固定電
荷量を少なくするという努力がなされている。しかし、
現在の製造工程では、ゲート電極6を同一マスクとして
p形ベース層3とn+ ソース層4を形成するセルフアラ
イメント法を採用しており、ベース層3の拡散とソース
層4のアニールには高温中で短時間の工程条件を用いて
効率的製造を行っている。これに対し、耐放射線性を向
上させるために、ゲート絶縁膜成膜工程およびそれ以後
の工程の温度を低温化した場合、ゲート絶縁膜51成膜工
程、p形ベース層3形成工程、ソース層4形成工程時等
の加熱あるいは拡散時間が通常の高温条件時より数十倍
〜数百倍と非常に長くなり、非効率的な製造工程とな
る。
As a measure against the fluctuation of the threshold voltage or the loss of the switching function due to the radiation of the MOS type element, the maximum temperature in the step of forming the gate insulating film 51 and the step after the gate insulating film is formed is about 900. Efforts are being made to reduce the amount of fixed charges generated in the gate insulating film by lowering the temperature below ℃. But,
In the current manufacturing process, the self-alignment method of forming the p-type base layer 3 and the n + source layer 4 using the gate electrode 6 as the same mask is adopted, and a high temperature is used for diffusion of the base layer 3 and annealing of the source layer 4. Efficient manufacturing is performed using process conditions for a short time. On the other hand, in order to improve radiation resistance, when the temperature of the gate insulating film forming step and subsequent steps are lowered, the gate insulating film 51 forming step, the p-type base layer 3 forming step, and the source layer are formed. 4 The heating or diffusion time during the forming step is much longer than that under normal high temperature conditions by several tens to several hundreds of times, resulting in an inefficient manufacturing process.

【0010】一方、ゲート絶縁膜成膜以前にp形ベース
層3およびソース層4を形成する場合には、レジストマ
スクで不純物の導入を行うために、p形ベース層形成時
に一旦、レジストを除去することからセルフアライメン
ト構造とはならず、結果的にチャネル長が長くなり、R
DS(on)が増加するという、素子の電気特性の低下を伴う
不利な工程となっていた。
On the other hand, when the p-type base layer 3 and the source layer 4 are formed before the gate insulating film is formed, the resist is removed at the time of forming the p-type base layer in order to introduce impurities with a resist mask. Therefore, the self-alignment structure is not formed, and as a result, the channel length becomes long, and R
This is a disadvantageous process in which the DS (on) is increased and the electrical characteristics of the device are deteriorated.

【0011】この問題はIGBTにおいても同様であ
り、また宇宙空間で使用するために放射線を浴びる素子
に対しても同様に起こる。本発明の目的は、上述の問題
を解決し、拡散あるいはアニール工程は高温で短時間で
行うが、ゲート絶縁膜の成膜およびそれ以後の工程は高
温にならぬようにして、放射線照射による特性劣化を防
ぎ、かつチャネル長の長くなることによる特性低下もな
いMOS型半導体素子の効率的な製造方法を提供するこ
とにある。
This problem is the same in the IGBT and also in the element exposed to radiation for use in outer space. The object of the present invention is to solve the above-mentioned problems, and the diffusion or annealing process is performed at a high temperature in a short time. It is an object of the present invention to provide an efficient manufacturing method of a MOS semiconductor device, which prevents deterioration and does not cause deterioration of characteristics due to an increase in channel length.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、第一導電形の半導体層の表面層に選択
的に第二導電形の第一領域を形成する工程と、前記半導
体層の表面層に選択的に第一導電形の第二領域を形成す
る工程と、前記半導体層の表面上にゲート絶縁膜を形成
し、そのゲート絶縁膜の上にゲート電極を形成する工程
とを含む、第一領域の表面層内に選択的に形成された第
二領域を有し、第一領域の第一導電形層の露出部と第二
領域とにはさまれた部分の上にゲート絶縁膜を介してゲ
ート電極を備えたMOS型半導体素子の製造方法におい
て、第一領域および第二領域を形成する工程を同一マス
クを用いての不純物導入によって行い、その工程の後で
ゲート絶縁膜およびゲート電極を形成する工程を行うも
のとする。そして、第一領域および第二領域の形成に用
いるマスクが熱酸化膜からなること、あるいは異なる材
料の膜を積層してなることが有効である。また、製造さ
れるMOS型半導体素子が人工衛星内もしくは原子力施
設内で用いられることが有効である。
To achieve the above object, the present invention comprises a step of selectively forming a first region of a second conductivity type on a surface layer of a semiconductor layer of a first conductivity type, Forming a second region of the first conductivity type selectively on the surface layer of the semiconductor layer; forming a gate insulating film on the surface of the semiconductor layer; and forming a gate electrode on the gate insulating film Including a step, having a second region selectively formed in the surface layer of the first region, of the portion sandwiched between the exposed portion and the second region of the first conductivity type layer of the first region. In a method of manufacturing a MOS type semiconductor device having a gate electrode via a gate insulating film, a step of forming a first region and a second region is performed by introducing impurities using the same mask, and after the step, A step of forming a gate insulating film and a gate electrode is performed. Then, it is effective that the mask used for forming the first region and the second region is made of a thermal oxide film, or is formed by laminating films of different materials. Further, it is effective that the manufactured MOS type semiconductor device is used in an artificial satellite or a nuclear facility.

【0013】[0013]

【作用】MOSFETあるいはIGBTでベース層とな
る第一領域とソース層となる第二領域と同一マスクを用
いてセルフアライメント法で形成することにより、チャ
ネル形成領域をはさむ第二領域の縁部と第一領域の縁部
を精度よく近付けることができ、チャネル抵抗が非常に
小さくなってオン抵抗が低く抑えられる。そして、第
一、第二領域形成後、ゲート絶縁膜を形成するので、拡
散あるいはアニール工程は高温で行ってもゲート絶縁膜
の成膜およびその後の工程における最高温度を低く抑え
ることができ、放射線照射によりゲート絶縁膜中に発生
する固定電荷の量を少なくすることができる。
In the MOSFET or the IGBT, the first region serving as the base layer and the second region serving as the source layer are formed by the self-alignment method using the same mask, and the edge of the second region sandwiching the channel formation region and the second region are formed. The edges of one region can be brought close to each other with high accuracy, the channel resistance becomes extremely small, and the on-resistance can be kept low. Further, since the gate insulating film is formed after the formation of the first and second regions, even if the diffusion or annealing process is performed at a high temperature, the maximum temperature in the film formation of the gate insulating film and the subsequent process can be suppressed to be low. The amount of fixed charges generated in the gate insulating film by irradiation can be reduced.

【0014】[0014]

【実施例】図1(a) 〜(i) は本発明の一実施例のnチャ
ネルMOS型半導体素子の製造工程を順に示し、図2、
図3と共通の部分には同一の符号が付されている。先
ず、既に深いp+ 拡散層8を形成したn- シリコン基板
1の表面上に厚い酸化層13を成長させておく。そして、
フォトリソグラフィとエッチングによってマスク部分を
残して薄い酸化膜14を形成し、ほう素イオン( B+ )15
の注入を適当なエネルギーで行えば、B+ は薄い酸化膜
の部分にのみ注入される〔同図(a) 〕。次いで、拡散に
よりp形ベース層3を形成する〔同図(b) 〕。このあ
と、フォトリソグラフィによってレジストマスク16を形
成し、B+ 15の注入を適当なエネルギーで行い〔同図
(c) 〕、次いでレジストマスク16を剥離した後アニール
してp+ 層9を形成する〔同図(d) 〕。そのあと、再度
フォトリソグラフィによりレジストマスク17を形成し、
そのマスクと酸化層マスク13とを用いてひ素イオン(As
+ )18 の注入を適当なエネルギーで行い〔同図(e) 〕、
レジストマスク17を剥離した後アニールしてn+ ソース
層4を形成する〔同図(f) 〕。次に、酸化膜14および酸
化層マスク13をエッチングによって除去し〔同図(g)
〕、その表面にゲート絶縁膜51を形成する〔同図(h)
〕。そして、その上に多結晶シリコン層を形成し、フ
ォトリソグラフィ、エッチングを行ってゲート電極6を
形成し、絶縁層の成膜およびフォトリソグラフィ、エッ
チングによるパターニングを行って絶縁膜52を形成して
セル構造を完成する〔同図(i) 〕。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 (a) to 1 (i) show in sequence the steps of manufacturing an n-channel MOS type semiconductor device according to an embodiment of the present invention.
The same parts as those in FIG. 3 are designated by the same reference numerals. First, a thick oxide layer 13 is grown on the surface of the n silicon substrate 1 on which the deep p + diffusion layer 8 has already been formed. And
A thin oxide film 14 is formed by photolithography and etching leaving the mask portion, and boron ions (B + ) 15
If B is implanted with an appropriate energy, B + is implanted only in the thin oxide film portion [FIG. Then, the p-type base layer 3 is formed by diffusion [FIG. After that, a resist mask 16 is formed by photolithography, and B + 15 is injected with appropriate energy [see the same figure.
(c)] Then, the resist mask 16 is peeled off and annealed to form the p + layer 9 [(d) in the figure]. After that, the resist mask 17 is formed again by photolithography,
Using the mask and the oxide layer mask 13, arsenic ions (As
+ ) 18 is injected with appropriate energy (Fig. (E)),
After removing the resist mask 17, the resist mask 17 is annealed to form the n + source layer 4 [FIG. Next, the oxide film 14 and the oxide layer mask 13 are removed by etching [FIG.
], A gate insulating film 51 is formed on the surface thereof (FIG. 2 (h))
]. Then, a polycrystalline silicon layer is formed thereon, photolithography and etching are performed to form a gate electrode 6, and an insulating film is formed and patterning is performed by photolithography and etching to form an insulating film 52 to form a cell. Complete the structure [Fig. (I)].

【0015】マスク13の材質としては、ベース層3を形
成する際の高温度に対しても安定であり、亀裂が入った
り、変形したり、膜質が変化したりすることが起こりに
くく、また図1(g) の工程でエッチングにより除去する
際にも、バッファドふっ酸溶液で比較的簡単に、しかも
ソース層4、高不純物濃度領域8、9を含むベース層3
およびドレイン層2の表面をエッチングすることなく実
施することができる点で熱酸化シリコン膜が優れてい
る。
The material of the mask 13 is stable even at a high temperature when the base layer 3 is formed, and is unlikely to be cracked, deformed, or changed in film quality. Even when it is removed by etching in the step of 1 (g), it is relatively easy to use the buffered hydrofluoric acid solution, and the source layer 4 and the base layer 3 including the high impurity concentration regions 8 and 9 are used.
The thermally-oxidized silicon film is excellent in that it can be performed without etching the surface of the drain layer 2.

【0016】これらの工程によれば、チャネル領域長さ
lがレジストマスクによる製造法に比べて2分の1以下
になり、チャネル抵抗も小さくなるのでRDS(on)も小さ
くなる。また、ゲート絶縁膜51形成後にベース層3の拡
散や、高不純物濃度層9のアニール、ソース層4のアニ
ールを低温で行う製造法に比べて、ベース層3の拡散お
よびソース層4のアニールを高温で行うことができるの
で、工程時間を数分の1から数百分の1と非常に短時間
でできる。
According to these steps, the length l of the channel region is less than half the manufacturing method using the resist mask, and the channel resistance is also reduced, so that R DS (on) is also reduced. Further, compared with the manufacturing method in which the diffusion of the base layer 3, the annealing of the high impurity concentration layer 9, and the annealing of the source layer 4 are performed at a low temperature after the gate insulating film 51 is formed, the diffusion of the base layer 3 and the annealing of the source layer 4 are performed. Since the process can be performed at a high temperature, the process time can be shortened to a fraction of one to several hundreds, which is a very short time.

【0017】図5(a) 〜(i) は、やはりnチャネルのM
OS型半導体素子の製造のための別の実施例の工程を示
し、図1、図2、図3と共通の部分には同一の符号が付
されている。この場合は、n- シリコン基板1上に薄め
の酸化膜14を形成し、その上にCVD法による酸化シリ
コン、多結晶シリコンあるいは窒化シリコンからなるマ
スク層23を被着し、フォトリソグラフィによって窓開け
を行い、マスクのパターンを形成し、適当なエネルギー
でB+ 15の注入を行う〔同図(a) 〕。このあとの、同図
(b) におけるベース層3の形成、同図(c) におけるレジ
ストマスクの16形成およびB+ 15の注入、同図(d) にお
けるレジストマスク16の剥離およびp+層9の形成、同
図(e) におけるレジストマスク形成およびAs+ 18の注
入、同図(f) におけるレジストマスク17の剥離およびソ
ース層4の形成、同図(g) における酸化膜14およびマス
ク層23の除去、同図(h) におけるゲート絶縁膜51の形
成、同図(i) におけるゲート電極6の形成、絶縁層52の
成膜およびパターニングは図1(b) 〜(i) と同様であ
る。
FIGS. 5 (a) to 5 (i) also show the n-channel M
A process of another embodiment for manufacturing an OS type semiconductor device is shown, and the same parts as those in FIGS. 1, 2 and 3 are designated by the same reference numerals. In this case, a thin oxide film 14 is formed on the n - silicon substrate 1, a mask layer 23 made of silicon oxide, polycrystalline silicon or silicon nitride is deposited thereon by a CVD method, and a window is opened by photolithography. Then, a mask pattern is formed, and B + 15 is injected with an appropriate energy [FIG. The figure after this
Formation of the base layer 3 in (b), formation of the resist mask 16 and implantation of B + 15 in the same figure (c), peeling of the resist mask 16 and formation of the p + layer 9 in the same figure (d), e) forming a resist mask and implanting As + 18, removing the resist mask 17 and forming the source layer 4 in FIG. 6F, removing the oxide film 14 and the mask layer 23 in FIG. The formation of the gate insulating film 51 in h), the formation of the gate electrode 6 in FIG. 1 (i), the formation and patterning of the insulating layer 52 are the same as in FIGS. 1 (b) to 1 (i).

【0018】これらの工程によったものも前述のものと
同じく、チャネル領域長さlはレジストマスクのみによ
る製造法に比べて2分の1以下になり、チャネル抵抗も
小さくなってRDS(on)が小さくなると共に、ゲート絶縁
膜51形成後にベース層3の拡散、高不純物濃度層9のア
ニールあるいはソース層4のアニールを低温で行う製造
法に比べて非常に短時間で形成できる。
As in the case of the above-described ones, the channel region length 1 is one half or less of the manufacturing method using only the resist mask, and the channel resistance is small, and R DS (on ) Becomes small, the diffusion of the base layer 3, the annealing of the high impurity concentration layer 9, or the annealing of the source layer 4 after the gate insulating film 51 is formed can be formed in an extremely short time compared with the manufacturing method in which the annealing is performed at a low temperature.

【0019】以上の実施例ではnチャネルの素子だけに
関して述べたわけであるが、これがpチャネルの素子に
も応用できること、電力用MOSFETやIGBT以外
のMOS型半導体素子にも応用できることはいうまでも
ない。
In the above-mentioned embodiments, only the n-channel element has been described, but it goes without saying that this can be applied to the p-channel element and to the MOS type semiconductor element other than the power MOSFET and the IGBT. .

【0020】[0020]

【発明の効果】本発明によれば、MOS型半導体素子の
一部がゲート電極直下のチャネル形成領域となる第一領
域およびチャネルへ電荷を供給するための第二領域の形
成を、ゲート電極をマスクとしないで、表面上に形成し
たマスクを用いてのセルフアライメント法による不純物
導入によって行うことにより、それらの領域の形成ある
いはラッチアップ防止のための高不純物濃度層の形成の
工程がゲート絶縁膜形成の前に行われるため、高温で実
施でき、工程時間が短くなる。そして、ゲート絶縁膜は
900 ℃以下の低温で形成することができ、それ以後の工
程で900 ℃を超える高温にさらされることもないため、
放射線照射時にゲート絶縁膜に発生する固定電荷量を低
減することができ、耐放射線性を備えたMOS型半導体
素子が低いコストで製造可能になる。しかも、第一、第
二領域がセルフアライメント法で形成できるため、両者
の位置関係の精度が良好でチャネル長が短くなり、オン
抵抗が小さい素子が得られる。
According to the present invention, a part of a MOS type semiconductor device is formed as a channel forming region directly under the gate electrode and a second region for supplying charges to the channel is formed by forming a gate electrode. By performing impurity introduction by a self-alignment method using a mask formed on the surface instead of using a mask, the step of forming those regions or forming a high impurity concentration layer for preventing latch-up is performed as a gate insulating film. Since it is performed before forming, it can be performed at a high temperature and the process time is shortened. And the gate insulating film is
Since it can be formed at a low temperature of 900 ℃ or less, and it is not exposed to the high temperature of 900 ℃ or higher in subsequent processes,
The amount of fixed charges generated in the gate insulating film during irradiation of radiation can be reduced, and a MOS-type semiconductor element having radiation resistance can be manufactured at low cost. Moreover, since the first and second regions can be formed by the self-alignment method, the positional relationship between the first and second regions is good, the channel length is short, and an element with low on-resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMOS型半導体素子製造工
程を(a) から(i) までの順に示す断面図
FIG. 1 is a sectional view showing the steps of manufacturing a MOS type semiconductor device according to an embodiment of the present invention in the order of (a) to (i).

【図2】電力用MOSFETの構造を示す断面図FIG. 2 is a sectional view showing the structure of a power MOSFET.

【図3】IGBTの構造を示す断面図FIG. 3 is a sectional view showing the structure of the IGBT.

【図4】MOS型半導体素子への放射線照射時の挙動を
示す断面図
FIG. 4 is a cross-sectional view showing the behavior of a MOS type semiconductor device during radiation irradiation.

【図5】本発明の別の実施例のMOS型半導体素子製造
工程を(a) から(i) までの順に示す断面図
FIG. 5 is a cross-sectional view showing the steps of manufacturing a MOS type semiconductor device according to another embodiment of the present invention in the order of (a) to (i).

【符号の説明】[Explanation of symbols]

1 n- シリコン基板 3 p形ベース層 4 n+ ソース層 51 ゲート絶縁膜 6 ゲート電極 13 酸化層マスク 14 酸化膜 15 ほう素イオン 17 レジストマスク 18 ひ素イオン 23 マスク層1 n - silicon substrate 3 p-type base layer 4 n + source layer 51 gate insulating film 6 gate electrode 13 oxide layer mask 14 oxide film 15 boron ion 17 resist mask 18 arsenic ion 23 mask layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一導電形の半導体層の表面層に選択的に
第二導電形の第一領域を形成する工程と、前記半導体層
の表面層に選択的に第一導電形の第二領域を形成する工
程と、前記半導体層の表面上にゲート絶縁膜を形成し、
そのゲート絶縁膜の上にゲート電極を形成する工程とを
含む、第一領域の表面層内に選択的に形成された第二領
域を有し、第一領域の第一導電形層と第二領域とにはさ
まれた部分の上にゲート絶縁膜を介してゲート電極を備
えたMOS型半導体素子の製造方法において、第一領域
および第二領域を形成する工程を同一マスクを用いての
不純物導入によって行い、その工程の後でゲート絶縁膜
およびゲート電極を形成する工程を行うことを特徴とす
るMOS型半導体素子の製造方法。
1. A step of selectively forming a first region of a second conductivity type on a surface layer of a semiconductor layer of a first conductivity type, and a step of selectively forming a second region of the first conductivity type on a surface layer of the semiconductor layer. Forming a region, forming a gate insulating film on the surface of the semiconductor layer,
A step of forming a gate electrode on the gate insulating film, having a second region selectively formed in the surface layer of the first region, and a first conductivity type layer of the first region and a second region. In a method of manufacturing a MOS type semiconductor device having a gate electrode with a gate insulating film interposed between a portion sandwiched by a region, a step of forming a first region and a second region A method of manufacturing a MOS type semiconductor device, which comprises performing a step of forming a gate insulating film and a gate electrode after the step of introducing.
【請求項2】第一領域および第二領域の形成に用いるマ
スクが熱酸化膜からなる請求項1記載のMOS型半導体
素子の製造方法。
2. The method for manufacturing a MOS type semiconductor device according to claim 1, wherein the mask used for forming the first region and the second region is made of a thermal oxide film.
【請求項3】第一領域および第二領域の形成に用いるマ
スクが異なる材料の膜を積層してなる請求項1記載のM
OS型半導体素子の製造方法。
3. The M according to claim 1, wherein the masks used for forming the first region and the second region are formed by laminating films of different materials.
A method for manufacturing an OS type semiconductor device.
【請求項4】製造されるMOS型半導体素子が人工衛星
内で用いられる請求項1ないし3のいずれかに記載のM
OS型半導体素子の製造方法。
4. The M according to claim 1, wherein the manufactured MOS type semiconductor device is used in an artificial satellite.
A method for manufacturing an OS type semiconductor device.
【請求項5】製造されるMOS型半導体素子が原子力施
設内で用いられる請求項1ないし3のいずれかに記載の
MOS型半導体素子の製造方法。
5. The method for manufacturing a MOS semiconductor device according to claim 1, wherein the manufactured MOS semiconductor device is used in a nuclear facility.
JP02457593A 1993-02-15 1993-02-15 Method for manufacturing MOS type semiconductor device Expired - Lifetime JP3186298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02457593A JP3186298B2 (en) 1993-02-15 1993-02-15 Method for manufacturing MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02457593A JP3186298B2 (en) 1993-02-15 1993-02-15 Method for manufacturing MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH06244428A true JPH06244428A (en) 1994-09-02
JP3186298B2 JP3186298B2 (en) 2001-07-11

Family

ID=12141970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02457593A Expired - Lifetime JP3186298B2 (en) 1993-02-15 1993-02-15 Method for manufacturing MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP3186298B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779414A (en) * 2012-10-18 2014-05-07 富士电机株式会社 Semiconductor device and method for manufacturing the same
US20150056776A1 (en) * 2013-08-20 2015-02-26 Fuji Electric Co., Ltd. Method of manufacturing mos-type semiconductor device
US9842912B2 (en) 2015-08-19 2017-12-12 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN110073504A (en) * 2016-11-15 2019-07-30 信越化学工业株式会社 The solar battery of high-photoelectric transformation efficiency, its manufacturing method, solar cell module and photovoltaic generating system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779414A (en) * 2012-10-18 2014-05-07 富士电机株式会社 Semiconductor device and method for manufacturing the same
JP2014099580A (en) * 2012-10-18 2014-05-29 Fuji Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
US9331194B2 (en) 2012-10-18 2016-05-03 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9608057B2 (en) 2012-10-18 2017-03-28 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN103779414B (en) * 2012-10-18 2018-10-26 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device
US20150056776A1 (en) * 2013-08-20 2015-02-26 Fuji Electric Co., Ltd. Method of manufacturing mos-type semiconductor device
JP2015041644A (en) * 2013-08-20 2015-03-02 富士電機株式会社 Method of manufacturing mos type semiconductor device
CN104425614A (en) * 2013-08-20 2015-03-18 富士电机株式会社 Method of manufacturing mos-type semiconductor device
US9337288B2 (en) 2013-08-20 2016-05-10 Fuji Electric Co., Ltd. Method of manufacturing MOS-type semiconductor device
US9842912B2 (en) 2015-08-19 2017-12-12 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN110073504A (en) * 2016-11-15 2019-07-30 信越化学工业株式会社 The solar battery of high-photoelectric transformation efficiency, its manufacturing method, solar cell module and photovoltaic generating system
CN110073504B (en) * 2016-11-15 2023-04-28 信越化学工业株式会社 Solar cell with high photoelectric conversion efficiency, method for manufacturing same, solar cell module, and photovoltaic power generation system

Also Published As

Publication number Publication date
JP3186298B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US5900652A (en) Apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
US5475252A (en) Process for manufacture of radiation resistant power MOSFET and radiation resistant power MOSFET
US4199773A (en) Insulated gate field effect silicon-on-sapphire transistor and method of making same
KR100886883B1 (en) Method for fabricating forward and reverse blocking devices
US4258465A (en) Method for fabrication of offset gate MIS device
US4922315A (en) Control gate lateral silicon-on-insulator bipolar transistor
US3873372A (en) Method for producing improved transistor devices
US4783688A (en) Schottky barrier field effect transistors
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US5731637A (en) Semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
CN113270423B (en) Anti-radiation SOI device and manufacturing method
US3860454A (en) Field effect transistor structure for minimizing parasitic inversion and process for fabricating
US5831318A (en) Radhard mosfet with thick gate oxide and deep channel region
JPS6136975A (en) Semiconductor device
US4923824A (en) Simplified method of fabricating lightly doped drain insulated gate field effect transistors
JPH0575041A (en) Cmos semiconductor device
JPS6115369A (en) Semiconductor device and manufacture thereof
JP2001111052A (en) Semiconductor device and manufacturing method thereof
JP3064003B2 (en) Method for manufacturing semiconductor device
JPH0582791A (en) Power mosfet and its manufacture
JPH0234937A (en) Manufacture of semiconductor device
JP2928076B2 (en) Semiconductor device and manufacturing method thereof
KR0167664B1 (en) Method of fabricating semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100511

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100511

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130511