JPH0234937A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0234937A
JPH0234937A JP18499088A JP18499088A JPH0234937A JP H0234937 A JPH0234937 A JP H0234937A JP 18499088 A JP18499088 A JP 18499088A JP 18499088 A JP18499088 A JP 18499088A JP H0234937 A JPH0234937 A JP H0234937A
Authority
JP
Japan
Prior art keywords
region
diffusion
channel
gate electrode
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18499088A
Other languages
Japanese (ja)
Inventor
Shotaro Umebachi
梅鉢 昭太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP18499088A priority Critical patent/JPH0234937A/en
Publication of JPH0234937A publication Critical patent/JPH0234937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to easily form a deep channel layer and a low resistance region by implanting inert gas ions into the surface part of a silicon substrate in a FET formation region, and then forming a gate electrode and a channel diffusion region, and forming source and drain electrodes. CONSTITUTION:For double diffusion self-alignment type MOSFET (DMOSFET), ions of inert gas such as proton 14, argon, or the like are implanted at the amounts of 10<11> to 10<17>cm<-2> into the surface part of a silicon substrate 11 in FET formation region, and next a gate electrode 15 is formed in a desired shape at that region, and with the gate electrode 15 as a mask for impurity diffusion, a channel region 16 is formed by ion implantation and heat treatment, and then a source region 17 and an electrode being desired are formed. Hereby, enhanced diffusion is done remarkably, and as a result, a deep channel region 16 different from a diffusion profile can be formed easily, and low resistant region can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、不活性ガスイオン注入歪を利用して、深いチ
ャネル拡散を形成してなる半導体装置の製造方法、詳し
くは、二重拡散自己整合型MO8FET (DMO3F
ETと称す)の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor device in which deep channel diffusion is formed using strain induced by inert gas ion implantation, and more specifically, a method for manufacturing a semiconductor device in which deep channel diffusion is formed using strain induced by inert gas ion implantation. MO8FET (DMO3F
ET).

従来の技術 近年、DMO5FETは、高速スイッチング電源の電圧
石や、固体リレー用半導体素子として広(利用されてい
る。
BACKGROUND OF THE INVENTION In recent years, DMO5FETs have been widely used as voltage sources for high-speed switching power supplies and semiconductor elements for solid-state relays.

以下に従来のDMO8FETについて説明する。The conventional DMO8FET will be explained below.

第2図は、Nチャネル形DMO8FETを示すもので、
25はゲート、28はソース電極、29はドレイン電極
、21はN型シリコン基体、27はN型ソース拡散領域
、26及び30はP型チャネル拡散領域で、浅い部分と
、深い部分を示している。
Figure 2 shows an N-channel type DMO8FET.
25 is a gate, 28 is a source electrode, 29 is a drain electrode, 21 is an N-type silicon substrate, 27 is an N-type source diffusion region, 26 and 30 are P-type channel diffusion regions, and a shallow portion and a deep portion are shown. .

以上のように構成されたDMO8FETでは、シリコン
基体21の上面の所定拡散領域26と絶縁膜との界面に
電流通路となるべきチャネルが形成され、ゲート電極2
5で電流制御を行なう。−方、深いソース拡散領域30
は拡散領域26の電位をソース電極28の電位と等しく
するための低抵抗体を供する役割を果している。
In the DMO8FET configured as described above, a channel serving as a current path is formed at the interface between the predetermined diffusion region 26 on the upper surface of the silicon substrate 21 and the insulating film, and the gate electrode 2
5 performs current control. - side, deep source diffusion region 30
serves to provide a low resistance material for making the potential of the diffusion region 26 equal to the potential of the source electrode 28.

発明が解決しようとする課題 しかしながら、上記の従来の構成では、ソース拡散領域
27が、浅い拡散領域26と深い拡散領域30の2領域
から構成されていることから、半導体装置の製作工程上
、少なくとも2回の不純物拡散のための夫々のフォトリ
ソグラフ、熱処理工程が必要となる欠点を有していた。
Problems to be Solved by the Invention However, in the above-described conventional configuration, since the source diffusion region 27 is composed of two regions, the shallow diffusion region 26 and the deep diffusion region 30, at least This method has the disadvantage of requiring two photolithography and heat treatment steps for impurity diffusion.

本発明は上記従来の問題点を解決しようとするもので、
ソース拡散領域を1拡散で構成し、かつ、低抵抗領域を
1回の不純物拡散処理工程で形成してDMO8FETを
提供することを目的とする。
The present invention aims to solve the above conventional problems,
It is an object of the present invention to provide a DMO8FET in which a source diffusion region is formed by one diffusion and a low resistance region is formed in one impurity diffusion process.

課題を解決するための手段 この目的を達成するために、本発明のDMO8FETは
、FET形成領域のシリコン基体表部にプロントあるい
はアルゴン等の不活性ガスイオンをイオン注入法で注入
し、その後にゲート電極形成。
Means for Solving the Problems In order to achieve this object, the DMO8FET of the present invention is manufactured by implanting ion implantation or inert gas ions such as argon into the surface of the silicon substrate in the FET formation region, and then implanting ions of an inert gas such as argon. Electrode formation.

チャネル拡散領域形成し、ソース、ドレイン電極形成す
る構成を有している。
It has a structure in which a channel diffusion region is formed and source and drain electrodes are formed.

作用 この構成によると、チャネル形成前の不活性ガス注入に
よって、シリコン基体表部近くの結晶域にイオン注入歪
もしくは、結晶の乱れが生ずる。
Effect: According to this configuration, ion implantation strain or crystal disorder occurs in the crystal region near the surface of the silicon substrate due to inert gas injection before channel formation.

この歪もしくは乱れを残留せしめて、チャネルを形成す
る不純物をイオン注入法によって、注入しかつ熱処理す
ると、通常の結晶体中で拡散する速度以上に拡散する、
いわゆるエンハンスド拡散が顕著に行なわれる。その結
果、通常方法による拡散プロファイルと異なる、深くて
、不純物元素の積分量の多いチャネル領域が形成でき、
低抵抗領域を形成できる。
If this strain or disorder remains and the impurity that forms the channel is implanted by ion implantation and heat treated, it will diffuse faster than it would diffuse in a normal crystal.
So-called enhanced diffusion takes place significantly. As a result, a deep channel region with a large integrated amount of impurity elements can be formed, which is different from the diffusion profile obtained by conventional methods.
A low resistance region can be formed.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図(a)〜(d)は本発明の実施例にお
けるNチャネル型DMO3FETの製作工程を工程順断
面図で示すものである。第1図において、11はN型シ
リコン基体、12はゲート酸化膜、13はFET領域外
のフィールド酸化膜、14はイオン注入法によって打込
まれたプロトン、15はポリシリコンを素材としたゲー
ト、16はチャネル領域を形成するためのP型拡散領域
、17はソースとなるN1型拡散領域、18はアルミニ
ウムを素材としたソース電極、19はN型シリコン基体
にオーム接触したドレイン電極である。以上のように構
成されたDMO3FETの製作工程を用いて、本発明を
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(d) are sectional views showing the manufacturing process of an N-channel type DMO3FET in an embodiment of the present invention. In FIG. 1, 11 is an N-type silicon substrate, 12 is a gate oxide film, 13 is a field oxide film outside the FET area, 14 is a proton implanted by ion implantation, 15 is a gate made of polysilicon, 16 is a P-type diffusion region for forming a channel region, 17 is an N1-type diffusion region that becomes a source, 18 is a source electrode made of aluminum, and 19 is a drain electrode in ohmic contact with the N-type silicon substrate. The present invention will be explained using the manufacturing process of the DMO3FET configured as described above.

第1図(a)では、基体110片面に、約1μの酸化膜
を形成してのち、フィールド酸化膜13を残してアクテ
ィブなFET形成領域をフォトリソグラフィ技術で酸化
膜を選択エッチして、さらに約1000Aのゲート酸化
膜12をつけ、同片面の全面にドーズ量約1016cm
−2のプロトンを約100keVでイオン注入する。第
1図(b)では、約0.5μ厚のポリシリコンを700
℃で、CVD技術で形成して後、所望の領域にフォトリ
ソグラフィ技術で形成して、ゲート15を設け、約10
13cm−2のポロンイオンを約100keVで注入し
、かつ1150℃で、4時間熱処理を施すと、約6μm
深さのチャネル領域16がセルファライン形成される。
In FIG. 1(a), an oxide film of about 1μ is formed on one side of the substrate 110, and then the active FET formation region is selectively etched using photolithography, leaving the field oxide film 13. A gate oxide film 12 of about 1000 A is applied, and a dose of about 1016 cm is applied to the entire surface of the same side.
-2 protons are ion-implanted at about 100 keV. In Figure 1(b), 700 μm of polysilicon with a thickness of approximately 0.5μ is used.
℃ by CVD technology, and then formed in a desired area by photolithography technology to provide a gate 15.
When 13 cm-2 of poron ions are implanted at about 100 keV and heat treated at 1150°C for 4 hours, it becomes about 6 μm.
A deep channel region 16 is self-lined.

同図(C)では、約5 X 10 ”cm−2のリンイ
オンをイオン注入し、1000℃で30分間熱処理する
と、約0.8μ深さのソース拡散領域17が同じ(セル
ファライン形成される。同図(d)では、ソース領域に
所望のコンタクトホールをフォトリソグラフィ技術によ
って開孔し、ソース、ゲート上にアルミニウム電極をフ
ォトリソグラフィ技術でパターン形成する。また基体1
1の他の片面に金アンチモン膜を約1μm真空蒸着して
ドレイン19を形成する。
In the same figure (C), when phosphorus ions of about 5 x 10'' cm-2 are implanted and heat treated at 1000°C for 30 minutes, a source diffusion region 17 with a depth of about 0.8 μm is formed in the same manner (self-alignment). In the same figure (d), a desired contact hole is formed in the source region by photolithography, and an aluminum electrode is patterned on the source and gate by photolithography.
A gold-antimony film is vacuum-deposited to a thickness of about 1 μm on the other side of the drain 19.

以上の実施例によれば、プロトンの比較的大量の注入に
よって生じたシリコン基体表部の歪によって、その後注
入されたボロンは、いわゆるエンハンスド拡散によって
、比較的短時間に深い拡散が出来ると共に、拡散プロフ
ァイルもがウス分布からずれて、10”am−3領域が
比較的長く伸びたプロファイルでシート抵抗が下がる。
According to the above embodiment, due to the strain on the surface of the silicon substrate caused by the implantation of a relatively large amount of protons, the subsequently implanted boron can be deeply diffused in a relatively short time by so-called enhanced diffusion. The profile also deviates from the Gaussian distribution, and the sheet resistance decreases with a profile in which the 10" am-3 region extends relatively long.

この時、もちろん、ゲート15の下端にも同様な拡散プ
ロファイルが得られ、DMO8FETのしきい値電圧は
約2.5vとなった。
At this time, of course, a similar diffusion profile was obtained at the lower end of the gate 15, and the threshold voltage of the DMO8FET was approximately 2.5V.

シリコン基体に2゜0Ωcmリンドープ材を用いた時、
ドレイン、ソース耐圧が120vとなり、いわゆるサイ
リスク現象は約0 、2 A / 1 cvaゲート幅
まで現れなかった。従って、本発明によるP型拡散領域
16は、従来構造DMO8FETの浅い拡散領域26、
および深い拡散領域30の両方の役割を果たすことがで
きる。
When using 2゜0Ωcm phosphorus doped material on the silicon substrate,
The drain and source breakdown voltages were 120V, and the so-called sirisk phenomenon did not appear until the gate width was approximately 0.2 A/1 cva. Therefore, the P-type diffusion region 16 according to the present invention is similar to the shallow diffusion region 26 of the conventional structure DMO8FET.
and a deep diffusion region 30.

また、本発明の製作工程は従来法に比べて、浅い拡散領
域26の形成工程が省けるという効果もあって、工業的
には非常に有用である。
Further, the manufacturing process of the present invention has the effect of omitting the step of forming the shallow diffusion region 26 compared to the conventional method, and is very useful industrially.

なお、本発明はシリコンを基体としたNチャネルDMO
8FETばかりでなく、短時間に深い拡散を行なって製
作する他のデバイスにも有効である。
Note that the present invention is an N-channel DMO based on silicon.
This method is effective not only for 8FETs but also for other devices manufactured by performing deep diffusion in a short period of time.

発明の効果 以上のように、本発明によれば、DMOSFETのFE
T領域全面に先ず、プロトンなど不活性ガスイオンを注
入し、次にゲートマスクでもってチャネル層をイオン注
入によって不純物導入し、その後の熱処理によって、深
いチャネル層が容易に形成でき、サイリスタ現象の抑制
できた出力特性が得やすいという優れたDMOSFET
を実現できる。
Effects of the Invention As described above, according to the present invention, the FE of DMOSFET
First, inert gas ions such as protons are implanted into the entire T region, then impurities are introduced into the channel layer by ion implantation using a gate mask, and by subsequent heat treatment, a deep channel layer can be easily formed and the thyristor phenomenon can be suppressed. An excellent DMOSFET that allows you to easily obtain the desired output characteristics.
can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるDMOSFETの製作
工程順断面図、第2図は従来のDMOSFETの断面構
造図である。 11・・・・・・N型シリコン基体、12・・・・・・
ゲート酸化膜、15・・・・・・ゲート、16・・・・
・・チャネル拡散領域、18・・・・・・ソース電極、
19・・・・・・ドレイン電極、30・・・・・・深い
チャネル拡散領域、28・・・・・・ドレイン電極。
FIG. 1 is a sectional view of a DMOSFET according to an embodiment of the present invention in the order of manufacturing steps, and FIG. 2 is a sectional view of a conventional DMOSFET. 11...N-type silicon substrate, 12...
Gate oxide film, 15... Gate, 16...
...Channel diffusion region, 18...Source electrode,
19...Drain electrode, 30...Deep channel diffusion region, 28...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] FET形成領域に先ず不活性気体イオンを10^1^1
〜10^1^7cm^−^2の量でイオン注入し、次に
前記領域にゲート電極を所望の形状に形成し、同ゲート
電極を不純物拡散のマスクとして、チャネル領域をイオ
ン注入と熱処理によって形成後、所望のソース領域形成
および電極形成を行なう工程をそなえたことを特徴とす
る半導体装置の製造方法。
First, 10^1^1 inert gas ions are applied to the FET forming area.
Ion implantation is performed at a dose of ~10^1^7 cm^-^2, then a gate electrode is formed in the desired shape in the region, and the channel region is implanted by ion implantation and heat treatment using the gate electrode as a mask for impurity diffusion. 1. A method of manufacturing a semiconductor device, comprising the steps of forming a desired source region and an electrode after formation.
JP18499088A 1988-07-25 1988-07-25 Manufacture of semiconductor device Pending JPH0234937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18499088A JPH0234937A (en) 1988-07-25 1988-07-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18499088A JPH0234937A (en) 1988-07-25 1988-07-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0234937A true JPH0234937A (en) 1990-02-05

Family

ID=16162863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18499088A Pending JPH0234937A (en) 1988-07-25 1988-07-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0234937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108935A (en) * 1990-11-16 1992-04-28 Texas Instruments Incorporated Reduction of hot carrier effects in semiconductor devices by controlled scattering via the intentional introduction of impurities
US5322802A (en) * 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor
US5759904A (en) * 1996-11-06 1998-06-02 Southwest Research Institute Suppression of transient enhanced diffusion in ion implanted silicon
US5869377A (en) * 1984-08-22 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Method of fabrication LDD semiconductor device with amorphous regions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840864A (en) * 1981-09-03 1983-03-09 Nec Corp Manufacture of semiconductor device
JPS5954222A (en) * 1982-09-21 1984-03-29 Toshiba Corp Manufacture of semiconductor device
JPS6014435A (en) * 1983-07-04 1985-01-25 Nec Corp Forming method of p type region
JPS62211955A (en) * 1986-03-12 1987-09-17 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840864A (en) * 1981-09-03 1983-03-09 Nec Corp Manufacture of semiconductor device
JPS5954222A (en) * 1982-09-21 1984-03-29 Toshiba Corp Manufacture of semiconductor device
JPS6014435A (en) * 1983-07-04 1985-01-25 Nec Corp Forming method of p type region
JPS62211955A (en) * 1986-03-12 1987-09-17 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869377A (en) * 1984-08-22 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Method of fabrication LDD semiconductor device with amorphous regions
US5108935A (en) * 1990-11-16 1992-04-28 Texas Instruments Incorporated Reduction of hot carrier effects in semiconductor devices by controlled scattering via the intentional introduction of impurities
US5322802A (en) * 1993-01-25 1994-06-21 North Carolina State University At Raleigh Method of fabricating silicon carbide field effect transistor
US5759904A (en) * 1996-11-06 1998-06-02 Southwest Research Institute Suppression of transient enhanced diffusion in ion implanted silicon

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JPH03145138A (en) Formation of dmos transistor
US9608057B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2002025931A (en) Manufacture of semiconductor element
JP2000188391A (en) Manufacture of semiconductor integrated circuit device
JPH0237777A (en) Vertical type field-effect transistor
JPH0851207A (en) Film transistor and its manufacture
US4958204A (en) Junction field-effect transistor with a novel gate
JPH0234937A (en) Manufacture of semiconductor device
JPH02180074A (en) Offset type field effect transistor and insulation gate type bipolar transistor
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JP2643966B2 (en) Manufacturing method of double diffusion type field effect semiconductor device.
JP2858622B2 (en) Semiconductor device
JPS63226072A (en) Manufacture of semiconductor device
JPH06268162A (en) Semiconductor device and its manufacture
JPH01214169A (en) Semiconductor device
JP2830366B2 (en) Method for manufacturing semiconductor device
KR100219063B1 (en) Method of manufacturing semiconductor device
JP2909760B2 (en) DMOSFET manufacturing method
JPH0888232A (en) Manufacture of vertical mos semiconductor element
KR100260363B1 (en) Gate electrode of semiconductor device and method for forming the same
KR940004268B1 (en) Semiconductor device for high-voltage
JP2668929B2 (en) Method for manufacturing semiconductor device
JPH05251697A (en) Mosfet and its manufacture