JPH06268162A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH06268162A
JPH06268162A JP5055338A JP5533893A JPH06268162A JP H06268162 A JPH06268162 A JP H06268162A JP 5055338 A JP5055338 A JP 5055338A JP 5533893 A JP5533893 A JP 5533893A JP H06268162 A JPH06268162 A JP H06268162A
Authority
JP
Japan
Prior art keywords
mos transistor
concentration
breakdown voltage
semiconductor device
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055338A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hirota
良浩 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5055338A priority Critical patent/JPH06268162A/en
Publication of JPH06268162A publication Critical patent/JPH06268162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device wherein an ordinary-breakdown-strength MOS transistor and a high-breakdown-strength strength MOS transistor which have been made fine are provided without increasing the number of mask working processes by a method wherein a layer whose impurity concentration is effectively low is formed around a high-breakdown-strength diffusion layer. CONSTITUTION:In a semiconductor device, an ordinary-breakdown-strength MOS transistor 30 and a high-breakdown-strength MOS transistor 11 are formed inside the same well 32 existing near the surface of a semiconductor substrate 10. In the semiconductor device, the well 32 is a heavily-doped diffusion region, and a high-breakdown-strength diffusion layer 12 in which impurities whose conductivity type is opposite to that of impurities in the well 32 and which constitutes one part of the high-breakdown- strength MOS transistor 11 is provided. Then, a layer 13 whose impurity concentration is effectively low is formed around the high-breakdown-strength diffusion layer 12. Thereby, the prdinary-breakdown-strength MOS transistor and the high-breakdown- strength MOS transistor which have been made fine inside the same high-concentration well can be formed without increasing the number of mask working processes and with good productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置及びその製造
方法に関し、より詳細には2種類以上の電源電圧で動作
する半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a semiconductor device that operates with two or more kinds of power supply voltages and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図4は、従来から使用されている2種類
の電源電圧により動作する半導体装置を示す模式的な断
面図であり、図中、10は半導体基板を示している。半
導体基板10には、不純物が高濃度で拡散された高濃度
不純物拡散領域(以下、高濃度ウエルと記す)32と不
純物が低濃度で拡散された低濃度不純物拡散領域(以
下、低濃度ウエルと記す)39との二つのウエルが形成
されている。そして、高濃度ウエル32側には、高濃度
ウエル32上に形成された薄いゲート酸化膜35、薄い
ゲート酸化膜35の両端部に接続して形成されたフィー
ルド酸化膜33、薄いゲート酸化膜35の上に形成され
たゲート電極34及び薄いゲート酸化膜35の下方であ
って、ゲート電極34の下方を除く領域に形成され、高
濃度ウエル32と逆導電型の不純物が高濃度で拡散され
た高濃度拡散層37から構成された通常耐圧MOSトラ
ンジスタ30が形成されている。
2. Description of the Related Art FIG. 4 is a schematic cross-sectional view showing a semiconductor device which is operated by two kinds of power supply voltages which have been conventionally used. In the figure, 10 denotes a semiconductor substrate. In the semiconductor substrate 10, a high-concentration impurity diffusion region (hereinafter referred to as a high-concentration well) 32 in which impurities are diffused at a high concentration and a low-concentration impurity diffusion region (hereinafter, referred to as a low-concentration well) in which impurities are diffused at a low concentration are formed. Note 39). On the high-concentration well 32 side, a thin gate oxide film 35 formed on the high-concentration well 32, a field oxide film 33 connected to both ends of the thin gate oxide film 35, and a thin gate oxide film 35. An impurity having a conductivity type opposite to that of the high-concentration well 32 is diffused at a high concentration, which is formed in a region below the gate electrode 34 and the thin gate oxide film 35 formed above the gate electrode 34 except the lower portion of the gate electrode 34. The normal breakdown voltage MOS transistor 30 including the high concentration diffusion layer 37 is formed.

【0003】一方低濃度ウエル39側には、低濃度ウエ
ル39上の略中央部に形成された厚いゲート酸化膜3
6、厚いゲート酸化膜36の左右にフィールド酸化膜3
3を挟んで活性領域(ソース又はドレイン領域)に形成
された薄い酸化膜35’、厚いゲート酸化膜36からフ
ィールド酸化膜33上にかけて形成されたゲート電極3
4、薄い酸化膜35’の下方に形成された高濃度拡散層
37及び高濃度拡散層37の周囲に形成され、高濃度拡
散層37と同じ導電型の不純物が低濃度で拡散された高
耐圧拡散層38から構成された高耐圧MOSトランジス
タ31が形成されており、この高耐圧MOSトランジス
タ31は高電源電圧で動作するようになっている。
On the other hand, on the side of the low-concentration well 39, the thick gate oxide film 3 formed substantially in the center of the low-concentration well 39.
6. Field oxide film 3 on the left and right of the thick gate oxide film 36
3, a thin oxide film 35 'formed in the active region (source or drain region) with the gate electrode 3 interposed therebetween, and a gate electrode 3 formed from the thick gate oxide film 36 to the field oxide film 33.
4. A high-concentration diffusion layer 37 formed under the thin oxide film 35 'and a high breakdown voltage formed around the high-concentration diffusion layer 37, in which impurities of the same conductivity type as the high-concentration diffusion layer 37 are diffused at a low concentration. A high breakdown voltage MOS transistor 31 composed of a diffusion layer 38 is formed, and this high breakdown voltage MOS transistor 31 operates at a high power supply voltage.

【0004】前記した2種類の電源電圧で動作するMO
Sトランジスタ30、31を有する半導体装置を形成す
る場合、最初に半導体基板10に2種類の異なったマス
クを用いて、2段階で高濃度ウエル32と低濃度ウエル
39とを形成している。
MO that operates with the above-mentioned two types of power supply voltages
When forming a semiconductor device having the S transistors 30 and 31, first, the high-concentration well 32 and the low-concentration well 39 are formed in two steps by using two different masks on the semiconductor substrate 10.

【0005】[0005]

【発明が解決しようとする課題】このように、上記方法
により2種類の電源電圧で動作する半導体装置を形成す
るには、初めに2種類の異なったマスクを用い、異なる
領域に2段階にわたり濃度の異なる高濃度ウエル32、
低濃度ウエル39を形成しなければならないため、マス
クワークの工数が増大するという課題があった。
As described above, in order to form a semiconductor device which operates with two kinds of power supply voltages by the above method, first, two different kinds of masks are used, and the concentration is applied to different regions in two steps. High concentration well 32 of different
Since the low-concentration well 39 has to be formed, there is a problem that the number of mask work steps is increased.

【0006】一方、このようなマスクワークの工数の増
大をさけるために、半導体基板の表面付近に低濃度ウエ
ルのみを形成し、該低濃度ウエル内に通常耐圧MOSト
ランジスタ及び高耐圧MOSトランジスタの2種類のM
OSトランジスタを形成する方法も考えられるが、この
場合、通常耐圧MOSトランジスタにおける、チャネル
面積を大きくしなければならないために所定以上の大き
さを必要とし、その微細化に限界があるという課題があ
った。
On the other hand, in order to avoid the increase in the number of mask work steps, only a low-concentration well is formed near the surface of the semiconductor substrate, and the normal-voltage MOS transistor and the high-voltage MOS transistor are provided in the low-concentration well. Kind of M
A method of forming an OS transistor is also conceivable, but in this case, a channel area of a normally-breakdown-voltage MOS transistor must be increased, so that a size larger than a predetermined size is required, and there is a problem that there is a limit to miniaturization thereof. It was

【0007】本発明はこのような課題に鑑みなされたも
のであり、マスクワークの工数を増大させることなく、
しかも微細化された通常耐圧のMOSトランジスタと高
耐圧のMOSトランジスタとを有する半導体装置及びそ
の製造方法を提供することを目的としている。
The present invention has been made in view of the above problems, and can be achieved without increasing the number of mask work steps.
Moreover, it is an object of the present invention to provide a semiconductor device having a miniaturized normal withstand voltage MOS transistor and a high withstand voltage MOS transistor, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る半導体装置は、半導体基板表面付近に存
在する同一ウエル内に通常耐圧MOSトランジスタと高
耐圧MOSトランジスタとが形成された半導体装置にお
いて、前記ウエルは高濃度不純物拡散領域であって、前
記ウエル中の不純物と逆導電型の不純物が拡散されて前
記高耐圧MOSトランジスタの一部を構成する高耐圧拡
散層を備え、該高耐圧拡散層の周囲に実効的に不純物濃
度の低い層が形成されていることを特徴としている。
To achieve the above object, a semiconductor device according to the present invention is a semiconductor device in which a normal breakdown voltage MOS transistor and a high breakdown voltage MOS transistor are formed in the same well existing near the surface of a semiconductor substrate. In the device, the well is a high-concentration impurity diffusion region, and is provided with a high breakdown voltage diffusion layer in which an impurity having a conductivity type opposite to that of the well is diffused to form a part of the high breakdown voltage MOS transistor. It is characterized in that a layer having a low impurity concentration is effectively formed around the breakdown voltage diffusion layer.

【0009】また本発明に係る上記記載の半導体装置の
製造方法は、半導体基板に不純物を注入し拡散して高濃
度不純物拡散領域(以下、高濃度ウエルという)を形成
する工程、及び該高濃度ウエルの所定箇所に前記高濃度
ウエル中の不純物と逆導電型の不純物を異なるエネルギ
で2度注入し、高耐圧拡散層及びその周囲に実効的に不
純物濃度の低い層(以下、不純物低濃度層と記す)を形
成する工程を含むことを特徴としている。
Further, in the above-described method for manufacturing a semiconductor device according to the present invention, a step of implanting and diffusing an impurity in a semiconductor substrate to form a high concentration impurity diffusion region (hereinafter referred to as a high concentration well), and the high concentration Impurities of the opposite conductivity type to those in the high-concentration well are implanted twice into predetermined portions of the well at different energies to effectively reduce the impurity concentration in the high-voltage diffusion layer and its periphery (hereinafter referred to as “impurity-low concentration layer”). It is characterized by including the process of forming).

【0010】[0010]

【作用】上記半導体装置によれば、高耐圧MOSトラン
ジスタを構成する高耐圧拡散層の周囲に局部的にウエル
の不純物濃度が実効的に低い層(不純物低濃度層)が形
成されており、電圧が印加されると前記不純物低濃度層
が空乏層となり、高耐圧MOSトランジスタの耐圧が充
分に高くなるため、同一ウエル内に微細化された通常耐
圧MOSトランジスタと高耐圧MOSトランジスタの形
成が可能となる。
According to the above semiconductor device, a layer (impurity low concentration layer) where the impurity concentration of the well is effectively low is locally formed around the high breakdown voltage diffusion layer forming the high voltage MOS transistor. Is applied, the impurity low-concentration layer becomes a depletion layer, and the breakdown voltage of the high breakdown voltage MOS transistor becomes sufficiently high, so that it is possible to form a miniaturized normal breakdown voltage MOS transistor and high breakdown voltage MOS transistor in the same well. Become.

【0011】また上記記載の半導体装置の製造方法によ
れば、ウエルを形成するのに1種類のマスクのみを用
い、前記不純物低濃度層を形成するための不純物の注入
は、前記高耐圧拡散層を形成するために設置したマスク
をそのまま用いて行うことができ、マスクワークの工数
を増大させることなく、同一ウエル内に微細化された通
常耐圧MOSトランジスタと高耐圧MOSトランジスタ
とが形成される。
Further, according to the method of manufacturing a semiconductor device described above, only one type of mask is used to form a well, and the implantation of impurities for forming the low impurity concentration layer is performed by using the high breakdown voltage diffusion layer. It is possible to use the mask installed for forming the structure as it is, and the miniaturized normal breakdown voltage MOS transistor and high breakdown voltage MOS transistor are formed in the same well without increasing the number of mask work steps.

【0012】[0012]

【実施例】以下、本発明に係る半導体装置及びその製造
方法についての実施例を図面に基づいて説明する。な
お、従来例と同一機能を有する構成部品には同一の符号
を付すこととする。
Embodiments of a semiconductor device and a method of manufacturing the same according to the present invention will be described below with reference to the drawings. It should be noted that components having the same functions as those of the conventional example are designated by the same reference numerals.

【0013】図1は実施例に係る半導体装置を模式的に
示した断面図であり、図中、10は半導体基板を示して
いる。半導体基板10の表面付近には、高濃度ウエル3
2のみが形成され、この高濃度ウエル32内に、通常耐
圧MOSトランジスタ30及び高耐圧MOSトランジス
タ11が形成されている。
FIG. 1 is a sectional view schematically showing a semiconductor device according to an embodiment, and in the drawing, 10 denotes a semiconductor substrate. In the vicinity of the surface of the semiconductor substrate 10, the high concentration well 3
In the high concentration well 32, the normal breakdown voltage MOS transistor 30 and the high breakdown voltage MOS transistor 11 are formed.

【0014】通常耐圧MOSトランジスタ30は、高濃
度ウエル32上に形成された薄いゲート酸化膜35、薄
いゲート酸化膜35の両端部に接続して形成されたフィ
ールド酸化膜33、薄いゲート酸化膜35の上に形成さ
れたゲート電極34a及び薄いゲート酸化膜35の下方
であって、ゲート電極34の下方を除く領域に形成さ
れ、高濃度ウエル32と逆導電型の不純物が拡散された
高濃度拡散層37から構成されている。
The normal breakdown voltage MOS transistor 30 has a thin gate oxide film 35 formed on the high-concentration well 32, a field oxide film 33 formed at both ends of the thin gate oxide film 35, and a thin gate oxide film 35. High-concentration diffusion in which impurities of the opposite conductivity type to the high-concentration well 32 are diffused and are formed in a region below the gate electrode 34a and the thin gate oxide film 35 formed above the gate electrode 34, except under the gate electrode 34. It is composed of layer 37.

【0015】一方高耐圧MOSトランジスタ11は通常
耐圧MOSトランジスタ30と幅の広いフィールド酸化
膜33を隔てて、下記の如くに構成されている。すなわ
ち高耐圧MOSトランジスタ11は、高耐圧MOSトラ
ンジスタ11の形成領域の略中央部であって、高濃度ウ
エル32上に形成された厚いゲート酸化膜36、この厚
いゲート酸化膜36の左右にフィールド酸化膜33を挟
んで活性領域(ソース又はドレイン領域)に形成された
薄い酸化膜35’、厚いゲート酸化膜36からフィール
ド酸化膜33上にかけて形成されたゲート電極34b、
薄い酸化膜35’の下方に形成された高濃度拡散層3
7、この高濃度拡散層37の下側周囲に形成され、高濃
度拡散層37と同じ導電型の不純物が低濃度で拡散され
た高耐圧拡散層12及び高耐圧拡散層12の下側周囲に
局部的に形成された実効的に不純物濃度が低い不純物低
濃度層13を含んで構成されている。
On the other hand, the high breakdown voltage MOS transistor 11 is constructed as follows with the normal breakdown voltage MOS transistor 30 and the wide field oxide film 33 being separated from each other. That is, the high-breakdown-voltage MOS transistor 11 has a thick gate oxide film 36 formed on the high-concentration well 32 in a substantially central portion of the formation region of the high-breakdown-voltage MOS transistor 11, and field oxidation is performed on the left and right sides of the thick gate oxide film 36. A thin oxide film 35 ′ formed in the active region (source or drain region) with the film 33 interposed therebetween, a gate electrode 34 b formed from the thick gate oxide film 36 to the field oxide film 33,
High-concentration diffusion layer 3 formed under the thin oxide film 35 '
7. A high breakdown voltage diffusion layer 12 formed around the lower side of the high concentration diffusion layer 37, in which impurities of the same conductivity type as the high concentration diffusion layer 37 are diffused at a low concentration, and around the lower side of the high breakdown voltage diffusion layer 12. It is configured to include a low-impurity concentration layer 13 that is locally formed and has an effective low impurity concentration.

【0016】このように高耐圧拡散層12の下側周囲に
局部的に不純物低濃度層13が存在することにより、耐
電圧が上昇し、高耐圧MOSトランジスタとしての機能
を充分に果たさせることができる。
Thus, the presence of the impurity low-concentration layer 13 locally around the lower side of the high breakdown voltage diffusion layer 12 raises the withstand voltage and allows the high breakdown voltage MOS transistor to sufficiently perform its function. You can

【0017】次に、上記構成の実施例に係る半導体装置
の製造方法を図面に基づいて説明する。図2(a)〜
(e)は、実施例に係る半導体装置の製造工程を模式的
に示す断面図である。
Next, a method of manufacturing the semiconductor device according to the embodiment having the above structure will be described with reference to the drawings. 2 (a)-
7E is a cross-sectional view schematically showing the manufacturing process of the semiconductor device according to the example. FIG.

【0018】まず、比抵抗4〜8Ωcmのシリコンから
なるn型半導体基板10の表面付近に、B(ボロン)等
のp型ドーパントを8.0×1012cm-2程度の密度で
注入し、その後約1200℃で加熱処理することにより
高温拡散処理を施し、深さが約3.5μm程度のp型高
濃度ウエル32を形成し、さらに基板10表面に熱酸化
処理を施して薄い熱酸化膜14を形成する(図2
(a))。
First, a p-type dopant such as B (boron) is implanted at a density of about 8.0 × 10 12 cm -2 near the surface of the n-type semiconductor substrate 10 made of silicon having a specific resistance of 4 to 8 Ωcm, Thereafter, a high temperature diffusion process is performed by heat treatment at about 1200 ° C. to form a p-type high concentration well 32 having a depth of about 3.5 μm, and a thermal oxidation process is further performed on the surface of the substrate 10 to form a thin thermal oxide film. 14 (FIG. 2)
(A)).

【0019】次に、高耐圧拡散層12を形成する領域を
除いてフォトリソグラフィによりフォトレジスト15で
被覆し、フォトレジスト15で被覆されていない部分に
選択的にP(リン)等のn型ドーパントを180keV
のエネルギ及び1.0×1013cm-2程度の密度で注入
し、高耐圧拡散層12を形成する(図2(b))。
Next, except for the region where the high breakdown voltage diffusion layer 12 is formed, it is covered with a photoresist 15 by photolithography, and an n-type dopant such as P (phosphorus) is selectively applied to a portion not covered with the photoresist 15. 180 keV
And a density of about 1.0 × 10 13 cm −2 to form a high breakdown voltage diffusion layer 12 (FIG. 2B).

【0020】さらに図2(c)に示すように、同一のフ
ォトレジスト15を用いて、800keV程度と前工程
に比較してさらに高エネルギ及び3×1012cm-2程度
の密度で、P等のn型ドーパントを注入し、高耐圧拡散
層12の周囲に実効的に不純物濃度が低い層(不純物低
濃度層)13を形成する。
Further, as shown in FIG. 2 (c), the same photoresist 15 is used, and P is equal to about 800 keV with a higher energy and a density of about 3 × 10 12 cm -2 as compared with the previous step. The n-type dopant is injected to effectively form a layer 13 having a low impurity concentration (low impurity concentration layer) 13 around the high breakdown voltage diffusion layer 12.

【0021】次に、フォトレジスト15を除去した後、
半導体基板10に1000℃で選択酸化法によるウェッ
ト酸化処理を施し、フィールド酸化膜33を約6000
Å程度の厚みに成長させ、その後薄いゲート酸化膜3
5、薄い酸化膜35’及び厚いゲート酸化膜36を成長
させる。前記1000℃での選択酸化における加熱処理
は、高耐圧拡散層12や不純物低濃度層13の拡散も兼
ねており、この熱処理により高耐圧拡散層12の下側周
囲に局部的に不純物低濃度層13が形成される(図2
(d))。
Next, after removing the photoresist 15,
The semiconductor substrate 10 is subjected to a wet oxidation process at 1000 ° C. by a selective oxidation method so that the field oxide film 33 has a thickness of about 6000.
Growth to a thickness of about Å, then a thin gate oxide film 3
5. Grow thin oxide layer 35 'and thick gate oxide layer 36. The heat treatment in the selective oxidation at 1000 ° C. also serves as the diffusion of the high breakdown voltage diffusion layer 12 and the low impurity concentration layer 13, and this heat treatment locally forms a low concentration impurity layer around the lower side of the high breakdown voltage diffusion layer 12. 13 is formed (Fig. 2
(D)).

【0022】次に、前記工程で形成された薄いゲート酸
化膜35及び厚いゲート酸化膜36の上にゲート電極3
4a、34bを形成し、このゲート電極34a、34b
及びフィールド酸化膜33をマスクにしてAs(ヒ素)
等のn型ドーパントを80keV程度のエネルギー及び
5.0×1015cm-2程度の密度で注入し、高濃度拡散
層37を形成する(図2(e))。
Next, the gate electrode 3 is formed on the thin gate oxide film 35 and the thick gate oxide film 36 formed in the above process.
4a and 34b are formed, and the gate electrodes 34a and 34b are formed.
And using the field oxide film 33 as a mask, As (arsenic)
An n-type dopant such as the above is implanted at an energy of about 80 keV and a density of about 5.0 × 10 15 cm −2 to form a high concentration diffusion layer 37 (FIG. 2E).

【0023】上記した工程により2種類の電源電圧で動
作する高耐圧MOSトランジスタ11、通常耐圧MOS
トランジスタ30を同一の高濃度ウエル32内に形成す
ることができ、しかも通常耐圧MOSトランジスタ30
の微細化を図ることが可能になるとともに、高耐圧MO
Sトランジスタ11の高耐圧性を確保することができ
る。
The high withstand voltage MOS transistor 11 and the normal withstand voltage MOS which are operated by two kinds of power supply voltages by the above steps
The transistors 30 can be formed in the same high-concentration well 32, and the normal breakdown voltage MOS transistor 30 can be formed.
Can be miniaturized, and high breakdown voltage MO can be achieved.
High breakdown voltage of the S transistor 11 can be ensured.

【0024】図3は、図1に示した実施例の半導体装置
及び図4に示した従来の半導体装置の下記の部位におけ
る、半導体基板表面からの深さ方向と不純物濃度との関
係を示したグラフである。Aは実施例における高耐圧M
OSトランジスタ11の高濃度拡散層37が存在する部
分、Bは実施例における通常耐圧MOSトランジスタ3
0の高濃度拡散層37が存在する部分、Cは前記従来の
半導体装置において、高耐圧MOSトランジスタ31の
高濃度拡散層37が存在する部分における値をそれぞれ
示している。
FIG. 3 shows the relationship between the depth direction from the semiconductor substrate surface and the impurity concentration in the following portions of the semiconductor device of the embodiment shown in FIG. 1 and the conventional semiconductor device shown in FIG. It is a graph. A is a high breakdown voltage M in the embodiment
A portion of the OS transistor 11 where the high-concentration diffusion layer 37 exists, B is the normal breakdown voltage MOS transistor 3 in the embodiment.
0 indicates a portion where the high concentration diffusion layer 37 exists, and C indicates a value in the portion where the high concentration diffusion layer 37 of the high breakdown voltage MOS transistor 31 exists in the conventional semiconductor device.

【0025】Aの高濃度拡散層37より下の高耐圧拡散
層12から高濃度ウエル32に至る不純物濃度のプロフ
ァイルは、高耐圧拡散層38(図4)の周囲に低濃度ウ
エル39と逆導電型のイオンを注入していないCの不純
物濃度のプロファイルに比べて、不純物濃度が1ケタ以
上も低くなっている部分(不純物低濃度層13)が存在
し、より高耐圧なMOS型トランジスタ11が形成され
ていることがわかる。
The profile of the impurity concentration from the high breakdown voltage diffusion layer 12 below the high concentration diffusion layer 37 of A to the high concentration well 32 has a conductivity opposite to that of the low concentration well 39 around the high breakdown voltage diffusion layer 38 (FIG. 4). There is a portion (impurity low-concentration layer 13) in which the impurity concentration is lower by one digit or more than the profile of the impurity concentration of C in which the ion of the type is not implanted, and the MOS transistor 11 having a higher breakdown voltage is formed. It can be seen that it is formed.

【0026】実際に、実施例に係る高耐圧MOSトラン
ジスタ11の耐圧を測定したところ、80V以上とな
り、高耐圧のMOSトランジスタが形成されていること
が立証された。
Actually, when the breakdown voltage of the high breakdown voltage MOS transistor 11 according to the embodiment was measured, it was proved that a high breakdown voltage MOS transistor was formed, which was 80 V or more.

【0027】本発明の半導体装置において、前記半導体
基板はn型でもp型でもどちらでもよく、前記高濃度ウ
エルは前記半導体基板と逆導電型の不純物が拡散された
n型またはp型の半導体である。また前記高濃度ウエル
の不純物濃度は、5×1016〜1×1017cm-3程度が
好ましく、前記高耐圧拡散層の周囲に形成された不純物
低濃度層は1×1015〜5×1015cm-3程度と前記高
濃度ウエルよりも1〜2桁程度低い濃度であることが好
ましい。
In the semiconductor device of the present invention, the semiconductor substrate may be either n-type or p-type, and the high-concentration well is an n-type or p-type semiconductor in which impurities of a conductivity type opposite to that of the semiconductor substrate are diffused. is there. The impurity concentration of the high-concentration well is preferably about 5 × 10 16 to 1 × 10 17 cm −3, and the impurity low-concentration layer formed around the high-voltage diffusion layer is 1 × 10 15 to 5 × 10. It is preferable that the concentration is about 15 cm −3, which is lower than the high concentration well by about 1 to 2 digits.

【0028】また上記記載の半導体装置の製造方法にお
いて、前記高濃度ウエルの所定箇所に前記高濃度ウエル
中の不純物と逆導電型の不純物を異なるエネルギで2度
注入する際には、1回目が150〜180keV程度の
エネルギ及び1×1012〜3×1012cm-2程度の密度
で注入するのが好ましく、2回目は700〜900ke
V程度のエネルギ及び2×1013〜3×1013cm-2
度の密度で注入するのが好ましい。
In the method of manufacturing a semiconductor device described above, when the impurities in the high-concentration well and the impurities of the opposite conductivity type are implanted twice at predetermined locations in the high-concentration well, the first time is used. It is preferable to inject at an energy of about 150 to 180 keV and a density of about 1 × 10 12 to 3 × 10 12 cm −2 , and 700 to 900 ke for the second time.
It is preferable to implant with an energy of about V and a density of about 2 × 10 13 to 3 × 10 13 cm −2 .

【0029】[0029]

【発明の効果】以上詳述したように本発明に係る半導体
装置にあっては、半導体基板表面付近に存在する同一ウ
エル内に通常耐圧MOSトランジスタと高耐圧MOSト
ランジスタとが形成された半導体装置において、前記ウ
エルは高濃度不純物拡散領域であって、前記ウエル中の
不純物と逆導電型の不純物が拡散されて前記高耐圧MO
Sトランジスタの一部を構成する高耐圧拡散層を備え、
該高耐圧拡散層の周囲に実効的に不純物濃度の低い層が
形成されており、高耐圧MOSトランジスタの耐圧が充
分に高くなり、同一ウエル内に微細化された通常耐圧M
OSトランジスタと高耐圧MOSトランジスタとが形成
された半導体装置を提供することができる。
As described above in detail, the semiconductor device according to the present invention is a semiconductor device in which a normal breakdown voltage MOS transistor and a high breakdown voltage MOS transistor are formed in the same well near the surface of a semiconductor substrate. , The well is a high-concentration impurity diffusion region, and an impurity having a conductivity type opposite to that of the impurity in the well is diffused so that the high breakdown voltage MO is obtained.
A high breakdown voltage diffusion layer forming a part of the S-transistor,
A layer having a low impurity concentration is effectively formed around the high breakdown voltage diffusion layer, the breakdown voltage of the high breakdown voltage MOS transistor is sufficiently high, and the normal breakdown voltage M is miniaturized in the same well.
A semiconductor device in which an OS transistor and a high breakdown voltage MOS transistor are formed can be provided.

【0030】また前記記載の半導体の製造方法にあって
は、半導体基板に不純物を注入し拡散して高濃度ウエル
を形成する工程、及び該高濃度ウエルの所定箇所に前記
高濃度ウエル中の不純物と逆導電型の不純物を異なるエ
ネルギで2度注入し、高耐圧拡散層及びその周囲に不純
物低濃度層を形成する工程を含んでおり、マスクワーク
の工数を増大させることなく、生産性良く、同一ウエル
内に微細化された通常耐圧MOSトランジスタと高耐圧
MOSトランジスタとを形成することができる。
In the method of manufacturing a semiconductor described above, a step of injecting and diffusing an impurity into a semiconductor substrate to form a high concentration well, and an impurity in the high concentration well at a predetermined position of the high concentration well. And a step of injecting impurities of opposite conductivity type twice at different energies to form a high breakdown voltage diffusion layer and a low impurity concentration layer around the diffusion layer, and increase productivity without increasing the number of mask work steps. The miniaturized normal breakdown voltage MOS transistor and the miniaturized breakdown voltage MOS transistor can be formed in the same well.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る本発明の半導体装置を模式的に示
す断面図である。
FIG. 1 is a sectional view schematically showing a semiconductor device of the present invention according to an embodiment.

【図2の1】及び[1 of FIG. 2] and

【図2の2】(a)〜(e)は、実施例に係る半導体装
置の製造工程を模式的に示す断面図である。
2A to 2E are cross-sectional views schematically showing the manufacturing process of the semiconductor device according to the example.

【図3】図1に示した実施例の半導体装置及び図3に示
した従来の半導体装置の所定部位における半導体基板表
面からの深さ方向に対する不純物濃度を示すグラフであ
る。
3 is a graph showing the impurity concentration in the depth direction from the surface of the semiconductor substrate at a predetermined portion of the semiconductor device of the embodiment shown in FIG. 1 and the conventional semiconductor device shown in FIG.

【図4】従来の半導体装置を示す模式的な断面図であ
る。
FIG. 4 is a schematic cross-sectional view showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

10 半導体基板 11 高耐圧MOSトランジスタ 12 高耐圧拡散層 13 不純物低濃度層 30 通常耐圧MOSトランジスタ 32 高濃度ウエル 33 フィールド酸化膜 34、34a、34b ゲート電極 35 ゲート酸化膜 35’ 薄い酸化膜 36 厚いゲート酸化膜 37 高濃度拡散層 38 高耐圧拡散層 39 低濃度ウエル 10 semiconductor substrate 11 high breakdown voltage MOS transistor 12 high breakdown voltage diffusion layer 13 low impurity concentration layer 30 normal breakdown voltage MOS transistor 32 high concentration well 33 field oxide film 34, 34a, 34b gate electrode 35 gate oxide film 35 'thin oxide film 36 thick gate Oxide film 37 High concentration diffusion layer 38 High breakdown voltage diffusion layer 39 Low concentration well

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8617−4M H01L 21/265 Z 9054−4M 29/78 301 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location 8617-4M H01L 21/265 Z 9054-4M 29/78 301 S

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面付近に存在する同一ウエ
ル内に通常耐圧MOSトランジスタと高耐圧MOSトラ
ンジスタとが形成された半導体装置において、前記ウエ
ルは高濃度不純物拡散領域であって、前記ウエル中の不
純物と逆導電型の不純物が拡散されて前記高耐圧MOS
トランジスタの一部を構成する高耐圧拡散層を備え、該
高耐圧拡散層の周囲に実効的に不純物濃度の低い層が形
成されていることを特徴とする半導体装置。
1. In a semiconductor device in which a normal breakdown voltage MOS transistor and a high breakdown voltage MOS transistor are formed in the same well existing near the surface of a semiconductor substrate, the well is a high concentration impurity diffusion region, and The high breakdown voltage MOS is formed by diffusing an impurity of a conductivity type opposite to that of the impurity.
A semiconductor device comprising a high breakdown voltage diffusion layer forming a part of a transistor, and a layer having a low impurity concentration being effectively formed around the high breakdown voltage diffusion layer.
【請求項2】 半導体基板に不純物を注入し拡散して高
濃度不純物拡散領域を形成する工程、及び該高濃度不純
物拡散領域の所定箇所に前記高濃度不純物拡散領域中の
不純物と逆導電型の不純物を異なるエネルギで2度注入
し、高耐圧拡散層及びその周囲に実効的に不純物濃度の
低い層を形成する工程を含むことを特徴とする請求項1
記載の半導体装置の製造方法。
2. A step of implanting and diffusing an impurity into a semiconductor substrate to form a high concentration impurity diffusion region, and a conductivity type opposite to that of the impurity in the high concentration impurity diffusion region at a predetermined position of the high concentration impurity diffusion region. 2. A step of implanting impurities twice with different energies to effectively form a high breakdown voltage diffusion layer and a layer having a low impurity concentration in the periphery thereof.
A method for manufacturing a semiconductor device as described above.
JP5055338A 1993-03-16 1993-03-16 Semiconductor device and its manufacture Pending JPH06268162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055338A JPH06268162A (en) 1993-03-16 1993-03-16 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055338A JPH06268162A (en) 1993-03-16 1993-03-16 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06268162A true JPH06268162A (en) 1994-09-22

Family

ID=12995740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055338A Pending JPH06268162A (en) 1993-03-16 1993-03-16 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06268162A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267479B1 (en) 1998-08-25 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, and method for manufacturing the same
JP2001298187A (en) * 2000-03-15 2001-10-26 Hynix Semiconductor Inc Manufacturing method for high-voltage transistor
JP2003017521A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
WO2006018974A1 (en) * 2004-08-17 2006-02-23 Rohm Co., Ltd. Semiconductor device and its manufacturing method
JP2007266473A (en) * 2006-03-29 2007-10-11 Mitsumi Electric Co Ltd Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267479B1 (en) 1998-08-25 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, and method for manufacturing the same
JP2001298187A (en) * 2000-03-15 2001-10-26 Hynix Semiconductor Inc Manufacturing method for high-voltage transistor
JP2003017521A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
WO2006018974A1 (en) * 2004-08-17 2006-02-23 Rohm Co., Ltd. Semiconductor device and its manufacturing method
US8013416B2 (en) 2004-08-17 2011-09-06 Rohm Co., Ltd. Semiconductor device
US8394695B2 (en) 2004-08-17 2013-03-12 Rohm Co., Ltd. Semiconductor device production method
JP2007266473A (en) * 2006-03-29 2007-10-11 Mitsumi Electric Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US20050282321A1 (en) High-voltage mos device and fabrication thereof
US5879995A (en) High-voltage transistor and manufacturing method therefor
US4713329A (en) Well mask for CMOS process
JPH06268162A (en) Semiconductor device and its manufacture
JPH0228939A (en) Mos type transistor
JP3193984B2 (en) High voltage MOS transistor
JPH07321212A (en) Forming method for channel stop diffusion layer
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPS61210673A (en) Mis type semiconductor device
JPS6325977A (en) Manufacture of semiconductor integrated circuit deivce
JPH03198349A (en) Manufacture of mos type semiconductor device
JP2001111052A (en) Semiconductor device and manufacturing method thereof
JPH0824147B2 (en) Semiconductor device and manufacturing method thereof
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH0234937A (en) Manufacture of semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
JPS6016469A (en) Manufacture of mis semiconductor device
JPH088430A (en) Mos transistor and its forming method
JPH05251697A (en) Mosfet and its manufacture
JPH04151875A (en) Double diffusion type mos transistor
KR0148789B1 (en) A manufacturing method for a capacitor
KR0170320B1 (en) High voltage transistor and method of producing the same
JPH01189175A (en) Double-diffusion type field effect semiconductor device
JPH0377377A (en) Manufacture of semiconductor device
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device