JPH04151875A - Double diffusion type mos transistor - Google Patents

Double diffusion type mos transistor

Info

Publication number
JPH04151875A
JPH04151875A JP2277158A JP27715890A JPH04151875A JP H04151875 A JPH04151875 A JP H04151875A JP 2277158 A JP2277158 A JP 2277158A JP 27715890 A JP27715890 A JP 27715890A JP H04151875 A JPH04151875 A JP H04151875A
Authority
JP
Japan
Prior art keywords
base region
region
mos transistor
conductivity type
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2277158A
Other languages
Japanese (ja)
Inventor
Kenzo Kawano
川野 研三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2277158A priority Critical patent/JPH04151875A/en
Publication of JPH04151875A publication Critical patent/JPH04151875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain the operation of a parasitic bipolar transistor, and improve breakdown voltage when an MOS transistor is operated, by reducing the resistance of a base region part under a source region. CONSTITUTION:By using a high acceleration energy ion implantater, impurities of the same conductivity type as a base region 3 are implanted in a base region part under a source region 4, thereby reducing the resistance of a base region part 31. That is, after a gate electrode 7 and a base region 3 are formed, a window is opened in photo resist 12 only at a portion where the low resistance region in the base region 3 is formed, by using a phtolithography process; P-type impurities are ion-implanted with high acceleration energy, so as to obtain peak concentration in the base region part under the part turning to the source region 4. Thereby the operation of a parasitic bipolar transistor is restrained, and the decrease of breakdown voltage when a double diffusion type MOS transistor is operated can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、第1導電型半導体基板上に形成された、上記
基板と同導電型のドレイン、ソース領域と、上記ソース
領域の周囲に形成された第2導電型のべ一ヌ領域とを有
する二重拡散型MOS)ランジスタに関するものである
Detailed Description of the Invention <Industrial Application Field> The present invention provides drain and source regions formed on a first conductivity type semiconductor substrate and having the same conductivity type as the substrate, and drain and source regions formed around the source region. The present invention relates to a double diffusion type MOS transistor having a second conductivity type base region.

〈従来の技術〉 従来の技術を用いた二重拡散型MO3)ランジヌタの構
造例を第4図に示す。図に於いて、■は第1導電型半導
体基板、2は第1導電型ドレイン領域(不純物拡散N)
、3は第2導電型ベース領域(不純物拡散層)、4は第
1導電型ソース領域(不純物拡散層)、5はフィールド
酸化膜(ロコス膜)、6はゲート酸化膜、7はゲート電
極、8は層間絶縁膜、9はドレイン電極、10はソース
電極である。
<Prior art> An example of the structure of a double diffusion type MO3) lunge nut using a conventional technology is shown in FIG. In the figure, ■ is the first conductivity type semiconductor substrate, 2 is the first conductivity type drain region (impurity diffusion N)
, 3 is a second conductivity type base region (impurity diffusion layer), 4 is a first conductivity type source region (impurity diffusion layer), 5 is a field oxide film (LOCOS film), 6 is a gate oxide film, 7 is a gate electrode, 8 is an interlayer insulating film, 9 is a drain electrode, and 10 is a source electrode.

上記に於いて、ベース領域3の不純物濃度は該トランジ
スタの閾値を決定するため、所望の値を得るためには比
較的低濃度(〜10cm)で形成する。しかし、とのベ
ース領域3の抵抗値が高いと、ベース領域3の電位はソ
ース領域4のそれに比べ、部分的に置い領域を生じ、第
5図に示す寄生バイポーラトランジスタ11がオン状態
になる。
In the above, since the impurity concentration of the base region 3 determines the threshold value of the transistor, it is formed at a relatively low concentration (~10 cm) in order to obtain a desired value. However, if the resistance value of the base region 3 is high, the potential of the base region 3 is partially lower than that of the source region 4, and the parasitic bipolar transistor 11 shown in FIG. 5 is turned on.

〈発明が解決しようとする課題〉 前述のように、従来の技術では、寄生パイボーラトラン
ジヌタ11がオン状態となるため、二重拡散型MO3+
−ランジヌク動作時の耐圧が低下する(第6図)。
<Problems to be Solved by the Invention> As described above, in the conventional technology, since the parasitic pibora transistor 11 is in the on state, the double diffusion type MO3+
- The withstand voltage during lunge operation decreases (Fig. 6).

本発明は上記問題点全解決する手段を提供するものであ
る。
The present invention provides means for solving all of the above problems.

〈課題を解決するための手段〉 ソース領域下方のベース領域部分に、高加速エネルギ・
イオン注入装置を用いて、ベース領域と同導電型の不純
物を注入することにより、該ベース領域部分の抵抗を低
減する。
<Means for solving the problem> High acceleration energy and
By implanting impurities of the same conductivity type as the base region using an ion implantation device, the resistance of the base region portion is reduced.

〈作 用〉 ソース領域下方のベース領域部分の低抵抗化により、寄
生パイポーラトランジスタの動作が抑IJされ、二重拡
散5M03)ランジヌタ動作時の耐圧低下が防止される
。高加速エネルギ・イオン注入技術により、ソース領域
下方ベース領域形成のみ低抵抗化するため、閾値を決定
するベース領域表面部分の不純物濃度を下げる必要がな
く、プロセスを複雑化せず、二重拡散型MO3)ランジ
スタの低入力電圧、高電源電圧動作全可能にする。
<Function> By lowering the resistance of the base region below the source region, the operation of the parasitic bipolar transistor is suppressed, and a drop in breakdown voltage during double diffusion 5M03) range-input operation is prevented. High acceleration energy ion implantation technology lowers the resistance of only the base region below the source region, so there is no need to lower the impurity concentration on the surface of the base region, which determines the threshold, and the process is not complicated. MO3) Enables low input voltage and high power supply voltage operation of transistors.

〈実施例〉 以下、実施例に基づいて本発明の詳細な説明する。<Example> Hereinafter, the present invention will be described in detail based on examples.

第1図は本発明に係る二重拡散型MO3)ランジスタの
一実施例の構造を示す断面図である。
FIG. 1 is a sectional view showing the structure of an embodiment of a double-diffused MO3 transistor according to the present invention.

従来のトランジスタと異なる点は、ソース領域直下のベ
ース領域部分が低抵抗化され、低抵抗ベース領域81が
形成されている点である。その他の構成は、第4図のト
ランジスタと同一であるので、対応する部分には同一の
符号を符し、詳細な説明は省略する。
The difference from conventional transistors is that the base region directly below the source region has a low resistance, forming a low resistance base region 81. The rest of the structure is the same as that of the transistor shown in FIG. 4, so corresponding parts are denoted by the same reference numerals and detailed explanation will be omitted.

以下、第2図全参照して製造方法について説明する。The manufacturing method will be described below with full reference to FIG.

通常のプロセスにより、N型Si基板1に、ロコス酸化
(フィールド酸化膜5の形成)、グー1−電極(7)形
成、P型ベース拡散(ベース領域3の形成)ヲ行った後
、フォトリソグラフィー工程により、ベース領域内に低
抵抗領域を形成すべき箇所のみフォトレジスト12に窓
開けし、ソース領域となる部分の下方のべ一ヌ領域部分
にピーク濃度をもつ様に、高加速エネルギ(〜IMeV
)でP型不純物(例えば、ボロン)をイオン注入する(
第2図(a))。
After performing LOCOS oxidation (formation of field oxide film 5), formation of goo 1-electrode (7), and P-type base diffusion (formation of base region 3) on N-type Si substrate 1 using normal processes, photolithography is performed. Through the process, a window is opened in the photoresist 12 only at the location where a low resistance region is to be formed in the base region, and high acceleration energy (~ IMeV
) to ion-implant P-type impurities (e.g. boron) (
Figure 2(a)).

その後、N型不純物の導入により、ドレイン、ソース領
域2.4を形成し、層間絶縁膜8を堆積する(第2図(
b))。以後、通常のプロセスを経て、第1図に示す構
造の二重拡散型MOS)ランジスタが形成される。
Thereafter, drain and source regions 2.4 are formed by introducing N-type impurities, and an interlayer insulating film 8 is deposited (see FIG. 2).
b)). Thereafter, a double diffusion type MOS transistor having the structure shown in FIG. 1 is formed through normal processes.

第3図は、第1図に於けるA−A’部の深さ方向不純物
濃度プロファイルであり、C3はベース領域形成のため
に導入されたP型不純物の濃度プロファイル、C31は
ベース領域部分的低抵抗化のために注入されたP型不純
物の濃度プロファイル、C4はソース領域形成のために
導入されたN型不純物の濃度プロファイルである。
FIG. 3 is a depth direction impurity concentration profile of the A-A' section in FIG. C4 is the concentration profile of the P-type impurity implanted to lower the resistance, and C4 is the concentration profile of the N-type impurity implanted to form the source region.

〈発明の効果〉 以上詳細に説明したように、本発明の二重拡散ffMO
3)ランジスタによれば、ソース領域下方のベース領域
部分全低択抗化しているので、寄生バイポーラトランジ
スタの動作が抑制され、MOSトランジスタ動作時の耐
圧向上を達成することができるものである。
<Effects of the Invention> As explained in detail above, the double diffusion ffMO of the present invention
3) According to the transistor, since the entire base region below the source region is made low resistance selective, the operation of the parasitic bipolar transistor is suppressed, and it is possible to achieve an improvement in the withstand voltage during the operation of the MOS transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図(a)及び
(b)は同実施例の製造方法の説明に供する断面図、第
3図は同実施例に於ける深さ方向不純物濃度プロファイ
/L’に示す図、第4図は従来のトランジスタの断面図
、第5図は同トランジスタの等価回路図、第6図は同ト
ランジスタのI −V特性図である。 符号の説明 1:第1導電型半導体基板、 2:第1導電型ドレイン
領域、 3:第2導電型ベース領域、4:第1導電型ソ
ース領域、 31:低抵抗ベース領域。 代理人 弁理士  梅 1) 勝(他2名)A′ 第1図 wX3図 7a2図 第5図 第6図
Fig. 1 is a sectional view of an embodiment of the present invention, Figs. 2(a) and (b) are sectional views for explaining the manufacturing method of the embodiment, and Fig. 3 is a depth diagram of the embodiment. 4 is a sectional view of a conventional transistor, FIG. 5 is an equivalent circuit diagram of the same transistor, and FIG. 6 is an I-V characteristic diagram of the same transistor. Explanation of symbols 1: First conductivity type semiconductor substrate, 2: First conductivity type drain region, 3: Second conductivity type base region, 4: First conductivity type source region, 31: Low resistance base region. Agent Patent attorney Ume 1) Katsu (and 2 others) A' Figure 1 wX3 Figure 7a2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板上に形成された、上記基板と
同導電型のドレイン、ソース領域と、上記ソース領域の
周囲に形成された第2導電型のベース領域とを有する二
重拡散型MOSトランジスタに於いて、 上記ソース領域下方のベース領域部分を低抵抗化したこ
とを特徴とする二重拡散型MOSトランジスタ。
[Claims] 1. Drain and source regions formed on a first conductivity type semiconductor substrate and having the same conductivity type as the substrate, and a second conductivity type base region formed around the source region. A double-diffused MOS transistor comprising: a base region below the source region having a low resistance.
JP2277158A 1990-10-15 1990-10-15 Double diffusion type mos transistor Pending JPH04151875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277158A JPH04151875A (en) 1990-10-15 1990-10-15 Double diffusion type mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277158A JPH04151875A (en) 1990-10-15 1990-10-15 Double diffusion type mos transistor

Publications (1)

Publication Number Publication Date
JPH04151875A true JPH04151875A (en) 1992-05-25

Family

ID=17579612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277158A Pending JPH04151875A (en) 1990-10-15 1990-10-15 Double diffusion type mos transistor

Country Status (1)

Country Link
JP (1) JPH04151875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
JP2001352070A (en) * 2000-04-07 2001-12-21 Denso Corp Semiconductor device and method of manufacturing the same
JP2010212726A (en) * 2000-04-07 2010-09-24 Denso Corp Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5897355A (en) * 1994-08-03 1999-04-27 National Semiconductor Corporation Method of manufacturing insulated gate semiconductor device to improve ruggedness
JP2001352070A (en) * 2000-04-07 2001-12-21 Denso Corp Semiconductor device and method of manufacturing the same
JP2010212726A (en) * 2000-04-07 2010-09-24 Denso Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2897004B2 (en) CMOSFET manufacturing method
JP2006202810A (en) Lateral double-diffused mos transistor and its fabrication process
JP2002124671A (en) Semiconductor device and its manufacturing method
JPH01120067A (en) Semiconductor device and its manufacture
JPH04151875A (en) Double diffusion type mos transistor
JP3369862B2 (en) Method for manufacturing semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH0338839A (en) Manufacture of semiconductor device
JP3105237B2 (en) Method for manufacturing DMOS type semiconductor device
JPH06268162A (en) Semiconductor device and its manufacture
JPH06338616A (en) Vertical mos device and manufacture thereof
JPH067556B2 (en) MIS type semiconductor device
JPH03159270A (en) Semiconductor device and manufacture thereof
JPH10107266A (en) Manufacture of mosfet
JPH0342872A (en) Manufacture of semiconductor device
JPS62291179A (en) Double diffused mosfet
KR100219063B1 (en) Method of manufacturing semiconductor device
JPS60133756A (en) Manufacture of thin film transistor
JPH0346272A (en) Manufacture of semiconductor device
JPH01189175A (en) Double-diffusion type field effect semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device
JPH02296342A (en) Manufacture of mosfet
JPH07249760A (en) Fabrication of semiconductor device
JP3392652B2 (en) Method for manufacturing semiconductor device