JPH07249760A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH07249760A
JPH07249760A JP3697594A JP3697594A JPH07249760A JP H07249760 A JPH07249760 A JP H07249760A JP 3697594 A JP3697594 A JP 3697594A JP 3697594 A JP3697594 A JP 3697594A JP H07249760 A JPH07249760 A JP H07249760A
Authority
JP
Japan
Prior art keywords
diffusion
channel
concentration
diffusion layer
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3697594A
Other languages
Japanese (ja)
Inventor
Hirohiko Morita
博彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3697594A priority Critical patent/JPH07249760A/en
Publication of JPH07249760A publication Critical patent/JPH07249760A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a low threshold level without sacrifice of punch through voltage, in a DMOS device where a channel is formed based on the difference of diffusion length of double diffusion, by lowering the concentration at the surface part which determines the threshold level without lowering the concentration at the deep part of body thereby preventing the punch through. CONSTITUTION:After forming a body 4 by diffusion, impurities of opposite polarity are implanted using a same mask thus forming a p- compensated diffusion layer 5 where the concentration at the surface part is lowered to an extent causing no inversion of the body 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】近年、ディスクリートとして外付けされ
ていた高耐圧素子をロジック回路のICチップへ取り込
むインテリジェントパワーICが注目されてきた。中で
も耐圧を上げつつチャネル抵抗を低く抑えることができ
るDMOSデバイスが盛んに使われ始めた。
2. Description of the Related Art In recent years, attention has been paid to an intelligent power IC that incorporates a high voltage device, which is externally attached as a discrete device, into an IC chip of a logic circuit. Above all, DMOS devices, which can increase the breakdown voltage and suppress the channel resistance to a low level, have been actively used.

【0003】NチャネルのDMOSデバイスの一般的な
製造方法について、図6(a)〜(c)を参照しながら
以下に説明する。n-形のエピタキシャル層1(あるい
はウェルまたは半導体基板)の上にゲート酸化膜3、ポ
リシリコン膜2を成長させた後、ドライエッチングによ
ってポリシリコン膜2をパターニングする。その後ソー
スとなる側にフォトレジスト膜11とポリシリコン膜2
によるセルフアラインでp形の比較的不純物濃度が薄く
深い拡散層を形成する。この拡散層を以後ボディ4と呼
ぶ。次にソース・ドレインの電極取り出し口となる不純
物濃度が濃いn形の拡散層6,7とボディ4のコンタク
トをとるための不純物濃度が濃いp形の拡散層8を形成
する。以上の方法により形成されたDMOSデバイスの
断面構造は図2(c)に示すようになる。
A general method of manufacturing an N-channel DMOS device will be described below with reference to FIGS. 6 (a) to 6 (c). After the gate oxide film 3 and the polysilicon film 2 are grown on the n -type epitaxial layer 1 (or well or semiconductor substrate), the polysilicon film 2 is patterned by dry etching. After that, the photoresist film 11 and the polysilicon film 2 are formed on the source side.
A self-aligned p-type diffusion layer having a relatively thin impurity concentration is formed. This diffusion layer is hereinafter referred to as the body 4. Next, a p-type diffusion layer 8 having a high impurity concentration for making contact between the body 4 and the n-type diffusion layers 6 and 7 having a high impurity concentration serving as source / drain electrode outlets is formed. The sectional structure of the DMOS device formed by the above method is as shown in FIG.

【0004】通常のMOSトランジスタの耐圧が、不純
物濃度が濃くて浅いドレインの拡散層とバックゲートと
なるエピタキシャル層(あるいはウエルまたは半導体基
板)との接合の耐圧で決まるのに対して、DMOSトラ
ンジスタの耐圧を決定するのはエピタキシャル層1(あ
るいはウエルまたは半導体基板)と不純物濃度が薄くて
深いボディ4との接合であるために、DMOSトランジ
スタの方が高耐圧化に適している。さらに通常MOSの
チャネル長がゲート電極のポリシリコン膜のパターンニ
ング精度に大きく依存していたが、DMOSトランジス
タはチャネル長が同一エッジからの拡散長の差によって
決まり、短チャネルが精度よく形成できるため、オン抵
抗を下げることができる。PチャネルDMOSについて
も同様である。
The withstand voltage of a normal MOS transistor is determined by the withstand voltage of a junction between a diffusion layer having a high impurity concentration and a shallow drain diffusion layer and an epitaxial layer (or a well or a semiconductor substrate) which serves as a back gate, whereas that of a DMOS transistor. Since the breakdown voltage is determined by the junction between the epitaxial layer 1 (or well or semiconductor substrate) and the body 4 having a low impurity concentration and a deep depth, the DMOS transistor is more suitable for increasing the breakdown voltage. Further, the channel length of a normal MOS largely depends on the patterning accuracy of the polysilicon film of the gate electrode, but in the DMOS transistor, the channel length is determined by the difference in diffusion length from the same edge, and a short channel can be formed with high accuracy. , The on-resistance can be reduced. The same applies to the P-channel DMOS.

【0005】[0005]

【発明が解決しようとする課題】NチャネルDMOS構
造のトランジスタのソース・ドレイン間の耐圧の定義
は、ゲートはグランド、ソースはボディと同電位でグラ
ンド、ドレインの電位を上げていってブレイクダウンし
た電圧をソース・ドレイン間の耐圧とする。このとき、
エピタキシャル層(あるいはウエルまたは半導体基板)
とボディとの接合は逆バイアスとなっており、接合部よ
り両側に空乏層が広がって行く。耐圧をあげるにはボデ
ィの不純物濃度が薄いほどよいが、薄すぎるとボディ側
の空乏層の広がりが大きくソースの電極の不純物濃度が
濃い拡散層まで達してしまい、パンチスルーでブレイク
ダウンを起こす。よってパンチスルーを起こさない程度
までしかボディの不純物濃度を下げることができない。
それに伴いチャネル部の不純物濃度も下げることができ
ず、しきい値が高くなってしまう。つまり、耐圧を上げ
ることとしきい値を下げることとは相反する。
The breakdown voltage between the source and drain of a transistor having an N-channel DMOS structure is defined as follows: the gate is ground, the source is at the same potential as the body, and the potential at ground and drain is raised to break down. The voltage is the breakdown voltage between the source and drain. At this time,
Epitaxial layer (or well or semiconductor substrate)
The junction between the and body is reverse biased, and the depletion layer spreads to both sides from the junction. To raise the breakdown voltage, it is better that the impurity concentration of the body is lower, but if it is too thin, the depletion layer on the body side spreads widely and reaches the diffusion layer where the impurity concentration of the source electrode is high, causing a punch-through breakdown. Therefore, the impurity concentration of the body can be reduced only to the extent that punch-through does not occur.
Along with that, the impurity concentration of the channel portion cannot be lowered, and the threshold value becomes high. That is, increasing the breakdown voltage and decreasing the threshold value conflict with each other.

【0006】本発明は、上記問題点を解決するもので、
パンチスルーを起こす部分のボディの不純物濃度は下げ
ずに、しきい値を決定する表面部分の不純物濃度を下げ
て、パンチスルーの耐圧を下げることなく低いしきい値
を実現する半導体装置の製造方法を提供するものであ
る。
The present invention solves the above problems.
A method of manufacturing a semiconductor device in which the impurity concentration of a body that causes punch-through is not lowered, but the impurity concentration of a surface portion that determines a threshold is lowered to realize a low threshold without lowering the punch-through withstand voltage. Is provided.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、ボディの拡散層を形成後、同一マスクにて
ボディを形成するために注入した不純物と逆のタイプの
不純物を注入し補償拡散によって、先に注入したボディ
層が反転しない程度まで表面部分の不純物濃度を下げた
構造を作製する。
In order to achieve this object, according to the present invention, after the diffusion layer of the body is formed, an impurity of the opposite type to the impurity injected for forming the body is implanted with the same mask. A structure in which the impurity concentration in the surface portion is lowered to the extent that the previously implanted body layer is not inverted is produced by compensation diffusion.

【0008】[0008]

【作用】本発明の構成によると、ボディの深い部分の不
純物濃度はパンチスルーを起こさない程度に濃く、また
表面の不純物濃度は低いためしきい値も低くできる。す
なわち耐圧を高く保ちつつしきい値を下げることができ
る。
According to the structure of the present invention, the impurity concentration in the deep portion of the body is so high that punch-through does not occur, and since the impurity concentration in the surface is low, the threshold value can be lowered. That is, the threshold value can be lowered while keeping the breakdown voltage high.

【0009】[0009]

【実施例】以下、本発明の一実施例であるNチャネルD
MOSデバイスの製造方法について、図1〜5を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An N channel D which is an embodiment of the present invention will be described below.
A method of manufacturing a MOS device will be described with reference to FIGS.

【0010】図1に示すように、n-形のエピタキシャ
ル層1(あるいはウェルまたは半導体基板)上に40〜
100nmの厚さのゲート酸化膜3を形成し、その上に
400nm程度のポリシリコン膜2を成長させる。フォ
トレジスト膜11でパターンニングした後、ドライエッ
チングによりポリシリコン膜2のパターンニングを行
う。次に、ボディを形成するためのフォトレジスト膜の
パターンニングを行い、ソースとなる側にp形の不純物
を注入する。温度1100℃の不活性雰囲気中で、15
0〜200分間ドライブインをすることにより、図2に
示すように、1.5〜2μm程度のボディ4を形成す
る。次に、ボディ4を形成した同一マスクを使用して再
度パターンニングを行い、ボディ4のp形が反転しない
程度にn形不純物の注入をして、図3に示すように、ボ
ディ4の表面濃度を補償拡散により薄くしたp-補償拡
散層5を形成する。その後、図4に示すようにソース・
ドレインの電極付けをするためのn形の拡散層6,7を
注入により形成する。このとき、ボディ4とソースの拡
散層6はセルフアラインにより同一のポリシリコン膜エ
ッヂから拡散し、拡散長の差がチャネル部13となる。
さらにボディの電極をとるp形の拡散層8を形成する。
そして、フォトレジスト膜11を取り除いてから、図5
に示すようにフィールド酸化膜12を形成し、それに選
択的に窓を設けてソース電極、ドレイン電極9,10を
形成する。
As shown in FIG. 1, 40 to 40 are formed on the n -type epitaxial layer 1 (or well or semiconductor substrate).
A gate oxide film 3 having a thickness of 100 nm is formed, and a polysilicon film 2 having a thickness of about 400 nm is grown on the gate oxide film 3. After patterning with the photoresist film 11, the polysilicon film 2 is patterned by dry etching. Next, the photoresist film for forming a body is patterned, and a p-type impurity is implanted into the source side. 15 in an inert atmosphere at a temperature of 1100 ° C
By driving in for 0 to 200 minutes, as shown in FIG. 2, the body 4 of about 1.5 to 2 μm is formed. Next, patterning is performed again using the same mask on which the body 4 is formed, and n-type impurities are implanted to such an extent that the p-type of the body 4 is not inverted. A p compensation diffusion layer 5 whose concentration is thinned by compensation diffusion is formed. Then, as shown in Figure 4,
N-type diffusion layers 6 and 7 for attaching drain electrodes are formed by implantation. At this time, the body 4 and the source diffusion layer 6 are diffused from the same polysilicon film edge by self-alignment, and the difference in diffusion length becomes the channel portion 13.
Further, a p-type diffusion layer 8 that takes an electrode of the body is formed.
Then, after removing the photoresist film 11, FIG.
A field oxide film 12 is formed, and windows are selectively formed in the field oxide film 12 to form source and drain electrodes 9 and 10.

【0011】なお本実施例ではNチャンネルDMOSデ
バイスについて説明したが、PチャンネルDMOSデバ
イスについても適用できる。
Although the N-channel DMOS device has been described in this embodiment, the present invention is also applicable to a P-channel DMOS device.

【0012】[0012]

【発明の効果】本発明の半導体装置の製造方法によれ
ば、パンチスルーによるブレイクダウン部14であるボ
ディの深い部分の不純物濃度はパンチスルーを起こさな
い程度に濃く、またしきい値を決定する表面のチャネル
部の不純物濃度は低いためしきい値も低くできる。すな
わち耐圧劣化を起こさずにしきい値を下げることができ
る。
According to the method of manufacturing a semiconductor device of the present invention, the impurity concentration in the deep portion of the body which is the breakdown portion 14 due to punch-through is high enough to prevent punch-through, and the threshold value is determined. Since the impurity concentration of the surface channel portion is low, the threshold value can be lowered. That is, the threshold value can be lowered without causing breakdown voltage deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造方法における一実施
例の工程断面図
FIG. 1 is a process sectional view of an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法における一実施
例の工程断面図
FIG. 2 is a process cross-sectional view of an example of a method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法における一実施
例の工程断面図
FIG. 3 is a process cross-sectional view of one embodiment of a method for manufacturing a semiconductor device of the present invention.

【図4】本発明の半導体装置の製造方法における一実施
例の工程断面図
FIG. 4 is a process cross-sectional view of an example of a method for manufacturing a semiconductor device of the present invention.

【図5】本発明の半導体装置の製造方法における一実施
例の工程断面図
FIG. 5 is a process cross-sectional view of one embodiment of a method for manufacturing a semiconductor device of the present invention.

【図6】従来の半導体装置の製造方法の一例の工程断面
FIG. 6 is a process sectional view of an example of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 n-形のエピタキシャル層(あるいはウェルまたは
半導体基板) 2 ポリシリコン膜 3 ゲート酸化膜 4 ボディ 5 p-補償拡散層 6 n形のソース拡散層 7 n形のドレイン拡散層 8 p形の拡散層 9 ソース電極 10 ドレイン電極 11 フォトレジスト膜 12 フィールド酸化膜 14 パンチスルーによるブレイクダウン部
1 n − type epitaxial layer (or well or semiconductor substrate) 2 polysilicon film 3 gate oxide film 4 body 5 p compensation diffusion layer 6 n type source diffusion layer 7 n type drain diffusion layer 8 p type diffusion layer 9 Source electrode 10 Drain electrode 11 Photoresist film 12 Field oxide film 14 Breakdown part by punch through

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電形の半導体基板表面よりポリシ
リコンゲートのエッジをマスクとして第2導電形、第1
導電形の順に二重拡散によりチャネルを形成するに際し
て、前記チャネルを形成する第2導電形の拡散層の表面
近傍で、不純物濃度を高めた第1導電形の不純物を拡散
して前記第2導電形の不純物を補償し、表面近傍の実効
的な前記第2導電形の不純物の濃度を下げることを特徴
とする半導体装置の製造方法。
1. A first conductivity type semiconductor substrate surface, a second conductivity type first surface using a polysilicon gate edge as a mask.
When a channel is formed by double diffusion in the order of the conductivity types, the second conductivity type impurity is diffused by diffusing the impurity of the first conductivity type having an increased impurity concentration in the vicinity of the surface of the diffusion layer of the second conductivity type forming the channel. Type impurity is compensated, and the effective concentration of the second conductivity type impurity in the vicinity of the surface is reduced.
JP3697594A 1994-03-08 1994-03-08 Fabrication of semiconductor device Pending JPH07249760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3697594A JPH07249760A (en) 1994-03-08 1994-03-08 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3697594A JPH07249760A (en) 1994-03-08 1994-03-08 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07249760A true JPH07249760A (en) 1995-09-26

Family

ID=12484765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3697594A Pending JPH07249760A (en) 1994-03-08 1994-03-08 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07249760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108758A (en) * 2009-11-13 2011-06-02 Fujitsu Semiconductor Ltd High breakdown voltage mos transistor, semiconductor integrated circuit device, and high breakdown voltage semiconductor device
CN103779414A (en) * 2012-10-18 2014-05-07 富士电机株式会社 Semiconductor device and method for manufacturing the same
JPWO2014033991A1 (en) * 2012-08-30 2016-08-08 パナソニックIpマネジメント株式会社 Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108758A (en) * 2009-11-13 2011-06-02 Fujitsu Semiconductor Ltd High breakdown voltage mos transistor, semiconductor integrated circuit device, and high breakdown voltage semiconductor device
JPWO2014033991A1 (en) * 2012-08-30 2016-08-08 パナソニックIpマネジメント株式会社 Semiconductor device
CN103779414A (en) * 2012-10-18 2014-05-07 富士电机株式会社 Semiconductor device and method for manufacturing the same
JP2014099580A (en) * 2012-10-18 2014-05-29 Fuji Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
US9608057B2 (en) 2012-10-18 2017-03-28 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN103779414B (en) * 2012-10-18 2018-10-26 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
US4974051A (en) MOS transistor with improved radiation hardness
JP2701762B2 (en) Semiconductor device and manufacturing method thereof
JPH0291976A (en) Manufacture of vertical and groove type mos fet
JPH09260651A (en) Lateral field effect transistor and manufacture thereof
US5026656A (en) MOS transistor with improved radiation hardness
KR100390614B1 (en) Semiconductor device and method of manufacturing the same
US4970173A (en) Method of making high voltage vertical field effect transistor with improved safe operating area
KR20000051294A (en) DMOS field effect transistor with improved electrical characteristics and fabricating method thereof
JPH0237777A (en) Vertical type field-effect transistor
EP0091256B1 (en) Cmos device
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
US20020050618A1 (en) Semiconductor device and manufacturing method thereof
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
JPH07249760A (en) Fabrication of semiconductor device
JP3192857B2 (en) Vertical MOS semiconductor device and method of manufacturing the same
JPS63217664A (en) Misfet and manufacture thereof
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
US20050116298A1 (en) MOS field effect transistor with small miller capacitance
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH06338616A (en) Vertical mos device and manufacture thereof
JPS62248256A (en) Semiconductor device
JP4797280B2 (en) Semiconductor device
KR910009742B1 (en) High voltage semiconductor device and its manufacturing method
JP3300238B2 (en) Semiconductor device and manufacturing method thereof