JP4797280B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4797280B2
JP4797280B2 JP2001160397A JP2001160397A JP4797280B2 JP 4797280 B2 JP4797280 B2 JP 4797280B2 JP 2001160397 A JP2001160397 A JP 2001160397A JP 2001160397 A JP2001160397 A JP 2001160397A JP 4797280 B2 JP4797280 B2 JP 4797280B2
Authority
JP
Japan
Prior art keywords
region
type
semiconductor device
drain region
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001160397A
Other languages
Japanese (ja)
Other versions
JP2002353450A (en
Inventor
武 野辺
茂夫 秋山
憲輝 古本
卓也 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2001160397A priority Critical patent/JP4797280B2/en
Publication of JP2002353450A publication Critical patent/JP2002353450A/en
Application granted granted Critical
Publication of JP4797280B2 publication Critical patent/JP4797280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に関するものである。
【0002】
【従来の技術】
従来の、デプレッション型のMOS型半導体装置の断面図を、図5に示す。図5に示すように、半導体基板であるn型ドレイン領域14の主表面に沿って、n型ドレイン領域14との間でpn結合を形成するp型ベース領域12と、p型ベース領域12内に形成されるn型ソース領域13が設けられ、n型ドレイン領域14及びn型ソース領域13に挟まれたp型ベース領域12のチャンネル領域11に絶縁膜を介して対面して、チャンネル領域11表面の導電型を反転させるゲート電極22と、p型ベース領域12及びn型ソース領域13の両方に接触するようにソース電極23と、が形成されている。チャンネル領域11の表面は、イオン注入によりn型となっているが、絶縁膜を介して対面するように配置されたゲート電極22により、チャンネル領域表面の導電型をp型に反転させるようになっている。ドレイン電極21は、半導体基板主表面の反対側にn型ドレイン領域14に接するように形成されている。
【0003】
【発明が解決しようとする課題】
上記した従来の半導体装置にあっては、チャンネル領域11の表面をn型の導電型にするため、チャンネル領域11を形成後に、n型ドレイン領域14の主表面側にしきい値電圧調整用のn型不純物のイオン注入が行われている。このn型不純物のイオン注入を行う際、チャンネル領域11の表面だけでなく、半導体基板であるn型ドレイン領域14にもn型不純物のイオン注入がされ、n型ドレイン領域14表面はイオン注入前より、不純物濃度が高くなり、耐圧特性が低下してしまう。図6は、従来の半導体装置のB−B’断面に沿った不純物濃度の分布を示したものである。図6に示すように、イオン注入を行ったあとでは、n型ドレイン領域14の主表面近傍における不純物層の不純物濃度が、それ以外のn型ドレイン領域14の不純物濃度よりも高くなっている。また、耐圧特性を維持するために、予めn型ドレイン領域14の不純物濃度の低い基板を用いて半導体装置を作成することもできるが、その場合には、オン抵抗が大きくなってしまうという問題がある。
【0004】
本発明は上記事由に鑑みて為されたものであり、その目的は、耐圧特性を低下させず、オン抵抗も大きくならない半導体装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明の半導体装置は、以下の構成を備える。すなわち、
請求項1の発明では、第1の導電型のソース領域と、第2の導電型のベース領域と、が第1の導電型のドレイン領域内に主表面側に沿って形成され、前記ベース領域のうち前記ドレイン領域と前記ソース領域とに挟まれた主表面側の領域であるチャンネル領域に対面する位置にゲート電極を備え、前記ゲート電極により前記チャンネル領域の表面が第1の導電型から第2の導電型へ移行するデプレッション型のMOS型半導体装置であって、前記ドレイン領域内で、前記主表面から2μm以下の領域である不純物層の不純物濃度が、前記不純物層以外のドレイン領域の不純物濃度より低い、所定の不純物濃度以下であることを特徴とする。
【0006】
請求項2の発明では、請求項1において、前記不純物層の不純物濃度を5×10 14cm−3以下とすることを特徴とする。
【0007】
【発明の実施の形態】
本発明に係わる半導体装置の一実施の形態を、以下に説明する。本実施形態の半導体装置の断面図は、図5に示した従来構成と同様であるが、図1に示すように、n型ドレイン領域14の不純物濃度が異なる。
【0008】
ここにおいて、半導体装置は、従来の半導体装置の断面図と同じ構成であるので、図5を参照して説明する。n型ドレイン領域14と、p型ベース領域12と、n型ソース領域13と、ゲート電極22と、ソース電極23とを備えており、n型ドレイン領域14とp型ベース領域12とがpn接合され、n型ソース領域13が、半導体基板であるn型ドレイン領域14の主表面に沿って、p型ベース領域12内に形成されており、p型ベース領域12内のうち、n型ソース領域13とn型ドレイン領域14とではさまれる主表面領域であるチャンネル領域11は、ゲート電極22に絶縁膜をはさんで対面することとなる。このチャンネル領域11自体はp型の導電型であるが、イオン注入により、チャンネル領域11の表面近傍領域がn型の導電型を有するものとなる。また、ドレイン電極21は、半導体基板に対してソース電極と反対側に設けられている。
【0009】
チャンネル領域11が形成された半導体基板の主表面近傍の不純物層のn型ドレイン領域14の不純物濃度は、それ以外のn型ドレイン領域14の不純物濃度より低くなっており、しきい値調整用のn型不純物のイオン注入が行われたあとでも、n型ドレイン領域14の表面近傍の不純物濃度が、この表面近傍以外のn型ドレイン領域14の不純物濃度より高くならないようにしてあるものである。n型ドレイン領域14表面近傍の不純物層の不純物濃度を、5×10 14cm−3とすることにより、チャンネル領域表面をn型の導電型にするためのn型イオンの注入を行っても、主表面近傍のn型ドレイン領域14の不純物濃度を、それ以外のn型ドレイン領域14の不純物濃度よりも低くすることができる。また、n型ドレイン領域14表面から2μm以下の不純物層の不純物濃度を5×10 14cm−3以下とすることで、半導体装置のオン抵抗が増大することを防止できる。図1は、イオン注入を行う前の、図4はイオン注入を行ったあとの、半導体装置のB−B’断面におけるn型ドレイン領域14の不純物濃度を示している。
【0010】
本実施形態の半導体装置によれば、チャンネル領域11が設けられるn型ドレイン領域14の主表面側近傍の不純物層の不純物濃度を主表面近傍以外のn型ドレイン領域14の不純物濃度より低くしていることにより、主表面に不純物であるイオンを注入しても、半導体装置の耐圧特性を低下させない。また、不純物層の厚みを2μm以下にすることでオン抵抗を低くすることができる。
【0011】
また、他の実施例として、図2に示すように、ドレイン電極21をn型ドレイン領域14である半導体基板主表面側に設けたものや、図3に示すように、n型ドレイン領域14の主表面の反対側にp型アノード領域15を形成した半導体装置において、半導体基板主表面側をn型の導電型にするためにイオン注入を行った場合でも、半導体主表面近傍のn型ドレイン領域14の不純物濃度が、それ以外のn型ドレイン領域14の不純物濃度より高くならないので、耐圧特性を低下させないものである。なお、図2乃至図3に示した構成要素で、従来の構成要素と同じものには、同一の符号を付してある。
【0012】
以上、本発明の好適な実施の形態を説明したが、本発明はこの実施の形態に限らず、種々の形態で実施することができる。
【0013】
【発明の効果】
上記のように本発明の請求項1に係る半導体装置は、チャンネル領域が配置される半導体基板主表面から2μm以下の不純物層の不純物濃度を、表面近傍以外のドレイン領域の不純物濃度より低くしたので、半導体基板の主表面をn型の導電型にするために不純物であるイオン注入を行っても、オン抵抗の小さい半導体装置を構成することができる。
【0014】
本発明の請求項2に係る半導体装置は、請求項1の効果に加えて、不純物層の不純物濃度を、5×10 14cm−3以下で形成したので、イオン注入後においても、不純物層の不純物濃度は、不純物層以外のドレイン領域の不純物濃度よりも低くすることができ、耐圧特性を低下させない半導体装置を構成することができる。
【図面の簡単な説明】
【図1】本発明に係わる半導体装置の一実施の形態における不純物濃度を示す図である
【図2】上記半導体装置に係わる別の実施例における断面図である
【図3】上記半導体装置に係わる別の実施例における断面図である
【図4】上記半導体装置のイオン注入後の不純物濃度を示す図である
【図5】従来の半導体装置の断面図である
【図6】上記半導体装置のイオン注入後の不純物濃度を示す図である
【符号の説明】
11 チャンネル領域
12 p形ベース領域
13 n形ソース領域
14 n形ドレイン領域
21 ドレイン電極
22 ゲート電極
23 ソース電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device.
[0002]
[Prior art]
A sectional view of a conventional depletion type MOS semiconductor device is shown in FIG. As shown in FIG. 5, a p-type base region 12 that forms a pn bond with the n-type drain region 14 along the main surface of the n-type drain region 14 that is a semiconductor substrate; The n-type source region 13 is formed, and the channel region 11 of the p-type base region 12 sandwiched between the n-type drain region 14 and the n-type source region 13 is opposed to the channel region 11 via an insulating film. A gate electrode 22 for inverting the surface conductivity type and a source electrode 23 are formed so as to be in contact with both the p-type base region 12 and the n-type source region 13. The surface of the channel region 11 is n-type by ion implantation, but the conductivity type of the channel region surface is reversed to p-type by the gate electrode 22 arranged so as to face the insulating film. ing. Drain electrode 21 is formed on the opposite side of the main surface of the semiconductor substrate so as to be in contact with n-type drain region 14.
[0003]
[Problems to be solved by the invention]
In the conventional semiconductor device described above, in order to make the surface of the channel region 11 an n-type conductivity type, an n for adjusting the threshold voltage is formed on the main surface side of the n-type drain region 14 after the channel region 11 is formed. Ion implantation of type impurities is performed. When performing ion implantation of the n-type impurity, not only the surface of the channel region 11 but also the n-type drain region 14 which is a semiconductor substrate is ion-implanted with the n-type impurity. As a result, the impurity concentration increases and the withstand voltage characteristics deteriorate. FIG. 6 shows an impurity concentration distribution along the BB ′ cross section of the conventional semiconductor device. As shown in FIG. 6, after ion implantation, the impurity concentration of the impurity layer in the vicinity of the main surface of n-type drain region 14 is higher than the impurity concentration of other n-type drain regions 14. In order to maintain the breakdown voltage characteristics, a semiconductor device can be formed in advance using a substrate having a low impurity concentration in the n-type drain region 14, but in that case, there is a problem that the on-resistance increases. is there.
[0004]
The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a semiconductor device in which the breakdown voltage characteristics are not deteriorated and the on-resistance is not increased.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor device of the present invention has the following configuration. That is,
According to a first aspect of the present invention, a source region of a first conductivity type and a base region of a second conductivity type are formed along a main surface side in a drain region of the first conductivity type, and the base region A gate electrode at a position facing a channel region which is a region on the main surface side sandwiched between the drain region and the source region, and the surface of the channel region is changed from the first conductivity type by the gate electrode. A depletion type MOS semiconductor device that shifts to a conductivity type of 2, wherein an impurity concentration of an impurity layer that is a region of 2 μm or less from the main surface in the drain region is an impurity in a drain region other than the impurity layer It is characterized in that it is lower than the concentration and below a predetermined impurity concentration.
[0006]
According to a second aspect of the present invention, in the first aspect, the impurity concentration of the impurity layer is 5 × 10 14 cm −3 or less.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a semiconductor device according to the present invention will be described below. The cross-sectional view of the semiconductor device of the present embodiment is the same as the conventional configuration shown in FIG. 5, but the impurity concentration of the n-type drain region 14 is different as shown in FIG.
[0008]
Here, the semiconductor device has the same configuration as a cross-sectional view of a conventional semiconductor device, and will be described with reference to FIG. The n-type drain region 14, the p-type base region 12, the n-type source region 13, the gate electrode 22, and the source electrode 23 are provided, and the n-type drain region 14 and the p-type base region 12 are pn junctions. The n-type source region 13 is formed in the p-type base region 12 along the main surface of the n-type drain region 14 which is a semiconductor substrate, and the n-type source region in the p-type base region 12 is formed. The channel region 11, which is the main surface region sandwiched between the n-type drain region 13 and the n-type drain region 14, faces the gate electrode 22 across the insulating film. The channel region 11 itself has a p-type conductivity type, but the region near the surface of the channel region 11 has an n-type conductivity type by ion implantation. Further, the drain electrode 21 is provided on the opposite side to the source electrode with respect to the semiconductor substrate.
[0009]
The impurity concentration of the n-type drain region 14 in the impurity layer in the vicinity of the main surface of the semiconductor substrate in which the channel region 11 is formed is lower than the impurity concentration of the other n-type drain region 14 and is used for threshold adjustment. Even after the ion implantation of the n-type impurity is performed, the impurity concentration in the vicinity of the surface of the n-type drain region 14 is made not to be higher than the impurity concentration in the n-type drain region 14 other than the vicinity of the surface. Even if n-type ions are implanted to make the channel region surface n-type conductivity by setting the impurity concentration of the impurity layer near the surface of the n-type drain region 14 to 5 × 10 14 cm −3 , The impurity concentration of n-type drain region 14 in the vicinity of the main surface can be made lower than the impurity concentration of other n-type drain regions 14. Further, by setting the impurity concentration of the impurity layer of 2 μm or less from the surface of the n-type drain region 14 to 5 × 10 14 cm −3 or less, it is possible to prevent the on-resistance of the semiconductor device from increasing. FIG. 1 shows the impurity concentration of the n-type drain region 14 in the BB ′ cross section of the semiconductor device before ion implantation and FIG. 4 shows after ion implantation.
[0010]
According to the semiconductor device of this embodiment, the impurity concentration of the impurity layer in the vicinity of the main surface side of the n-type drain region 14 in which the channel region 11 is provided is made lower than the impurity concentration of the n-type drain region 14 other than the vicinity of the main surface. Therefore, even if ions which are impurities are implanted into the main surface, the breakdown voltage characteristics of the semiconductor device are not deteriorated. Further, the on-resistance can be lowered by setting the thickness of the impurity layer to 2 μm or less.
[0011]
As another embodiment, as shown in FIG. 2, the drain electrode 21 is provided on the main surface side of the semiconductor substrate, which is the n-type drain region 14, or as shown in FIG. In the semiconductor device in which the p-type anode region 15 is formed on the opposite side of the main surface, the n-type drain region in the vicinity of the semiconductor main surface is obtained even when ion implantation is performed to make the main surface side of the semiconductor substrate an n-type conductivity type. Since the impurity concentration of 14 does not become higher than the impurity concentration of the other n-type drain region 14, the breakdown voltage characteristic is not deteriorated. In addition, the same code | symbol is attached | subjected to the same component as the conventional component in the component shown in FIG. 2 thru | or FIG.
[0012]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to this embodiment and can be implemented in various forms.
[0013]
【The invention's effect】
As described above, in the semiconductor device according to claim 1 of the present invention, the impurity concentration of the impurity layer of 2 μm or less from the main surface of the semiconductor substrate on which the channel region is disposed is made lower than the impurity concentration of the drain region other than the vicinity of the surface. Even if ion implantation, which is an impurity, is performed in order to make the main surface of the semiconductor substrate have n-type conductivity, a semiconductor device with low on-resistance can be formed.
[0014]
In the semiconductor device according to claim 2 of the present invention, in addition to the effect of claim 1, the impurity concentration of the impurity layer is formed at 5 × 10 14 cm −3 or less. The impurity concentration can be lower than the impurity concentration of the drain region other than the impurity layer, and a semiconductor device that does not deteriorate the breakdown voltage characteristics can be configured.
[Brief description of the drawings]
FIG. 1 is a diagram showing an impurity concentration in an embodiment of a semiconductor device according to the present invention. FIG. 2 is a cross-sectional view in another example relating to the semiconductor device. FIG. 4 is a cross-sectional view in another embodiment. FIG. 4 is a view showing an impurity concentration after ion implantation of the semiconductor device. FIG. 5 is a cross-sectional view of a conventional semiconductor device. It is a figure which shows the impurity concentration after implantation. [Explanation of symbols]
11 channel region 12 p-type base region 13 n-type source region 14 n-type drain region 21 drain electrode 22 gate electrode 23 source electrode

Claims (2)

第1の導電型のソース領域と、第2の導電型のベース領域と、が第1の導電型のドレイン領域内に主表面側に沿って形成され、前記ベース領域のうち前記ドレイン領域と前記ソース領域とに挟まれた主表面側の領域であるチャンネル領域に対面する位置にゲート電極を備え、前記ゲート電極により前記チャンネル領域の表面が第1の導電型から第2の導電型へ移行するデプレッション型のMOS型半導体装置であって、前記ドレイン領域内で、前記主表面から2μm以下の領域である不純物層の不純物濃度が、前記不純物層以外のドレイン領域の不純物濃度より低い、所定の不純物濃度以下であることを特徴とするデプレッション型のMOS型半導体装置。A source region of the first conductivity type and a base region of the second conductivity type are formed along the main surface side in the drain region of the first conductivity type, and the drain region and the base region of the base region A gate electrode is provided at a position facing a channel region which is a region on the main surface side sandwiched between the source region, and the surface of the channel region is shifted from the first conductivity type to the second conductivity type by the gate electrode. A depletion type MOS semiconductor device, wherein a predetermined impurity in which an impurity concentration of an impurity layer which is a region of 2 μm or less from the main surface is lower than an impurity concentration of a drain region other than the impurity layer in the drain region A depletion type MOS semiconductor device characterized by having a concentration lower than the concentration. 前記不純物層の不純物濃度を5×10 14cm−3以下とすることを特徴とする請求項1に記載のデプレッション型のMOS型半導体装置。2. The depletion type MOS semiconductor device according to claim 1, wherein an impurity concentration of the impurity layer is 5 × 10 14 cm −3 or less.
JP2001160397A 2001-05-29 2001-05-29 Semiconductor device Expired - Lifetime JP4797280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160397A JP4797280B2 (en) 2001-05-29 2001-05-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160397A JP4797280B2 (en) 2001-05-29 2001-05-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002353450A JP2002353450A (en) 2002-12-06
JP4797280B2 true JP4797280B2 (en) 2011-10-19

Family

ID=19003819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160397A Expired - Lifetime JP4797280B2 (en) 2001-05-29 2001-05-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4797280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943637B2 (en) * 2004-05-13 2012-05-30 パナソニック株式会社 Semiconductor device and manufacturing method thereof
WO2007046254A1 (en) * 2005-10-19 2007-04-26 Mitsubishi Electric Corporation Mosfet and method for manufacturing mosfet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237777A (en) * 1988-07-27 1990-02-07 Nec Corp Vertical type field-effect transistor
JP3385938B2 (en) * 1997-03-05 2003-03-10 株式会社デンソー Silicon carbide semiconductor device and method of manufacturing the same
JP3097608B2 (en) * 1997-07-07 2000-10-10 日本電気株式会社 Depletion type semiconductor device and method of manufacturing the same
JP4186337B2 (en) * 1998-09-30 2008-11-26 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002353450A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
US4587713A (en) Method for making vertical MOSFET with reduced bipolar effects
JP4186337B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US6946705B2 (en) Lateral short-channel DMOS, method of manufacturing the same, and semiconductor device
US20060001110A1 (en) Lateral trench MOSFET
JP4972855B2 (en) Semiconductor device and manufacturing method thereof
US8575622B2 (en) Silicon carbide trench MOSFET having reduced on-resistance, increased dielectric withstand voltage, and reduced threshold voltage
JP4595144B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2008140817A (en) Semiconductor device
KR20060070403A (en) Semiconductor device
JP2991753B2 (en) Semiconductor device and manufacturing method thereof
JP4727426B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7173308B2 (en) Lateral short-channel DMOS, method for manufacturing same and semiconductor device
US11251299B2 (en) Silicon carbide semiconductor device and manufacturing method of same
KR100813390B1 (en) Semiconductor device and manufacturing method thereof
US7008865B2 (en) Method of manufacturing a semiconductor device having a high breakdown voltage and low on-resistance
JP2010118622A (en) Semiconductor device and method of manufacturing the same
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
JP2009152442A (en) Semiconductor device and method for manufacturing thereof
TW200945586A (en) Semiconductor device and method of manufacturing the same
JP3994703B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4952042B2 (en) Semiconductor device
JP4797280B2 (en) Semiconductor device
US5912491A (en) MOS device
US7170134B2 (en) Semiconductor device
JP4580161B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

EXPY Cancellation because of completion of term