JPS59224141A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59224141A
JPS59224141A JP9806683A JP9806683A JPS59224141A JP S59224141 A JPS59224141 A JP S59224141A JP 9806683 A JP9806683 A JP 9806683A JP 9806683 A JP9806683 A JP 9806683A JP S59224141 A JPS59224141 A JP S59224141A
Authority
JP
Japan
Prior art keywords
substrate
film
active region
oxide film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9806683A
Other languages
Japanese (ja)
Inventor
Fumio Sugawara
菅原 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9806683A priority Critical patent/JPS59224141A/en
Publication of JPS59224141A publication Critical patent/JPS59224141A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent a contact with an active region of a channel stopping region by forming a film on the surface of a substrate in predetermined thickness and selectively implanting impurity ions by utilizing the difference of film thickness on the surface of the substrate generated by the film. CONSTITUTION:A pad oxide film 12 and a nitride film 13 are formed on a substrate 11 in succession, and left only in a predetermined section. An oxide film 14 is formed on the exposed surface of the substrate 11, and polysilicon 15 is shaped on the whole surface. P<+> impurity ions for a channel stop are implanted. Consequently, a P<+> impurity is implanted to the surface section of the substrate under the thin sections of the films 15, 14, 13, 12, a field region section except a prescribed range adjacent to an active region, through the thin sections of the films 15, 14, 13, 12 while being separated from the active region section. Accordingly, a channel stopping region 18 is formed parted from the active region section.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] (Technical field) The present invention relates to a method of manufacturing a semiconductor device.

(従来技術) 半導体装置の製造方法において素子分離技術法としては
LOCO8法が広く用いられている。しか名に、このL
OCO8法では、アクティブ領域とフィールド領域の間
に、バードビークと呼ばれる中間領域が大きく存在する
ため、高密度化への妨げとなっている。
(Prior Art) The LOCO8 method is widely used as an element isolation technique in semiconductor device manufacturing methods. However, this L
In the OCO8 method, a large intermediate region called a bird's beak exists between the active region and the field region, which hinders high density.

LOCO8法のこの問題を解決するため、枠付はマスク
選択酸化法が考えられた。その方法を第1図を参照して
説明する。
In order to solve this problem with the LOCO8 method, a mask selective oxidation method was considered for framing. The method will be explained with reference to FIG.

1はP型シリコン基板であシ、まずこの基板1上の全面
にパッド酸化膜2 * 5ooi厚、窒化膜(第1窒化
膜)3を1oooA厚に順次形成した後、この窒化膜3
とパッド酸化膜2をパターニングすることによシ、この
窒化膜3とノやラド酸化膜2を基板1上の所定部分にの
み残す(第1図(a))。
Reference numeral 1 is a P-type silicon substrate. First, a pad oxide film 2 * 5ooi thick and a nitride film (first nitride film) 3 are sequentially formed on the entire surface of this substrate 1 to a 1oooa thickness, and then this nitride film 3 is formed.
By patterning the pad oxide film 2, the nitride film 3 and the rad oxide film 2 are left only in predetermined portions on the substrate 1 (FIG. 1(a)).

次に、残存窒化膜3上を含む基板1上の全面に窒化膜(
第2窒化膜)4を1500^厚に形成する(第1図(b
))。
Next, a nitride film (
A second nitride film) 4 is formed to a thickness of 1500^ (Fig. 1(b)
)).

しかる後、全面ドライエツチングを行うことによシ、窒
化膜4を窒化膜3と/Fラッド化膜2の側面にのみ残す
(第1図(C))。
Thereafter, by dry etching the entire surface, the nitride film 4 is left only on the side surfaces of the nitride film 3 and the /F rad film 2 (FIG. 1(C)).

そして、このドライエツチング後、チャネルストップ用
のr不純物のイオン打込みを行う。すると、r不純物は
、窒化膜3,4およびパッド酸化膜2で覆われた部分以
外の基板表面部に打込まれる。(第1図(C)) しかる後、熱酸化処理を施す。これにより、窒化膜3,
4およびノ平ツド酸化膜2で覆われた部分以外の基板表
面部にフィールド酸化膜5が7oooA厚に形成される
。またこの時、r不純物が基板1中に熱拡散される。し
たがって、フィールド酸化膜5の下にrのチャネルスト
ップ領域6が形成される。(第1図(d)) しかる後、アクティブ領域の耐熱酸化マスクとしての前
記窒化膜3,4およびパッド酸化膜2を除去する。そし
て、それにより露出した基板部にイオン打込みを行って
マアクティブ領域7を形成する。(第1図(e)) このような枠付はマスク選択酸化法によれば、バーズビ
ークが減少する。その反面、この枠付はマスク選択酸化
法では、P+の異種高濃度のチャネルストップ領域6が
N”7クテイブ領域7に接して、アクティブ領域7との
間にP−N接合を形成するため、接合耐圧の低下やMO
S)ランジスタのしきい値VTHの変動をもたらすとい
う問題がある。
After this dry etching, ion implantation of r impurity for channel stop is performed. Then, the r impurity is implanted into the surface of the substrate other than the portion covered with the nitride films 3 and 4 and the pad oxide film 2. (FIG. 1(C)) After that, thermal oxidation treatment is performed. As a result, the nitride film 3,
A field oxide film 5 is formed to a thickness of 700A on the surface of the substrate other than the portions covered with the oxide film 4 and the flat oxide film 2. Also, at this time, the r impurity is thermally diffused into the substrate 1. Therefore, an r channel stop region 6 is formed under the field oxide film 5. (FIG. 1(d)) Thereafter, the nitride films 3 and 4 and pad oxide film 2 serving as a heat-resistant oxidation mask in the active region are removed. Then, ions are implanted into the exposed substrate portion to form a maactive region 7. (FIG. 1(e)) Bird's beaks are reduced when such a frame is formed using a mask selective oxidation method. On the other hand, in the mask selective oxidation method, the channel stop region 6 with a high concentration of P+ is in contact with the N''7 active region 7 and forms a PN junction with the active region 7. Decrease in junction breakdown voltage and MO
S) There is a problem in that the threshold value VTH of the transistor changes.

(発明の目的) この発明は上記の点に鑑みなされたもので、チャネルス
トップ領域がアクティブ領域に接することを防止し、接
することによる従来の問題点を解決するようにした半導
体装置の製造方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above points, and provides a method for manufacturing a semiconductor device that prevents the channel stop region from coming into contact with the active region and solves the conventional problems caused by the contact. The purpose is to provide.

(実施例) 以下この発明の一実施例を第2図を参胆して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

11はP型シリコン基板であシ、まずこの基板11上の
全面にパッド酸化膜12i500A厚、窒化膜(第1窒
化膜)13を1.00OA厚Vζ順次形成した後、この
窒化膜13とパッド酸化膜12をパターニングすること
によシ、この窒化膜13とパッド酸化膜12を基板11
上の所定部分にのみ残す(第2図(a))。
11 is a P-type silicon substrate. First, a pad oxide film 12i500A thick and a nitride film (first nitride film) 13 1.00OA thick Vζ are sequentially formed on the entire surface of this substrate 11, and then this nitride film 13 and a pad are formed. By patterning the oxide film 12, the nitride film 13 and pad oxide film 12 are formed on the substrate 11.
It is left only in the upper predetermined area (Fig. 2(a)).

次に、窒化膜13とノ4ツド酸化膜12が残された部分
以外の基板露出表面に酸化膜14を500X厚に形成す
る。しかる後、基板11上の全面にポリシリコン15を
500OA厚程度に形成する。
Next, an oxide film 14 is formed to a thickness of 500X on the exposed surface of the substrate except for the portions where the nitride film 13 and the doped oxide film 12 are left. Thereafter, polysilicon 15 is formed on the entire surface of substrate 11 to a thickness of about 500 OA.

(第2図(b)) すると、ポリシリコy 15 ij s前記窒化膜13
とノfツド酸化膜12を中央とする広い範囲において基
板11上に突出して基板11上の全面を覆う。
(FIG. 2(b)) Then, the polysilico y 15 ij s nitride film 13
It protrudes above the substrate 11 in a wide range with the notched oxide film 12 in the center, and covers the entire surface of the substrate 11.

そして、いま、ポリシリコン15と酸化膜14さらには
窒化膜13とノfツド酸化膜12を1つの膜と考えれば
、この膜は前記広い範囲において厚く形成される一方、
それ以外のに辺部分において薄く形成されることになる
。また、この膜の厚さをアクティブ領域とフィールド領
域との関係でいえば、この膜は、アクティブ領域上およ
びこのアクティブ領域に隣接するフィールド領域の所定
範囲上において厚く形成される一方、前記所定範囲を除
く周辺のフィールド領域上において薄く形成される。
Now, if we consider the polysilicon 15 and the oxide film 14 as well as the nitride film 13 and the notched oxide film 12 as one film, this film is formed thickly over the wide range;
In addition, the side portions are formed thinner. Furthermore, in terms of the thickness of this film in relation to the active region and the field region, this film is formed thickly on the active region and on a predetermined range of the field region adjacent to the active region, while it is thicker on the predetermined region. It is formed thinly over the peripheral field region except for the

しかる後、チャネルストップ用のP+不純物のイオン打
込みを打込み電圧240KeVで行う。すると。
Thereafter, ion implantation of P+ impurity for channel stop is performed at an implantation voltage of 240 KeV. Then.

P+不純物は、前記膜(ポリシリコン15.酸化膜14
、窒化膜13.パッド酸化膜12からなる)の薄い部分
を通してその下の基板表面部、すなわちアクティブ領域
と隣接する所定範囲を除くフィールド領域部に、アクテ
ィブ領域部から遠ざけて打込まれる。(第2図(b)) 次に、ポリシリコン15と酸化膜14を除去した上で、
窒化膜13上を含む基板11上の全面に窒化膜(第2窒
化膜)16’(r1500大厚に形成する(第2図(C
))。
The P+ impurity is added to the film (polysilicon 15. oxide film 14).
, nitride film 13. The pad oxide film 12 is implanted through a thin portion of the pad oxide film 12 into the underlying substrate surface, that is, into the field region excluding a predetermined area adjacent to the active region, away from the active region. (FIG. 2(b)) Next, after removing the polysilicon 15 and the oxide film 14,
A nitride film (second nitride film) 16' (r1500 thick) is formed on the entire surface of the substrate 11 including the nitride film 13 (see FIG. 2(C).
)).

しかる後、全面ドライエツチングを行うことによシ、窒
化膜16を、窒化膜13とパッド酸化膜12の側面にの
み残す(第2図(d))。
Thereafter, by dry etching the entire surface, the nitride film 16 is left only on the side surfaces of the nitride film 13 and the pad oxide film 12 (FIG. 2(d)).

そして、このドライエツチング後、熱酸化処理を施す。After this dry etching, a thermal oxidation treatment is performed.

これによ#)、窒化膜13.16およびノ9ツド酸化膜
12で覆われた部分以外の基板表面部にフィールド酸化
膜17が7000X厚に形成される。またこの時、f不
純物が基板11中に熱拡散される。したがって、フィー
ルド酸化膜17の下にrのチャネルストップ領域18が
形成される。
As a result, a field oxide film 17 is formed to a thickness of 7000× on the surface of the substrate other than the portions covered with the nitride films 13 and 16 and the oxide film 12. Also, at this time, the f impurity is thermally diffused into the substrate 11. Therefore, an r channel stop region 18 is formed under field oxide film 17.

ただし、この場合は、前記イオン打込みをアクティブ領
域部から遠ざけて行った結果、不純物が熱拡散されても
その不純物がアクティブ領域部に到達しない、また到達
しても高濃度とならないために、チャネルストップ領域
18はアクティン゛領域部から離れて形成される。(第
2図(e))しかる後、アクティブ領域部の耐熱酸化マ
スクとしての前記窒化膜13.16およびパッド酸化膜
12を除去する。そして、それによシ露出した基板部に
イオン打込みを行ってN1アクティブ領域19を形成す
る。(第2図(f)) (発明の効果) 以上の一実施例から明らかなようにこの発明の方法では
、選択酸化のためのマスクを有する基板表面に所定の厚
さに膜を形成し、それにより生じる基板表面上における
膜厚差を利用して選択的に不純物のイオン打込みを行う
ことにょ夛、その後の選択酸化時に不純物が拡散しても
、その不純物がアクティブ領域に到達しないように、ま
た到達しても高濃度とならないように、アクティブ領域
から遠ざけて前記イオン打込みを行うようにしたので、
チャネルストップ領域がアクティブ領域から離れて形成
され、アクティブ領域との間にP−N接合を形成しない
ため、接合耐圧の向上やMOSトランジスタのしきい値
VTRの安定を図ることができる。
However, in this case, as a result of performing the ion implantation away from the active region, even if the impurities are thermally diffused, they do not reach the active region, and even if they do, they do not reach a high concentration, so the channel The stop region 18 is formed apart from the active region. (FIG. 2(e)) Thereafter, the nitride film 13, 16 and pad oxide film 12 serving as a heat-resistant oxidation mask in the active region are removed. Then, ions are implanted into the exposed substrate portion to form the N1 active region 19. (Fig. 2(f)) (Effects of the Invention) As is clear from the above embodiment, in the method of the present invention, a film is formed to a predetermined thickness on the surface of a substrate having a mask for selective oxidation, The resulting film thickness difference on the substrate surface is used to selectively implant impurity ions, and even if the impurities are diffused during subsequent selective oxidation, the impurities are prevented from reaching the active region. In addition, the ion implantation was performed at a distance from the active region so that the concentration would not become high even if the ion implantation reached the active region.
Since the channel stop region is formed apart from the active region and no PN junction is formed between the channel stop region and the active region, it is possible to improve the junction breakdown voltage and stabilize the threshold voltage VTR of the MOS transistor.

(他の例) なお、上記一実施例は枠付はマスク選択酸化法にこの発
明を応用した場合について説明したが、現在広く行われ
ているLOCO8法においても、高接合耐圧・しきい値
の安定化を目的としてこの発明を応用できる。
(Other Examples) Although the above embodiment describes the case where the present invention is applied to the mask selective oxidation method, the LOCO8 method, which is currently widely used, is also applicable to high junction breakdown voltage and threshold voltage. This invention can be applied for the purpose of stabilization.

また、一実施例では5選択酸化のためのマスクを有する
基板表面に形成される膜としてポリシリコンを用いたが
、CVD膜などその他の膜を用いることもできる。
Further, in one embodiment, polysilicon was used as the film formed on the surface of the substrate having a mask for 5-selective oxidation, but other films such as a CVD film may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は枠付はマスク選択酸化法を説明するための断面
図、第2図はこの発明の半導体装置の製造方法の一実施
例を説明するための断面図である。 11・・・P型シリコン基枦、13・・・窒化膜、15
・・・ポリシリコン、17・・・フィールド酸化膜、1
8・・・チャネルストップ領域、19・・・N′〜アク
ティブ領域。 手続補正書 昭和m年11月11日 特許庁長官看 杉 和 大股 1、事件の表示 昭和58年 特 許 願第98066   号2、見切
の名イ乍 半導体装峡の製造方法 3、補正をする者 事件との関係    特  ¥f 出願人(029)沖
電気工距株式会社 4、代理人 5、補正命令の日付  昭和  年  月  日 (自
発)な脱明の6栴j 7、補正の内容 別紙の通り 2 補iFの内容 (1)  明細%3負17行ないし19行[そして、・
・・・・・(#!1図(eJ ) Jを[そして、その
後、酸化、不純物拡散、絶縁層形成、配線層形成。 抵抗層形成などの鯖工程を一度あるいは複数回繰り返し
、目的とする素子を形成する。その一工程としてソース
−ドレインを形成するためヒ素インプランテーション全
行い N+層を形成した領域の最終的な不純物プロファ
イルだけを示せば第1図の(e+のよりになる。 第1図(e)においては、N  IIの領域が符号7を
何して示しである。」と訂正する。 (2)  明細性7頁12行ないし14イ1「そして、
・・・・・・(第2図−(f) ) Jを「そして、そ
の後、酸化、不純物拡散、絶縁層形成、配線層形成。 析損層形成などの肝工杵會一度おるいは複数回繰り返し
、目的とする素子を形成する。その一工程としてソース
・ドレインを形成するためヒ素インプランテーションを
行い N+層を形成した領域の最終的な不純物70ロフ
アイルだけを示−+L−は第2図の(f)のようになる
。 第2図(f+においては、N+層の領域が符号19を付
して示しておる。」と訂正する。
FIG. 1 is a sectional view with a frame for explaining a mask selective oxidation method, and FIG. 2 is a sectional view for explaining an embodiment of the method for manufacturing a semiconductor device of the present invention. 11...P-type silicon base layer, 13...Nitride film, 15
...Polysilicon, 17...Field oxide film, 1
8...Channel stop region, 19...N'~active region. Procedural amendment dated November 11, 1939, Director General of the Japan Patent Office Kazu Sugi Omata 1, Indication of the case, 1982 Patent Application No. 98066 2, Manufacturing method for semiconductor devices in the name of termination 3, Amendments made Relationship with the person's case Special ¥f Applicant (029) Oki Electric Works Co., Ltd. 4, Agent 5, Date of amendment order Showa year, month, day (Voluntary) deviance 6 栴j 7. Contents of the amendment attached. Street 2 Supplementary iF contents (1) Details %3 negative lines 17 to 19 [and...
...(#!1 figure (eJ) A device is formed. As one step, arsenic implantation is performed in order to form the source-drain. If only the final impurity profile of the region where the N+ layer is formed is shown, it will be shown in Figure 1 (e+). In Figure (e), what is the symbol 7 for the N II area?'' (2) Specificity Page 7, lines 12 to 14-1 ``And,
・・・・・・(Figure 2-(f)) After that, oxidation, impurity diffusion, insulating layer formation, wiring layer formation, deposition layer formation, etc. The desired device is formed by repeating the process several times. As one step, arsenic implantation is performed to form the source and drain. Figure 2 shows only the final impurity 70% failure in the region where the N+ layer is formed. (f) in Fig. 2 (in f+, the area of the N+ layer is indicated by the reference numeral 19.'') is corrected.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板にチャネルストップ用の不純物をイオン打込
みした後、選択酸化してフィールド酸化膜全形成するよ
うにした半導体装置の製造方法において、選択酸化のた
めのマスクを有する基板表面に所定の厚さに膜を形成し
、それによシ生じる基板表面上における膜厚差を利用し
て選択的に前記不純物のイオン打込みを行うことによ少
、その後の前記選択酸化時に不純物が拡散しても、その
不純物がアクティブ領域に到達しないように、また到達
−しても高濃度とならないように、アクティブ領域から
遠ざけて前記イオン打込みを行うようにしたことを特徴
とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which impurities for channel stop are ion-implanted into a semiconductor substrate and then selectively oxidized to form the entire field oxide film, the surface of the substrate having a mask for selective oxidation is ion-implanted to a predetermined thickness. By forming a film and selectively implanting ions of the impurity by utilizing the resulting film thickness difference on the substrate surface, even if the impurity is diffused during the subsequent selective oxidation, the impurity will be removed. 1. A method for manufacturing a semiconductor device, characterized in that the ion implantation is performed at a distance from the active region so that the ions do not reach the active region, and even if they do, the concentration is not high.
JP9806683A 1983-06-03 1983-06-03 Manufacture of semiconductor device Pending JPS59224141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9806683A JPS59224141A (en) 1983-06-03 1983-06-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9806683A JPS59224141A (en) 1983-06-03 1983-06-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59224141A true JPS59224141A (en) 1984-12-17

Family

ID=14209954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9806683A Pending JPS59224141A (en) 1983-06-03 1983-06-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59224141A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182243A (en) * 1985-01-31 1986-08-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Pad structural body
US4758530A (en) * 1986-12-08 1988-07-19 Delco Electronics Corporation Doubly-self-aligned hole-within-a-hole structure in semiconductor fabrication involving a double LOCOS process aligned with sidewall spacers
US4814290A (en) * 1987-10-30 1989-03-21 International Business Machines Corporation Method for providing increased dopant concentration in selected regions of semiconductor devices
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
US4897364A (en) * 1989-02-27 1990-01-30 Motorola, Inc. Method for locos isolation using a framed oxidation mask and a polysilicon buffer layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182243A (en) * 1985-01-31 1986-08-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Pad structural body
JPH0329296B2 (en) * 1985-01-31 1991-04-23 Intaanashonaru Bijinesu Mashiinzu Corp
US4758530A (en) * 1986-12-08 1988-07-19 Delco Electronics Corporation Doubly-self-aligned hole-within-a-hole structure in semiconductor fabrication involving a double LOCOS process aligned with sidewall spacers
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
US4814290A (en) * 1987-10-30 1989-03-21 International Business Machines Corporation Method for providing increased dopant concentration in selected regions of semiconductor devices
US4897364A (en) * 1989-02-27 1990-01-30 Motorola, Inc. Method for locos isolation using a framed oxidation mask and a polysilicon buffer layer

Similar Documents

Publication Publication Date Title
US4272880A (en) MOS/SOS Process
US4591890A (en) Radiation hard MOS devices and methods for the manufacture thereof
JPS59224141A (en) Manufacture of semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPH09172062A (en) Semiconductor device and its manufacture
US4814290A (en) Method for providing increased dopant concentration in selected regions of semiconductor devices
JPS6384162A (en) Manufacture of semiconductor device
JPH0487374A (en) Manufacture of nonvolatile memory element
JPH0479336A (en) Production of semiconductor device
JPH022171A (en) Manufacture of integrated circuit
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPH0778983A (en) Semiconductor device and fabrication thereof
JPS6151875A (en) Semiconductor device
JPH10163490A (en) Manufacture of transistor
JPH04290472A (en) Manufacture of semiconductor device
JPH01270272A (en) Manufacture of mis type semiconductor device
JPH01194335A (en) Semiconductor device
JPH0214788B2 (en)
JPS6058674A (en) Mos type transistor
JPH0555204A (en) Manufacture of semiconductor device
JPH04290471A (en) Manufacture of semiconductor device
JPH0227760A (en) Manufacture of semiconductor device
JPS60261172A (en) Manufacture of semiconductor device
JPS61225857A (en) Manufacture of complementary semiconductor device