JPH0582068B2 - - Google Patents

Info

Publication number
JPH0582068B2
JPH0582068B2 JP58025706A JP2570683A JPH0582068B2 JP H0582068 B2 JPH0582068 B2 JP H0582068B2 JP 58025706 A JP58025706 A JP 58025706A JP 2570683 A JP2570683 A JP 2570683A JP H0582068 B2 JPH0582068 B2 JP H0582068B2
Authority
JP
Japan
Prior art keywords
region
protection circuit
drain
oxide film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025706A
Other languages
Japanese (ja)
Other versions
JPS59151469A (en
Inventor
Takehide Shirato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58025706A priority Critical patent/JPS59151469A/en
Publication of JPS59151469A publication Critical patent/JPS59151469A/en
Publication of JPH0582068B2 publication Critical patent/JPH0582068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体集積回路装置に形成される保護
回路素子、特に高耐圧の新しいMOS FETによ
り良く適合する保護回路素子の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to the manufacture of a protection circuit element formed in a semiconductor integrated circuit device, particularly a protection circuit element that is more suitable for a new high-voltage MOS FET.

(b) 技術の背景 半導体集積回路装置(以下ICと略称する)に
おいては、高集積密度化・大規模化などの目的達
成のために、これに用いる例えばMIS型素子の接
合耐圧についての余裕が切りつめられて、これら
の素子を異常高電圧から保護する保護回路素子が
ますます重要となつている。
(b) Background of technology In semiconductor integrated circuit devices (hereinafter abbreviated as IC), in order to achieve objectives such as higher integration density and larger scale, there is a need for margins in the junction breakdown voltage of, for example, MIS type elements used for this purpose. protection circuit elements that protect these elements from abnormally high voltages are becoming increasingly important.

ICの回路の多くは電源電圧を5〔V〕程度とし
ている。しかしながら例えば螢光表示管などを駆
動するICでは、MIS型素子などは40乃至50〔V〕
程度の高電圧における動作が必要となり、これに
適する動作電圧をもつ保護回路素子が要求される
が、高動作電圧の保護回路素子には通常の低動作
電圧の保護回路素子とは異なり、動作電圧を高く
する手段が必要とされる。
Most IC circuits use a power supply voltage of about 5 [V]. However, for example, in ICs that drive fluorescent display tubes, MIS type elements, etc.
It is necessary to operate at a relatively high voltage, and protection circuit elements with an appropriate operating voltage are required.However, unlike normal low operating voltage protection circuit elements, high operating voltage protection circuit elements have a A means to increase the value is needed.

(c) 従来技術と問題点 高電圧動作化に適する構造を有するものとし
て、従来ラテラル構造の保護回路素子が知られて
いる。
(c) Prior Art and Problems A protection circuit element with a lateral structure is conventionally known as having a structure suitable for high voltage operation.

ラテラル構造の保護回路素子を適用したP−チ
ヤネルオーブンドレイン高耐圧出力回路は第1図
に示す回路図となり、出力端子V0に保護回路素
子T1のドレインが接続され、ソースとゲートと
基板とは基準電位(例えば電源電圧VD)に接続
されており、出力端子V0に異常高電圧が印加さ
れると、保護回路素子T1はラテラルトランジス
タ特性を示し、出力端子は基準電位側と短絡し
て、出力トランジスタT2のドレイン側に高電圧
が印加しない様に保護している。
A P-channel oven drain high voltage output circuit to which a lateral structure protection circuit element is applied is shown in the circuit diagram shown in Fig. 1, in which the drain of the protection circuit element T1 is connected to the output terminal V0 , and the source, gate, and substrate are connected to each other. is connected to a reference potential (for example, the power supply voltage V D ), and when an abnormally high voltage is applied to the output terminal V 0 , the protection circuit element T 1 exhibits lateral transistor characteristics, and the output terminal is shorted to the reference potential side. This protects the drain side of the output transistor T2 from being applied with a high voltage.

第2図はこの様な保護回路素子T1の断面構造
を例示しており、N型半導体基体1上にN+型チ
ヤネル・カツト領域2を介して厚いフイールド酸
化膜3を形成し、両側の活性領域にP+型ドレイ
ン領域4、P+型ソース領域5がそれぞれ設けら
れる。そしてこの様な構造とした保護回路素子に
出力端子から負の異常高電圧が印加されると、ド
レイン領域4とチヤンネル・カツト領域2との間
のPN接合がブレークダウンを起し、基体1の電
位が下がる。そこで基体1と基準電位レベルのソ
ース領域5とが順方向となり、ソース領域5から
基体1へ電流が流れると同時に該ラテラルトラン
ジスタが作動し、ソース領域5からドレイン領域
4へと電流が流れ込み保護素子として役目をはた
すことになる。
FIG. 2 illustrates the cross-sectional structure of such a protection circuit element T1 , in which a thick field oxide film 3 is formed on an N-type semiconductor substrate 1 via an N + type channel cut region 2, and A P + type drain region 4 and a P + type source region 5 are provided in the active region, respectively. When an abnormally high negative voltage is applied from the output terminal to the protection circuit element having such a structure, the PN junction between the drain region 4 and the channel cut region 2 breaks down, and the substrate 1 is damaged. The potential decreases. Therefore, the substrate 1 and the source region 5 at the reference potential level are in the forward direction, and at the same time a current flows from the source region 5 to the substrate 1, the lateral transistor is activated, and a current flows from the source region 5 to the drain region 4, and the protective element It will serve as a role.

このようにラテラル型(横型)構造の保護回路
素子はラテラル・トランジスタ特性を利用したも
のであり、出力端子V0側のドレイン領域4がチ
ヤネル・カツト領域2と接触している部分7での
ブレークダウン電圧が、保障できる耐圧を決めて
いる。一方チヤンネル・カツト領域は本来IC内
全体の寄生トランジスタ動作を抑止することが主
目的であるから、余り低濃度にはできない。
In this way, the protection circuit element with the lateral type (horizontal) structure utilizes the lateral transistor characteristics, and the break occurs at the portion 7 where the drain region 4 on the output terminal V 0 side contacts the channel cut region 2. The down voltage determines the withstand voltage that can be guaranteed. On the other hand, since the main purpose of the channel cut region is to suppress parasitic transistor operation throughout the IC, the concentration cannot be made very low.

従つてこの様な構造のままでは20乃至30〔V〕
以下程度で作動し、高耐圧素子の保護素子として
は不充分である。なお図中、6はゲート電極、8
は燐珪酸ガラス(PSG)等の表面保護膜、9は
ドレイン電極、10はソース電極を示している。
Therefore, with this structure as it is, the voltage is 20 to 30 [V]
This is insufficient as a protection element for high-voltage elements. In the figure, 6 is the gate electrode, 8
indicates a surface protective film such as phosphosilicate glass (PSG), 9 indicates a drain electrode, and 10 indicates a source electrode.

ラテラル構造の保護回路素子の動作電圧を前記
の値より高電圧とすることができる構造を、本発
明者は先に特願昭56−136663号(特開昭58−
37969号公報)により提供している。
The present inventor previously proposed a structure in which the operating voltage of a protection circuit element with a lateral structure can be made higher than the above-mentioned value in Japanese Patent Application No. 56-136663 (Japanese Unexamined Patent Publication No. 58-1989).
37969).

該発明によれば、例えば第3図に示すような断
面構造の保護回路素子が提供される。即ち、該保
護回路素子はN型半導体(シリコン)基体11の
表面に、その活性化領域面を画定表出するフイー
ルド酸化膜12が設けられており、該フイールド
酸化膜12によつてへだてられた一方の活性化領
域に、周囲がP-型低濃度オフセツト13で囲ま
れたP+型高濃度ドレイン領域14が、他方の活
性領域にP+型高濃度ソース領域15が形成され
ている。又前記フイールド酸化膜12下部の基板
表層部には前記オフセツト領域13及びソース領
域15の両方に接するN+型高濃度チヤネル・カ
ツト領域16が設けられている。更にPSG等の
絶縁膜17、ドレイン電極18、ソース電極19
及びドレイン領域−ソース領域間のフイールド酸
化膜12の上部に位置するゲート電極20が形成
され、前記ドレイン電極18が入力端子21に、
ソース電極19及びゲート電極20が基準電位端
子22に接続されてなつている。そして該構造を
有する保護回路素子に於ては、入力端子を介して
異常電圧がドレイン領域に加わつてもPN接合部
23に於けるデプレツシヨン層が低不純物濃度の
P-型オフセツト領域13内に広く拡がるために、
該保護回路素子のブレークダウン電圧をオフセツ
ト領域とチヤンネル・カツト領域の比抵抗で決定
される値まで高めることができる。
According to the invention, a protection circuit element having a cross-sectional structure as shown in FIG. 3, for example, is provided. That is, the protection circuit element is provided with a field oxide film 12 on the surface of an N-type semiconductor (silicon) substrate 11 that defines and exposes the active region surface, and is separated by the field oxide film 12. A P + -type high concentration drain region 14 surrounded by a P - -type low concentration offset 13 is formed in one active region, and a P + -type high concentration source region 15 is formed in the other active region. Further, an N + -type high concentration channel cut region 16 is provided in the substrate surface layer below the field oxide film 12 and is in contact with both the offset region 13 and the source region 15. Furthermore, an insulating film 17 such as PSG, a drain electrode 18, a source electrode 19
A gate electrode 20 is formed on the field oxide film 12 between the drain region and the source region, and the drain electrode 18 is connected to the input terminal 21.
A source electrode 19 and a gate electrode 20 are connected to a reference potential terminal 22. In the protection circuit element having the above structure, even if an abnormal voltage is applied to the drain region through the input terminal, the depletion layer in the PN junction 23 has a low impurity concentration.
In order to spread widely within the P - type offset region 13,
The breakdown voltage of the protection circuit element can be increased to a value determined by the resistivity of the offset region and the channel cut region.

以上説明した構造を有する保護回路素子は、高
耐圧用として従来多く用いられているオフセツト
ゲート構造のMOS FETと同一基板上に同時に
形成するのに適しており、良好な結果が得られて
いる。
The protection circuit element having the structure described above is suitable for being formed simultaneously on the same substrate as a MOS FET with an offset gate structure, which is conventionally widely used for high voltage applications, and good results have been obtained. .

(d) 発明の目的 しかしながら第3図に示す構造では、N+型高
濃度チヤネルカツト領域形成の工程のほか、P-
型低濃度オフセツト領域13の形成後工程を必要
とし、さらにその後のP+型高濃度ドレイン電極
の形成のためには、このオフセツト領域13を覆
うためのマスクを必要とします。またオフセツト
領域13が基体表面にドレイン領域を包囲する形
で設けられ、その上はPSGで覆われており、か
かる構造においてドレイン電極に負電位が印加さ
れた場合、大気中からPSGを通してP-型低濃度
のオフセツト領域13にはナトリウムイオン
(Na+)が集められてしまい、このオフセツト領
域の耐圧向上の機能が低下することになる。した
がつて本発明ほ保護回路素子において工程を減少
し、かつブレークダウン電圧の高い値への設定が
可能で、またオフセツト領域での耐圧の低下を防
ぎ、しかも従来と同様に使用しうるようにするこ
とを目的とする。
(d) Purpose of the invention However, in the structure shown in FIG. 3, in addition to the process of forming the N + type high concentration channel cut region,
A post-formation process for the low concentration offset region 13 is required, and a mask is required to cover the offset region 13 for the subsequent formation of the high concentration P + type drain electrode. An offset region 13 is provided on the surface of the substrate to surround the drain region, and is covered with PSG. In this structure, when a negative potential is applied to the drain electrode, P - type Sodium ions (Na + ) are collected in the low concentration offset region 13, and the ability of this offset region to improve the withstand voltage is reduced. Therefore, the present invention can reduce the number of steps in the protection circuit element, set the breakdown voltage to a high value, prevent the breakdown voltage from decreasing in the offset region, and still be usable in the same way as before. The purpose is to

(e) 発明の構成 上記目的は本発明により、第1導電型の半導体
基体表面にフイールド酸化膜で互いに分離された
第2導電型の高濃度領域からなるソース領域及び
ドレイン領域が設けられると共に、ソース領域及
びドレイン領域表面より下方でフイールド酸化膜
の下方と半導体基体との界面との間には、フイー
ルド酸化膜とソース領域の1側面との境界に沿つ
てソース領域に1端が接する第1導電型の領域か
らなるパンチスルー防止領域と、フイールド酸化
膜とドレイン領域の1側との境界に沿つてドレイ
ン領域内に1端が接するドレイン領域より低濃度
の第2導電膜の領域からなるオフセツト領域とが
設けられ、ソース領域は基準電位に接続され、ド
レイン領域は被保護素子に接続されることを特徴
とする保護回路素子によつて達成される。
(e) Structure of the Invention According to the present invention, the present invention provides a source region and a drain region consisting of high concentration regions of a second conductivity type separated from each other by a field oxide film on the surface of a semiconductor substrate of a first conductivity type; Below the surfaces of the source and drain regions, between the lower part of the field oxide film and the interface with the semiconductor substrate, there is a first layer along the boundary between the field oxide film and one side of the source region, one end of which is in contact with the source region. A punch-through prevention region consisting of a conductive type region, and an offset consisting of a region of a second conductive film having a lower concentration than the drain region whose one end is in contact with the drain region along the boundary between the field oxide film and one side of the drain region. This is achieved by a protection circuit element characterized in that a source region is connected to a reference potential and a drain region is connected to a protected element.

(f) 発明の実施例 以下本発明にかかる保護回路素子を、同一IC
に同時に形成するMOS FETとともに、実施例
により図面を参照して具体的に説明する。
(f) Embodiments of the invention The protection circuit elements according to the present invention will be described below using the same IC.
MOS FETs formed at the same time will be explained in detail by way of embodiments with reference to the drawings.

第4図a乃至fは本発明の実施例について、そ
の製造工程中の状態を示す模式断面図であり、図
中Aの部分は保護回路素子、Bの部分はMOS
FETを示し、かつそれぞれの部分を示す符号の
添字aもしくはbを付加する。
FIGS. 4a to 4f are schematic sectional views showing the embodiment of the present invention during its manufacturing process.
A subscript a or b is added to indicate the FET and each part.

第4図a参照 不純物農濃度が例えば4×1015〔cm-3〕程度の
N型シリコン(Si)基体31上に膜厚数10〔mm〕
程度の二酸化シリコン(SiO2)膜32を介して、
膜厚数100〔mm〕程度の窒化シリコン(Si3N4)膜
33を形成し、各活性領域を分離画定する絶縁膜
(以下フイールド酸化膜という)を形成する領域
のSi3N4膜33を選択的に除去する。
Refer to Figure 4a. A film with a thickness of several tens of mm is applied to an N-type silicon (Si) substrate 31 with an impurity concentration of, for example, about 4×10 15 [cm -3 ].
Through a silicon dioxide (SiO 2 ) film 32 of approximately
A silicon nitride (Si 3 N 4 ) film 33 with a thickness of about 100 mm is formed, and the Si 3 N 4 film 33 is formed in a region where an insulating film (hereinafter referred to as a field oxide film) that separates and defines each active region is formed. selectively remove.

次いで、保護回路素子については、ドレイン形
成領域の近傍の選択された範囲を除く全面を、ま
たMOS FETについては、前記Si3N4膜33の素
子間領域の窓を全面的に、もしくはそのドレイン
形成領域近傍を除外して、レジスト皮膜34で被
覆する。尚、本発明の保護回路素子はラテラルト
ランジスタとして動作するものであるが、MOS
FETの製作工程と同時に製作するプロセス上、
エミツタもしくはコレクタはソース、ドレインと
呼ぶこととする。
Next, for the protection circuit element, the entire surface except a selected area near the drain formation region is covered, and for the MOS FET, the window in the inter-element region of the Si 3 N 4 film 33 is entirely covered, or the drain is A resist film 34 is applied except for the vicinity of the formation area. Although the protection circuit element of the present invention operates as a lateral transistor, it can also be used as a MOS transistor.
Due to the process of manufacturing at the same time as the FET manufacturing process,
The emitter or collector will be called the source or drain.

しかる後に、例えばボロン(B)エネルギー25
〔KeV〕程度、ドーズ量5×1012〔cm-2〕程度にイ
オン注入して、P型不純物導入領域35を形成す
る。
After that, for example, boron (B) energy 25
P-type impurity introduced region 35 is formed by implanting ions at a dose of about [KeV] and a dose of about 5×10 12 [cm -2 ].

第4図b参照 前記レジスト皮膜34を剥離し、レジスト皮膜
36によつてチヤネルカツト形成領域以外を被覆
して、例えば燐(P)をエネルギー80〔KeV〕、ドー
ズ量5×1012〔cm-2〕程度にイオン注入して、N
型不純物導入領域37を形成する。
Refer to FIG. 4b. The resist film 34 is peeled off, the area other than the channel cut forming area is covered with the resist film 36, and then phosphorus (P) is applied, for example, at an energy of 80 [KeV] and a dose of 5×10 12 [cm -2 ] . ] by implanting ions to the extent of
A type impurity introduction region 37 is formed.

第4図c参照 前記レジスト皮膜36を剥離し、前記Si3N4
33を耐酸化マスクとして選択熱酸化を行ない、
フイールド酸化膜38を選択的に形成し、前記
Si3N4膜33を及びSiO2膜32を除去する。
Refer to FIG. 4c. The resist film 36 is peeled off, and selective thermal oxidation is performed using the Si 3 N 4 film 33 as an oxidation-resistant mask.
A field oxide film 38 is selectively formed, and the
The Si 3 N 4 film 33 and the SiO 2 film 32 are removed.

ここで形成されたフイールド酸化膜38によつ
て、保護回路素子のドレイン形成領域40a及び
ソース形成領域41a、ならびにMOS FETの
ゲート形成領域39b、ドレイン形成領域40b
及びソース形成領域41bが分離画定され、その
位置及び寸法が定まる。
The field oxide film 38 formed here forms the drain formation region 40a and source formation region 41a of the protection circuit element, as well as the gate formation region 39b and drain formation region 40b of the MOS FET.
The source forming region 41b is separated and defined, and its position and dimensions are determined.

なおP型不純物導入領域35及びN型不純物導
入領域37はフイールド酸化膜38の下部に位置
することとなる。
Note that the P-type impurity doped region 35 and the N-type impurity doped region 37 are located under the field oxide film 38.

第4図d参照 Si基体31面上に通常は熱酸化法によつて、例
えば膜厚70〔mm〕程度にSiO2膜42を形成する。
このSiO2膜42はゲート酸化膜となる。
Refer to FIG. 4d. A SiO 2 film 42 is formed on the surface of the Si substrate 31 to a thickness of, for example, about 70 mm, usually by thermal oxidation.
This SiO 2 film 42 becomes a gate oxide film.

次いで化学気相成長方法等によつて多結晶シリ
コンよりなるMOS FETのゲート電極43bを
形成する。このゲート電極43bはゲート形成領
域39を包囲するフイールド酸化膜38上に延在
した形状とすることができる。ゲート電極43b
を形成後、余分のゲート酸化膜をエツチング除去
する。その後各ドレイン形成領域40a及び40
b及びソース形成領域41a及び41bの表出面
上に、膜厚50〔mm〕程度にSiO2膜44を形成す
る。
Next, a gate electrode 43b of the MOS FET made of polycrystalline silicon is formed by chemical vapor deposition or the like. This gate electrode 43b can have a shape extending over the field oxide film 38 surrounding the gate formation region 39. Gate electrode 43b
After forming, the excess gate oxide film is removed by etching. After that, each drain forming region 40a and 40
A SiO 2 film 44 with a thickness of about 50 mm is formed on the exposed surfaces of the source formation regions 41a and 41b.

次いで、例えばボロン(B)を、エネルギー25
〔KeV〕、ドーズ量5×1015〔cm-2〕程度、保護回
路素子及びMOS FETのドレイン形成領域40
a及び40b、ソース形成領域41a及び41b
にイオン注入する。この注入に際しては、フイー
ルド酸化膜38及びMOS FETのゲート電極4
3bがマスクとして機能して、イオン注入は前記
の如く画定された各領域に限定される。
Next, for example, boron (B) is given an energy of 25
[KeV], dose amount approximately 5×10 15 [cm -2 ], protection circuit element and drain formation region 40 of MOS FET
a and 40b, source formation regions 41a and 41b
ion implantation. During this implantation, the field oxide film 38 and the gate electrode 4 of the MOS FET are
3b functions as a mask to limit ion implantation to each region defined as above.

第4図e参照 燐珪酸ガラス(PSG)等の表面保護膜45を
基体31の全面に設ける。
Refer to FIG. 4e. A surface protective film 45 made of phosphosilicate glass (PSG) or the like is provided on the entire surface of the base 31.

表面保護膜45に電極形成のための窓を設け、
窓の部分の除されたSiO2膜44に代るSiO2膜4
4′を低温で形成する。
A window for electrode formation is provided in the surface protection film 45,
SiO 2 film 4 replacing the SiO 2 film 44 from which the window portion has been removed
4' is formed at low temperature.

次いでこれまでに注入されたイオンの活性化と
PSG表面保護膜45の表面の円滑化を目的とす
る加熱処理を行なう。この加熱処理によつて各ド
レイン領域40a及び40b及びソース形成領域
41a及び41bのP+型不純物の深さが決定さ
れるが、この加熱処理は窒素雰囲気中において行
なわれ、その条件は例えば温度1050〔℃〕、時間10
分間程度である。
Next, the activation of the ions implanted so far and
Heat treatment is performed for the purpose of smoothing the surface of the PSG surface protection film 45. This heat treatment determines the depth of the P + type impurity in each drain region 40a and 40b and source formation region 41a and 41b, but this heat treatment is performed in a nitrogen atmosphere, and the conditions are, for example, a temperature of 1050 [℃], time 10
It takes about a minute.

またこの加熱処理によつて、P型不純物導入領
域35はP-型オフセツト領域35又はP-型低濃
度領域35′となり、N型不純物導入領域37は
N+型チヤネルカツト領域37となる。(この領域
37は、保護回路素子においては、パンチスルー
防止のために設けられるのであるが、MOS
FETのプロセス上チヤネルカツト領域37と仮
に呼ぶこととする。) 第4図f参照 前記SiO2膜44′を除去して、例えばアルミニ
ウム(Al)を用いて、保護回路素子については、
ドレイン領域40aとソース領域41bとの間の
フイールド酸化膜48上にゲート電極もしくはシ
ールド電極43a、及び各領域に接するドレイン
電極46a、ソース電極47aを、MOS FET
については同様にドレイン電極46b、ソース電
極47b及びゲート配管48を設ける。電極43
aは通常のFETのゲート作用はせず、電位固定
用シールド電極として作用するものであるが、
MOS FETと同一工程で製作する上から便宜上
ゲート電極と称する。なお所要の配線等を同時に
形成することもできる。
Also, by this heat treatment, the P type impurity introduced region 35 becomes a P - type offset region 35 or a P - type low concentration region 35', and the N type impurity introduced region 37 becomes a P - type offset region 35 or a P - type low concentration region 35'.
This becomes an N + type channel cut region 37. (This region 37 is provided to prevent punch-through in the protection circuit element, but it is
This is tentatively called a channel cut region 37 due to the FET process. ) Refer to FIG. 4f. By removing the SiO 2 film 44' and using aluminum (Al), for example, as for the protection circuit element,
A gate electrode or shield electrode 43a is placed on the field oxide film 48 between the drain region 40a and the source region 41b, and a drain electrode 46a and a source electrode 47a in contact with each region are connected to a MOS FET.
Similarly, a drain electrode 46b, a source electrode 47b, and a gate pipe 48 are provided. Electrode 43
a does not act as a gate for a normal FET, but acts as a potential-fixing shield electrode.
For convenience, it is called the gate electrode because it is manufactured in the same process as the MOS FET. Note that necessary wiring and the like can also be formed at the same time.

以上説明した実施例の製造方法から知られる如
く、本来バイポーラ形素子であるラテラル構造の
保護回路素子を本発明の構造とすることによつ
て、実施例において同時に説明した新しい構造の
高耐圧用のオフセツトゲート形MOS FETと同
時に、従来より工程数を削減して形成することが
できる。
As is known from the manufacturing method of the embodiments described above, by applying the structure of the present invention to the protection circuit element of the lateral structure, which is originally a bipolar type element, the high withstand voltage type of the new structure explained at the same time in the embodiments can be realized. At the same time as an offset gate type MOS FET, it can be formed with fewer steps than conventional methods.

なお前記実施例においては保護回路素子のP型
オフセツト領域35からN+型チヤネルカツト領
域37を分離することによつて保障耐圧を向上し
ているが、目的とする動作電圧によつては両領域
を分離する必要はなく、また素子分離領域側の
P-型低濃度領域35′を省略してもよい。
In the above embodiment, the guaranteed breakdown voltage is improved by separating the N + type channel cut region 37 from the P type offset region 35 of the protection circuit element, but depending on the target operating voltage, both regions may be separated. There is no need for isolation, and
The P - type low concentration region 35' may be omitted.

本発明の保護回路素子は、ドレイン電極46a
がMOS FETよりなる回路の入力端子に、ソー
ス電極47a及びゲート電極43aが基準電位端
子に接続されることによつて、前記従来例の保護
回路素子と同様の機能が得られる。なお本発明の
保護回路素子においては、P-型オフセツト領域
35は厚いフイールド酸化膜38の下部に設けら
れているので、ドレイン領域に負電位が印加され
た場合でも大気中からのナトリウムイオン
(Na+)はPSG及び厚いフイールド酸化膜を通し
てはオフセツト領域に入ることはなく、従来例に
比較してこの部分の耐圧が向上している。ところ
で、ゲート電極43aはなくても、保護素子とし
ての機能は達せられるが、信頼性を保証するには
設置しておくのがよい。
The protection circuit element of the present invention has a drain electrode 46a.
By connecting the source electrode 47a and the gate electrode 43a to the reference potential terminal to the input terminal of a circuit made of a MOS FET, the same function as the protection circuit element of the conventional example can be obtained. In the protection circuit element of the present invention, since the P - type offset region 35 is provided under the thick field oxide film 38, even when a negative potential is applied to the drain region, sodium ions (Na + ) does not enter the offset region through the PSG and thick field oxide film, and the withstand voltage in this area is improved compared to the conventional example. By the way, although the function as a protection element can be achieved even without the gate electrode 43a, it is better to provide it in order to guarantee reliability.

なお本発明の保護回路素子は、前記実施例と逆
導電型としてMOS FETの導電型に適合させる
ことも可能である。
Note that the protection circuit element of the present invention can also be adapted to the conductivity type of a MOS FET by being of a conductivity type opposite to that of the above-mentioned embodiments.

(g) 発明の効果 以上説明した如く本発明によれば、特性が改善
される新しいオフセツトゲート構造のMOS
FETと、その保護回路素子とを従来より工程数
を削減してIC化することが容易に可能となり、
半導体装置に対する各応用分野からの要求により
良く対応することが可能となる。
(g) Effects of the Invention As explained above, the present invention provides a new offset gate structure MOS with improved characteristics.
It is now possible to easily integrate FETs and their protection circuit elements into ICs with fewer steps than before.
It becomes possible to better meet the demands for semiconductor devices from various application fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は保護回路素子の回路の例を示す図、第
2図及び第3図は従来の保護回路素子の例を示す
断面図、第4図a乃至fは本発明にかかる保護回
路素子をMOS FETとともに製造する工程中の
状態を示す模式断面図である。 図において、31はN型シリコン基板、33は
窒化シリコン膜、35はP型不純物導入領域及び
P-型オフセツト領域、35′はP-型低濃度領域、
37はN型不純物導入領域及びN+型チヤネルカ
ツト領域、38はフイールド酸化膜、40a及び
40bはドレイン領域、41a及び41bはソー
ス領域、42はゲート酸化膜、43a及び43b
はゲート電極、45は保護膜、46a及び46b
はドレイン電極、47a及び47bはソース電極
を示し、添字aは保護回路素子、添字bはMOS
FETにかかることを示す。
Fig. 1 is a diagram showing an example of a circuit of a protection circuit element, Figs. 2 and 3 are sectional views showing an example of a conventional protection circuit element, and Figs. FIG. 3 is a schematic cross-sectional view showing a state during a manufacturing process together with a MOS FET. In the figure, 31 is an N-type silicon substrate, 33 is a silicon nitride film, 35 is a P-type impurity doped region and
P - type offset region, 35' is P - type low concentration region,
37 is an N type impurity introduction region and an N + type channel cut region, 38 is a field oxide film, 40a and 40b are drain regions, 41a and 41b are source regions, 42 is a gate oxide film, 43a and 43b
is a gate electrode, 45 is a protective film, 46a and 46b
indicates the drain electrode, 47a and 47b indicate the source electrode, the subscript a indicates the protection circuit element, and the subscript b indicates the MOS
Indicates that it applies to FET.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基体表面にフイールド酸
化膜で互いに分離された第2導電型の高濃度領域
からなるソース領域及びドレイン領域が設けられ
ると共に、ソース領域及びドレイン領域表面より
下方でフイールド酸化膜の下方と半導体基体との
界面との間には、フイールド酸化膜とソース領域
の1側面との境界に沿つてソース領域に1端が接
する第1導電型の領域からなるパンチスルー防止
領域と、フイールド酸化膜とドレイン領域の1側
との境界に沿つてドレイン領域に1端が接するド
レイン領域より低濃度の第2導電型の領域からな
るオフセツト領域とが設けられ、ソース領域は基
準電位に接続され、ドレイン領域は被保護素子に
接続されることを特徴とする保護回路素子。
1. A source region and a drain region consisting of high concentration regions of a second conductivity type separated from each other by a field oxide film are provided on the surface of a semiconductor substrate of a first conductivity type, and a field oxide film is provided below the surface of the source region and the drain region. a punch-through prevention region consisting of a first conductivity type region whose one end is in contact with the source region along the boundary between the field oxide film and one side of the source region, between the lower part of the field oxide film and the interface with the semiconductor substrate; An offset region is provided along the boundary between the field oxide film and the first side of the drain region, the offset region consisting of a region of a second conductivity type having a lower concentration than the drain region, one end of which is in contact with the drain region, and the source region is connected to a reference potential. A protection circuit element characterized in that the drain region is connected to a protected element.
JP58025706A 1983-02-18 1983-02-18 Protective circuit element Granted JPS59151469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025706A JPS59151469A (en) 1983-02-18 1983-02-18 Protective circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025706A JPS59151469A (en) 1983-02-18 1983-02-18 Protective circuit element

Publications (2)

Publication Number Publication Date
JPS59151469A JPS59151469A (en) 1984-08-29
JPH0582068B2 true JPH0582068B2 (en) 1993-11-17

Family

ID=12173224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025706A Granted JPS59151469A (en) 1983-02-18 1983-02-18 Protective circuit element

Country Status (1)

Country Link
JP (1) JPS59151469A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705106B2 (en) * 1988-05-25 1998-01-26 セイコーエプソン株式会社 Method for manufacturing semiconductor device
JP5296450B2 (en) * 2008-08-13 2013-09-25 セイコーインスツル株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837969A (en) * 1981-08-31 1983-03-05 Fujitsu Ltd Protection circuit element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837969A (en) * 1981-08-31 1983-03-05 Fujitsu Ltd Protection circuit element

Also Published As

Publication number Publication date
JPS59151469A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
EP0387999B1 (en) Process for forming high-voltage and low-voltage CMOS transistors on a single integrated circuit chip
US6194763B1 (en) Semiconductor device having SOI-MOSFET
KR900003257B1 (en) Semiconductor device having a protection circuit
EP0164449A2 (en) Process for producing a semiconductor integrated circuit device including a MISFET
US10181440B2 (en) Semiconductor device
US4853340A (en) Semiconductor device isolated by a pair of field oxide regions
JPS6124833B2 (en)
US5242849A (en) Method for the fabrication of MOS devices
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JPS6035558A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0582068B2 (en)
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH08172139A (en) Manufacture of semiconductor device
JPH0475387A (en) Mis-type semiconductor device
JPH0430194B2 (en)
JP3424146B2 (en) Semiconductor device and manufacturing method thereof
JPH06252345A (en) Manufacture of semiconductor integrated circuit
US4528581A (en) High density CMOS devices with conductively interconnected wells
JPH0575041A (en) Cmos semiconductor device
JPS6359258B2 (en)
JP3114613B2 (en) Semiconductor device and manufacturing method thereof
KR910009743B1 (en) High speed and high voltage semiconductor device and its manufacturing method
KR100323447B1 (en) Method for fabricating metal oxide semiconductor field effect transistor
EP0112662A1 (en) Stacked MOS devices with polysilicon interconnects