JPS59175157A - Metal insulator semiconductor type semiconductor memory device and manufacture thereof - Google Patents

Metal insulator semiconductor type semiconductor memory device and manufacture thereof

Info

Publication number
JPS59175157A
JPS59175157A JP58048224A JP4822483A JPS59175157A JP S59175157 A JPS59175157 A JP S59175157A JP 58048224 A JP58048224 A JP 58048224A JP 4822483 A JP4822483 A JP 4822483A JP S59175157 A JPS59175157 A JP S59175157A
Authority
JP
Japan
Prior art keywords
electrode
substrate
insulating film
adjacent
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58048224A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58048224A priority Critical patent/JPS59175157A/en
Publication of JPS59175157A publication Critical patent/JPS59175157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Abstract

PURPOSE:To avoid the reduction of an active element region due to the lateral expansion of oxidation by a method wherein an electrode different from the capacitor part is provided on an insulation film provided between adjacent capacitor parts, and then such a voltage that the surface of Si comes to the state of accumulation is impressed on this electrode. CONSTITUTION:An insulation film 2 is formed on a P type Si substrate 1. The surface of the Si substrate 1 is coated with a photo resist, and P type layers 5 are selectively formed by ion implantation. After polycrystalline Si, it is left at regions between elements as electrodes 6. The part other than the capacitor part is covered with a photo resist, and then an N type impurity is implanted to the capacitor part. A P-N junction is formed in the Si substrate at said part, which can be used as a charge accumulated region, and then the charge accumulation capacitance of a memory cell increases together with the capacitance by the insulation film 2. Electrodes 10 are formed by adhering polycrystalline Si. Charge transfer gates 11 of polycrystalline Si are formed, an N type impurity layer 12 is formed by ion implantation, and a digit line 13 by metallic wiring is formed.

Description

【発明の詳細な説明】 この発明は半導体装置にかかり、特に記憶機能を有する
半導体装置の記憶容量部の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to the configuration of a storage capacitor section of a semiconductor device having a storage function.

絶縁ゲート型電界効果トランジスタを用いた記憶装置と
して今日量も広く用いられているものは一個のトランジ
スタ及びそれに隣接して設けられた容量とによって構成
された謂ゆる1トランジスタ型記憶装置である。
A memory device using an insulated gate field effect transistor that is widely used today is a so-called one-transistor type memory device, which is constituted by one transistor and a capacitor provided adjacent to the transistor.

本記憶装置に於ては、トランジスタのゲートはワード線
に接続され、ソース、ドレイン拡散層の一方はディジッ
ト線に接続され、容量ゲート下洗蓄積された電荷の有無
が反転情報に対応する。
In this memory device, the gate of the transistor is connected to the word line, one of the source and drain diffusion layers is connected to the digit line, and the presence or absence of charge accumulated under the capacitor gate corresponds to inversion information.

近年、記憶装置の大容量化に伴い、素子の微細化が進展
し、各記憶セルの面積も縮小化の傾向をたどっている。
In recent years, as the capacity of memory devices has increased, elements have become smaller and the area of each memory cell has also tended to be smaller.

1トランジスタ型記憶装置の微細化に於ては情報判定の
容易と、放射線への耐性を維持するために、電荷蓄積容
量の減少は極力避けねばならない。
When miniaturizing a one-transistor type memory device, a reduction in charge storage capacity must be avoided as much as possible in order to facilitate information determination and maintain resistance to radiation.

特に、素子の微細化に伴い、活性素子間の絶縁領域のセ
ル全体に占める割合が増加してゆき、電荷蓄積容量の維
持は極めて困難な状況にあった。
In particular, with the miniaturization of devices, the ratio of insulating regions between active devices to the entire cell increases, making it extremely difficult to maintain charge storage capacity.

本発明は活性素子間の絶縁領域の面積を減少することに
より容量部分の面積の減少を防止し、それによって、記
憶動作の正常な機能を維持しつつ素子の微細化を行う方
法を提供するものである。
The present invention provides a method for preventing a reduction in the area of a capacitive part by reducing the area of an insulating region between active elements, thereby miniaturizing the element while maintaining normal memory function. It is.

本発明では従来から行われている選択酸化法に代り、素
子間領域を絶縁ゲート型電界効果トランジスタで形成し
、該トランジスタのゲート電極にシリコン表面を蓄積状
態とする様なすなわちP型半導体基板ならば表面がP+
となる様な電圧を印加することによシ素子間の漏洩電流
を防止する。
In the present invention, instead of the conventional selective oxidation method, the inter-element region is formed by an insulated gate field effect transistor, and if the gate electrode of the transistor is a P-type semiconductor substrate in which the silicon surface is in an accumulation state, If the surface is P+
Leakage current between the elements is prevented by applying a voltage such that

本発明によれば、素子間側域の幅は前記トランジスタの
ゲート幅によって決定されるため通常の選択酸化に於る
様な酸化の横方内拡がりによる活性素子領域の減少を避
けることが出来、容量部の面積拡大に役立つ。
According to the present invention, since the width of the inter-element side region is determined by the gate width of the transistor, it is possible to avoid a reduction in the active element area due to lateral inward spread of oxidation, which occurs in ordinary selective oxidation. Useful for expanding the area of the capacitor section.

次に、実施例を参照しながら本発明の内容を詳細に説明
する。
Next, the content of the present invention will be explained in detail with reference to Examples.

第1図妬於てP型シリコン基板1上には容量部の絶縁膜
となるべき薄い絶縁膜2が形成されている。絶縁膜2と
してはシリコン窒化膜、或いはシリコン酸化膜上にシリ
コン窒化膜を形成した二層絶縁膜などが使用される。膜
厚は数十〜数百大使である。次に、記憶セルの容量部及
び素子間部分となるべき部分以外の前記シリコン基板1
の表面をフォトレジスト3で被覆し、イオン注入によシ
選択的にP型層5を形成する。不純物としてボロンを使
用した場合イオンのエネルギは50〜150kev程度
、また注入量は1012〜1018/、l程度が適当で
ある。次に、第2図に示した様に、多結晶シリコンを被
着後、フォトエツチング工程にょシ素子間領域に前記多
結晶シリコンを電極6として残す。次に、酸化を行い。
As shown in FIG. 1, a thin insulating film 2 is formed on a P-type silicon substrate 1 to serve as an insulating film for a capacitor section. As the insulating film 2, a silicon nitride film, a two-layer insulating film in which a silicon nitride film is formed on a silicon oxide film, or the like is used. The film thickness ranges from several tens to hundreds of wafers. Next, the silicon substrate 1 except for the portions that should become the capacitive portion and the inter-element portion of the memory cell.
The surface of the substrate is covered with a photoresist 3, and a P-type layer 5 is selectively formed by ion implantation. When boron is used as an impurity, the appropriate ion energy is about 50 to 150 keV, and the implantation amount is about 1012 to 1018/1. Next, as shown in FIG. 2, after depositing polycrystalline silicon, a photo-etching process is performed to leave the polycrystalline silicon as electrodes 6 in the inter-element regions. Next, perform oxidation.

多結晶シリコン表面を酸化膜で被い絶縁を行った後容量
部以外をフォトレジスト7で被い容量部分にn型不純物
を注入する。不純物として砒素を使用した場合、エネル
ギは50〜150keV、また注入量は1013〜10
”47d程度が適当である。前記工程により容量部のシ
リコン基板内にはpH接合が形成され、電荷蓄積領域と
して使用でき、絶縁膜2による容量と合わせて記憶セル
の電荷蓄積容量が増加する。また、容量部の閾値電圧の
値が低下し、容量電極に印加する電圧を低下できる。次
に、第3図に示す様に多結晶シリコンを被着し、フォト
エツチング工程によシ容量部の電極10を形成する。次
に、必要によっては、表面に露出しているシリコン上の
絶縁膜を除去した後、新たに絶縁膜を形成し、記憶セル
の電荷転送部のゲート絶縁膜とする。次に、第4図に示
す様に多結晶シリコンによる電荷転送ゲート11を形成
し、イオン注入によシn型不純物層12を形成し、金属
配線によるディジット線13を形成して記憶セルを完成
できる。尚、本構造に5− 於ては、多結晶シリコン電極6はセル配列の周辺部に於
て独立した金属電極或いはシリコン基板と接続され、シ
リコン基板表面が蓄積状態となる電位に保たれる。
After the surface of the polycrystalline silicon is covered with an oxide film for insulation, the area other than the capacitive part is covered with a photoresist 7, and an n-type impurity is implanted into the capacitive part. When arsenic is used as an impurity, the energy is 50 to 150 keV and the implantation amount is 1013 to 10
Approximately 47d is appropriate. Through the above process, a pH junction is formed in the silicon substrate of the capacitive portion, which can be used as a charge storage region, and together with the capacitance due to the insulating film 2, the charge storage capacity of the memory cell increases. In addition, the threshold voltage value of the capacitor part decreases, and the voltage applied to the capacitor electrode can be lowered.Next, as shown in FIG. An electrode 10 is formed.Next, if necessary, after removing the insulating film on the silicon exposed at the surface, a new insulating film is formed to serve as a gate insulating film of the charge transfer portion of the memory cell. Next, as shown in FIG. 4, a charge transfer gate 11 made of polycrystalline silicon is formed, a thin n-type impurity layer 12 is formed by ion implantation, and a digit line 13 made of metal wiring is formed to complete the memory cell. In addition, in this structure, the polycrystalline silicon electrode 6 is connected to an independent metal electrode or a silicon substrate at the periphery of the cell array, and the silicon substrate surface is kept at a potential that causes an accumulation state. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図までは本発明の詳細な説明するだめの
断面図である。 同、図に於て、1・・・・・・シリコン基板(p型)V
2・・・・・・絶縁膜、3・・・・・・フォトレジスト
、4・・・・・・不純物イオン(p型)、5・・・・・
・不純物層(p型)、6・・・・・・多結晶シリコン、
7・・・・・・フォトレジスト、8・・・・・・不純物
イオン(n型)、9・・・・・・不純物層(n型)、1
0・・・・・−多結晶シリコン、11・・・・・・多結
晶シリコン、12・・・・・・不純物層(n型)、13
・・・・・・金属配線、L・・・・・・1情報単位であ
る。 6一
1 to 4 are cross-sectional views for detailed explanation of the present invention. In the same figure, 1...Silicon substrate (p type) V
2...Insulating film, 3...Photoresist, 4...Impurity ion (p type), 5...
・Impurity layer (p type), 6...polycrystalline silicon,
7... Photoresist, 8... Impurity ion (n type), 9... Impurity layer (n type), 1
0...-polycrystalline silicon, 11...polycrystalline silicon, 12... impurity layer (n type), 13
...Metal wiring, L...1 information unit. 61

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上の1個の絶縁ゲート型電界効果ト
ランジスタ及びそれに隣接して設けられた容量を情報単
位とする記憶装置に於て、隣接する容量部間の前記シリ
コン基板上に絶縁膜を設け、該絶縁膜上に容量部の電極
とは異なる電極を設け、該電極にシリコン表面が蓄積状
態となる様な電圧を印加したことを特徴とするMIS型
半導体記憶装置。
(1) In a storage device whose information unit is one insulated gate field effect transistor on a silicon substrate and a capacitor provided adjacent to it, an insulating film is provided on the silicon substrate between adjacent capacitor parts. 1. An MIS type semiconductor memory device, comprising: an electrode different from an electrode of a capacitor section provided on the insulating film, and a voltage such that a silicon surface becomes in an accumulation state applied to the electrode.
(2)シリコン基板表面に絶縁膜を形成する工程と、容
量部及び隣接する容量部間の絶縁部を少くとも一部に含
んだ領域のシリコン基板中に選択的に基板と同導電型の
不純物を導入する工程と、隣接する容量部間の絶縁部を
少くとも一部に含んだ領域の前記絶縁膜上に電極を設け
る工程と、容量部を少くとも一部に含んだ領域のシリコ
ン基板中に選択的に基板と反対の導電型の不純物を導入
する工程とを含むことを特徴とする1個の絶縁ゲート型
電界効果トランジスタ及びそれに隣接する容量を情報単
位とするMIS型半導体記憶装置の製造方法。
(2) A step of forming an insulating film on the surface of the silicon substrate, and selectively injecting impurities of the same conductivity type as the substrate into the silicon substrate in a region that includes at least a part of the capacitive part and the insulating part between adjacent capacitive parts. a step of providing an electrode on the insulating film in a region that includes at least a portion of the insulating portion between adjacent capacitance portions, and a step of providing an electrode on the insulating film in a region that includes at least a portion of the insulating portion between adjacent capacitance portions; manufacturing an MIS type semiconductor memory device in which an information unit is one insulated gate field effect transistor and a capacitance adjacent thereto, comprising the step of selectively introducing an impurity of a conductivity type opposite to that of the substrate. Method.
JP58048224A 1983-03-23 1983-03-23 Metal insulator semiconductor type semiconductor memory device and manufacture thereof Pending JPS59175157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048224A JPS59175157A (en) 1983-03-23 1983-03-23 Metal insulator semiconductor type semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048224A JPS59175157A (en) 1983-03-23 1983-03-23 Metal insulator semiconductor type semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59175157A true JPS59175157A (en) 1984-10-03

Family

ID=12797444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048224A Pending JPS59175157A (en) 1983-03-23 1983-03-23 Metal insulator semiconductor type semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59175157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270863A (en) * 1985-05-25 1986-12-01 Mitsubishi Electric Corp Semiconductor memory device
JP2006516221A (en) * 2003-01-21 2006-06-29 イギリス国 Particle collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270863A (en) * 1985-05-25 1986-12-01 Mitsubishi Electric Corp Semiconductor memory device
JP2006516221A (en) * 2003-01-21 2006-06-29 イギリス国 Particle collector
JP4927525B2 (en) * 2003-01-21 2012-05-09 イギリス国 Particle collector

Similar Documents

Publication Publication Date Title
US5266507A (en) Method of fabricating an offset dual gate thin film field effect transistor
US4646118A (en) Semiconductor memory device
KR900000170B1 (en) Dynamic memory cell and method of producing it
JPH0818016A (en) Preparation of semiconductor
JPH03789B2 (en)
JPH11261020A (en) Semiconductor device and its manufacture
JPS59191374A (en) Semiconductor integrated circuit device
JPH0440865B2 (en)
JPS59175157A (en) Metal insulator semiconductor type semiconductor memory device and manufacture thereof
JP2908146B2 (en) Semiconductor device and manufacturing method thereof
JPS6322069B2 (en)
JPH01143350A (en) Semiconductor memory
JPS627153A (en) Semiconductor memory
JP2970858B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2637186B2 (en) Semiconductor device
JPH0750745B2 (en) Semiconductor device
JP3354333B2 (en) Semiconductor storage device
JP2803729B2 (en) Method for manufacturing semiconductor integrated circuit device
KR930008076B1 (en) Method of fabricating for sram
JPS6138867B2 (en)
JPS627152A (en) Semiconductor memory
JPH01160047A (en) Semiconductor storage device and manufacture thereof
JPS6053470B2 (en) Manufacturing method of semiconductor memory
JPS6022361A (en) Manufacture of mis type semiconductor memory device
JP2770416B2 (en) Semiconductor storage device