JPS62244163A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS62244163A JPS62244163A JP61088801A JP8880186A JPS62244163A JP S62244163 A JPS62244163 A JP S62244163A JP 61088801 A JP61088801 A JP 61088801A JP 8880186 A JP8880186 A JP 8880186A JP S62244163 A JPS62244163 A JP S62244163A
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- insulating film
- type
- active region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000005669 field effect Effects 0.000 claims abstract description 6
- 238000002955 isolation Methods 0.000 claims description 18
- 238000009792 diffusion process Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 12
- 238000005530 etching Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- -1 arsenic ions Chemical class 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電界効果半導体集積回路装置に関し、特にゲ
ート絶縁膜と同程度の薄い絶縁膜と、基板と同電位のフ
ィールド電極により、素子間分離を行ういわゆるフィー
ルド・プレート分離の改良された構造とその製造方法に
関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a field effect semiconductor integrated circuit device, and in particular, an insulating film as thin as a gate insulating film and a field electrode having the same potential as a substrate are used to reduce the distance between elements. This invention relates to an improved structure of so-called field plate separation for performing separation and a method of manufacturing the same.
電界効果半導体集積回路装置に於ける素子分離には、第
5図の選択酸化分離と第6図のフィールド・プレート分
離等がある。現在の前記集積回路装置に用いられる分離
法は、活性領域とフィールド領域とが自己整合で形成さ
れる選択酸化分離が多用されており、後者のフィールド
・プレート分離は、自己整合でない事と、製造方法の困
難さから全くといっていい程、実甲化されていない。Element isolation in field effect semiconductor integrated circuit devices includes selective oxidation isolation shown in FIG. 5 and field plate isolation shown in FIG. 6. Current isolation methods used in integrated circuit devices often use selective oxidation isolation in which the active region and field region are formed in self-alignment.The latter type of field plate isolation is not self-aligned, and Due to the difficulty of the method, it has never been put into practical use.
従来のフィールド・プレート分離法は、活性領域(MO
S)ランジスタ、拡散層等)と活性領域以外の領域(以
後フィールド領域と呼ぶ)とが自己整合に形成されない
為、フィールド領域と、活性領域を異なるマスクパター
ング加工する為、相互に重ならない様、1〜2μm程度
の合せ余裕を設ける必要があり、大規模集積回路を構成
する上での高密度化に障害となっている。Traditional field plate isolation methods
S) Because transistors, diffusion layers, etc.) and regions other than the active region (hereinafter referred to as field regions) are not formed in self-alignment, the field region and active region are processed using different mask patterns, so that they do not overlap with each other. , it is necessary to provide an alignment margin of about 1 to 2 μm, which is an obstacle to increasing the density of large-scale integrated circuits.
更にフィールド・プレート用導体とその側部、上部に設
けられる各檀配線導体との容量を少くする為に、フィー
ルド・プレート表面を適度の厚さの絶縁膜で被接する必
要があるが、その製造上、上記合せ余裕領域にも、同程
度の厚い絶縁膜が成長する事になる。この厚い絶縁膜は
、耐放射線性に関し、絶縁膜一基板界面の界面準位生成
、絶縁膜中の多数の電子−正孔対発生により、拡散層−
基板間漏洩電流が増大する欠点となる。又、ソース−ド
レイン間チャンネル性漏洩電流を防止する為にゲート電
極は、フィールド領域に重ねる必要があるが、合せ余裕
分だけ、基板との容量が増大し、回路の動作速度低下と
なる等、多くの欠点がある。Furthermore, in order to reduce the capacitance between the field plate conductor and the respective wiring conductors provided on its sides and top, it is necessary to cover the field plate surface with an insulating film of an appropriate thickness, but the manufacturing process is difficult. Moreover, a similarly thick insulating film will grow in the above-mentioned alignment margin area. This thick insulating film has radiation resistance due to the generation of interface states at the insulating film-substrate interface and the generation of many electron-hole pairs in the insulating film.
This has the disadvantage of increasing inter-board leakage current. In addition, in order to prevent source-drain channel leakage current, it is necessary to overlap the gate electrode with the field region, but the capacitance with the substrate increases by the amount of overlap, which reduces the operating speed of the circuit, etc. There are many drawbacks.
本発明のフィールド・プレート分離部分の構成は、MI
S型電界効果トランジスタの構成要素であるゲート絶縁
膜と同程度の薄い絶縁膜、シリコン窒化膜及びフィール
ド・プレート電極としてのN型多結晶シリコンから成る
。又、NチャネルMIS)ランジスタを含む領域のフィ
ールド領域には、寄生MISトランジスタの閾値電圧を
高くする為のチャネル・ストッパー用P型拡散層を備え
ている。The configuration of the field plate separation portion of the present invention is based on the MI
It consists of an insulating film as thin as the gate insulating film which is a component of an S-type field effect transistor, a silicon nitride film, and an N-type polycrystalline silicon as a field plate electrode. Further, the field region including the N-channel MIS transistor is provided with a P-type diffusion layer for a channel stopper in order to increase the threshold voltage of the parasitic MIS transistor.
本発明のフィールド・プレート分離を活性領域と自己整
合に形成する方法は、以下の通りである。The method of forming the field plate isolation of the present invention in self-alignment with the active region is as follows.
すなわち、前記シリコン窒化膜上に形成されたN型多結
晶シリコンを選択的にエツチングした後、熱酸化を行う
事によ抄、多結晶シリコン表面に厚いシリコン酸化膜を
成長させ、その後、活性領域とガる部分の前記シリコン
窒化膜及びその下層の薄いシリコン酸化膜をエツチング
除去する。以後は、従来技術に従って、ゲート絶縁膜を
熱酸化により成長させ、ゲート電極を形成した後、ソー
スドレイン等の拡散層をゲート電極と自己整合で形成す
る事によシ、本発明の集積回路装置が形成される。That is, after selectively etching the N-type polycrystalline silicon formed on the silicon nitride film, thermal oxidation is performed to grow a thick silicon oxide film on the surface of the polycrystalline silicon, and then the active region is etched. The silicon nitride film and the thin silicon oxide film underlying it are removed by etching. Thereafter, according to the conventional technique, a gate insulating film is grown by thermal oxidation to form a gate electrode, and then a diffusion layer such as a source/drain is formed in self-alignment with the gate electrode to form an integrated circuit device of the present invention. is formed.
次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図から、第4回道は、本発明のフィールド・プレー
ト分離を用いて、相補型MO8集積回路を形成する工程
別断面図である。From FIG. 1, the fourth circuit is a step-by-step cross-sectional view of forming a complementary MO8 integrated circuit using the field plate isolation of the present invention.
まず、第1図は、P型シリコン基板lの表面に500A
程度のシリコン酸化膜2を熱酸化により成長させ、次に
PチャネルMOSトランジスタを形成する領域に7オト
レジストをマスクに、N型不純物としてリンのイオン打
込や行い、Nウェル3を形成。更にNチャネルMO8)
ランジスタを形成する領域のフィールド領域4にチャネ
ル・ストッパー用のPfi不純物例えばボロンを同様に
イオン打込により形成する。第2図は、全面にシリコン
窒化膜5を500A程度、気相成長法により成長させ、
更に1μm程度の厚さのN型多結晶シリコン6.6′を
選択的に形成した後、多結晶シリコン6.6′、表面に
1μm程度のシリコン酸化膜7が成長する程度の熱酸化
を行う。こめ時、露出しているシリコン窒化膜5には、
高さ100A程度のシリコン酸化膜しか成長しない。次
に第3図では、シリコン酸化膜7をマスクに露出してい
るシリコン窒化膜5及びその下層のシリコン酸化膜2を
エツチングした後熱酸化により、300A程度のシリコ
ン酸化膜8を成長させ、これをゲート酸化膜とする。ゲ
ート酸化膜成長後、Pチャネル、Nチャネルトランジス
タの閾値電圧制御用イオン打込を各々必要に応じて行っ
た後、ゲート電極及び配線導体としてのN型多結晶シリ
コン9を選択的に形成する。更に、Nチャネルトランジ
スタ領域のソース、ドレイン10及びNウェル電位取出
用拡散JmlO’ として、ヒ素のイオン打込、又、
Pチャネルトランジスタ領域のソース、ドレイン11及
びP型シリコン基板電位取出用拡散層11′として、ボ
ロンのイオン打込をアルミニウムをマスクに行う。第4
図では層間絶縁膜として、気相成長法によるPSG膜1
2を1μm程度付着した後、コンタクト孔を開孔し、更
に配線導体として1/a程度の厚さのアルミニウム13
.13’ 、13″を選択的に付着したもので、アルミ
ニウム13′、によシP型基板1とシールド・プレート
6が同電位となる。又、アルミニウム131により、シ
ールドプレ−トロ′ とNウェル3が同電位となり、
Nチャネルトランジスタ間、Pチャネルトランジスタ間
の寄生MOSトランジスタによる絶縁が確保されるので
ある。First, in Figure 1, 500A is applied to the surface of a P-type silicon substrate l.
A silicon oxide film 2 of about 100 mL is grown by thermal oxidation, and then ion implantation of phosphorus as an N-type impurity is performed in the region where a P-channel MOS transistor is to be formed, using a 7 photoresist as a mask to form an N-well 3. Furthermore, N channel MO8)
A Pfi impurity for a channel stopper, such as boron, is similarly formed by ion implantation in the field region 4 in the region where the transistor is to be formed. In FIG. 2, a silicon nitride film 5 of about 500 A is grown on the entire surface by vapor phase growth.
Furthermore, after selectively forming N-type polycrystalline silicon 6.6' with a thickness of about 1 μm, thermal oxidation is performed to the extent that a silicon oxide film 7 of about 1 μm is grown on the surface of polycrystalline silicon 6.6′. . At the time of heating, the exposed silicon nitride film 5 has
Only a silicon oxide film with a height of about 100A grows. Next, in FIG. 3, after etching the exposed silicon nitride film 5 and the underlying silicon oxide film 2 using the silicon oxide film 7 as a mask, a silicon oxide film 8 of about 300A is grown by thermal oxidation. is the gate oxide film. After the gate oxide film is grown, ion implantation for controlling the threshold voltage of P-channel and N-channel transistors is performed as necessary, and then N-type polycrystalline silicon 9 is selectively formed as a gate electrode and a wiring conductor. Furthermore, arsenic ions were implanted as the source and drain 10 of the N-channel transistor region and the diffusion JmlO' for taking out the N-well potential.
Boron ions are implanted using aluminum as a mask to form the source and drain 11 of the P-channel transistor region and the diffusion layer 11' for taking out the potential of the P-type silicon substrate. Fourth
In the figure, a PSG film 1 formed by vapor phase growth is used as an interlayer insulating film.
After depositing aluminum 13 with a thickness of about 1 μm, a contact hole is opened, and then aluminum 13 with a thickness of about 1/a is deposited as a wiring conductor.
.. 13' and 13'' are selectively attached, so that the aluminum 13' and the P-type substrate 1 and the shield plate 6 are at the same potential.Also, the aluminum 131 makes the shield plate 13' and the N-well 3 have the same potential,
Insulation by the parasitic MOS transistors between the N-channel transistors and between the P-channel transistors is ensured.
以上説明したように本発明のフィールド・プレート分離
法は、活性領域とフィールド領域が自己整合に形成され
るので、素子間隔を小さくでき、高密度化による大規模
集積回路に適した技術である。As explained above, the field plate isolation method of the present invention allows the active region and the field region to be formed in self-alignment, so that the element spacing can be reduced, and is a technique suitable for large-scale integrated circuits due to high density.
フィールド領域と活性領域が自己整合に形成される為、
従来のフィールド・プレート分離法で問題となったフィ
ールド領域と活性領域の間の合せ余裕が不要となり、合
せ余裕領域に起因する耐放射線性の劣化やゲート−基板
間容量の増加も無視できる事になる。Because the field region and active region are formed in self-alignment,
The alignment margin between the field region and the active region, which was a problem with the conventional field/plate separation method, is no longer required, and the degradation of radiation resistance and increase in gate-to-substrate capacitance caused by the alignment margin can be ignored. Become.
更に本発明によれば、選択酸化分離法で微細化を進めた
時、問題となるバーズビークによる活性領域の細りもな
くなり、マスクパターンと同じ形状の活性領域が実現で
きる等、微細化に適した素子分離法である。Furthermore, according to the present invention, when miniaturization is advanced by selective oxidation separation, the thinning of the active region due to bird's beak, which is a problem, is eliminated, and an active region with the same shape as the mask pattern can be realized, making the device suitable for miniaturization. It is a separation method.
第1図から第4回道は、本発明の自己整合によるフィー
ルド・プレート分離による相補型電界効果半導体集積回
路の製造工程別断面図である。又、第5図、第6図には
、従来の素子分離による同集積回路の断面図で第3図と
対比したもので、それぞれ、選択分離法、自己整合でな
いフィールドプレート分離の場合である。
1・・・・・・P型シリコン基板、2・・・・・・シリ
コン窒化R化膜、3・・・・・・Nフェル領域、4・・
・・・・Nチャネル・チャネル・ストッパー用P型拡散
層、5・・・・・・シリコン窒化[j4,6.6’・−
・・・・フィールド・プレート用N+型多結晶シリコン
、7・・・・・・シリコン酸化膜、8・・・ゲート絶&
t Haとしてのシリコン酸化膜、9・・・・・・ゲー
ト電極用N 型多結晶シリコン、10.10’・・・・
・・N 拡散層、11.11’・・・・・・P 拡散層
、12・・・・・・PSG膜、13.13’、13”・
・・・・・アルミニウム配線。
代理人 弁理士 内 原 1
白 1 ・
箒 、5′″ 図
?キシ 乙 p41 to 4 are cross-sectional views showing each manufacturing process of a complementary field effect semiconductor integrated circuit using field plate separation using self-alignment according to the present invention. Further, FIGS. 5 and 6 are cross-sectional views of the same integrated circuit using conventional element isolation, in comparison with FIG. 3, and show cases of selective isolation and non-self-aligned field plate isolation, respectively. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Silicon nitride R film, 3... N Fell region, 4...
...P-type diffusion layer for N channel, channel stopper, 5...Silicon nitride [j4,6.6'・-
...N+ type polycrystalline silicon for field plate, 7...Silicon oxide film, 8...Gate isolation &
t Silicon oxide film as Ha, 9...N-type polycrystalline silicon for gate electrode, 10.10'...
...N diffusion layer, 11.11'...P diffusion layer, 12...PSG film, 13.13', 13"
...Aluminum wiring. Agent Patent Attorney Uchihara 1 Shiro 1 ・ Houki , 5''' Diagram? Kishi Otsu p4
Claims (1)
導体集積回路に於いて、少くともNチャネル型素子領域
の素子分離にチャネル・ストッパー用P^+拡散層を有
する事と、素子分離全領域が活性領域と接して形成され
、その構成が、ゲート絶縁膜と同程度の厚さの絶縁膜と
シリコン窒化膜とN型多結晶シリコンとから成り、且つ
前記N型多結晶シリコンが直下の半導体表面と同電位で
ある事を特徴とする素子分離法を用いた半導体装置。In a MIS type field effect semiconductor integrated circuit formed on a semiconductor substrate of one conductivity type, at least a P^+ diffusion layer for a channel stopper is provided in the device isolation of the N-channel type device region, and a P^+ diffusion layer is provided for the device isolation in the entire device isolation region. is formed in contact with the active region, and consists of an insulating film with a thickness similar to that of the gate insulating film, a silicon nitride film, and N-type polycrystalline silicon, and the N-type polycrystalline silicon is in contact with the semiconductor directly below. A semiconductor device using an element isolation method that is characterized by having the same potential as the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61088801A JPS62244163A (en) | 1986-04-16 | 1986-04-16 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61088801A JPS62244163A (en) | 1986-04-16 | 1986-04-16 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62244163A true JPS62244163A (en) | 1987-10-24 |
Family
ID=13952969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61088801A Pending JPS62244163A (en) | 1986-04-16 | 1986-04-16 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62244163A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5067000A (en) * | 1988-09-29 | 1991-11-19 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device having field shield isolation |
DE4116690A1 (en) * | 1990-05-23 | 1991-11-28 | Mitsubishi Electric Corp | ELEMENT ISOLATION STRUCTURE OF A SEMICONDUCTOR DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
US5164803A (en) * | 1988-12-24 | 1992-11-17 | Mitsubishi Denki Kabushiki Kaisha | Cmos semiconductor device with an element isolating field shield |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60113456A (en) * | 1983-11-24 | 1985-06-19 | Nec Corp | Ic device |
JPS6142860B2 (en) * | 1979-10-03 | 1986-09-24 | Hitachi Seisakusho Kk |
-
1986
- 1986-04-16 JP JP61088801A patent/JPS62244163A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142860B2 (en) * | 1979-10-03 | 1986-09-24 | Hitachi Seisakusho Kk | |
JPS60113456A (en) * | 1983-11-24 | 1985-06-19 | Nec Corp | Ic device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5067000A (en) * | 1988-09-29 | 1991-11-19 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device having field shield isolation |
US5930614A (en) * | 1988-09-29 | 1999-07-27 | Mitsubishi Denki Kabushiki Kaisha | Method for forming MOS device having field shield isolation |
US5164803A (en) * | 1988-12-24 | 1992-11-17 | Mitsubishi Denki Kabushiki Kaisha | Cmos semiconductor device with an element isolating field shield |
DE4116690A1 (en) * | 1990-05-23 | 1991-11-28 | Mitsubishi Electric Corp | ELEMENT ISOLATION STRUCTURE OF A SEMICONDUCTOR DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
US5164806A (en) * | 1990-05-23 | 1992-11-17 | Mitsubishi Denki Kabushiki Kaisha | Element isolating structure of semiconductor device suitable for high density integration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4306915A (en) | Method of making electrode wiring regions and impurity doped regions self-aligned therefrom | |
JPH0691201B2 (en) | Method for manufacturing CMOS semiconductor device | |
EP0104233A1 (en) | Process for forming complementary integrated circuit devices | |
JPH0348457A (en) | Semiconductor device and manufacture thereof | |
JPH10214907A (en) | Semiconductor device and its manufacture | |
JPH0557741B2 (en) | ||
KR970005146B1 (en) | Marking method of bi-cmos semiconductor device | |
JPS60163452A (en) | Integrated circuit with bipolar device and field effect device and method of producing same | |
JPS62244163A (en) | Semiconductor device | |
JPH021159A (en) | Manufacture of semiconductor device | |
JPH0738095A (en) | Semiconductor device and its manufacturing method | |
JP2605757B2 (en) | Method for manufacturing semiconductor device | |
JPH0471236A (en) | Manufacture of semiconductor device | |
JPS59168675A (en) | Manufacture of semiconductor device | |
JPH023270A (en) | Manufacture of hct semiconductor device | |
JP2610906B2 (en) | Method for manufacturing BiMOS semiconductor circuit device | |
JP2890532B2 (en) | Method for manufacturing semiconductor device | |
JPS6251248A (en) | Manufacture of semiconductor device | |
JPS63244768A (en) | Bipolar cmos type semiconductor device and manufacture thereof | |
JPS60211867A (en) | Semiconductor device and manufacture thereof | |
JPS59151467A (en) | Vertical type metal oxide semiconductor field-effect transistor | |
JPS6395664A (en) | Semiconductor device and manufacture thereof | |
JP3848782B2 (en) | Manufacturing method of semiconductor device | |
JPH10289961A (en) | Method of manufacturing semiconductor device | |
JPS61251164A (en) | Manufacture of bi-mis integrated circuit |