JPS62244163A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62244163A
JPS62244163A JP61088801A JP8880186A JPS62244163A JP S62244163 A JPS62244163 A JP S62244163A JP 61088801 A JP61088801 A JP 61088801A JP 8880186 A JP8880186 A JP 8880186A JP S62244163 A JPS62244163 A JP S62244163A
Authority
JP
Japan
Prior art keywords
film
region
insulating film
type
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61088801A
Other languages
Japanese (ja)
Inventor
Kazunari Matsumoto
一成 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61088801A priority Critical patent/JPS62244163A/en
Publication of JPS62244163A publication Critical patent/JPS62244163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device adapted for a high density by composing a field plate separating portion of a thin insulating film of the same degree as a gate insulating film, a silicon nitride film and an N-type polycrystalline silicon as a field plate electrode to form an active region and a field region in a self-aligning manner. CONSTITUTION:In a MIS field effect semiconductor integrated circuit formed on a semiconductor substrate 1 of one conductivity type, a channel stopper P<+> type diffused layer 4 is provided to separate the elements of at least N- channel element region, an entire element separating region is formed in contact with an active region, the configuration is formed of an insulating film of the thickness of the same degree as a gate insulating film 8, a silicon nitride film 5 and N-type polycrystalline silicons 6, 6', and an element separating method in which the silicons 6, 6' are the same potential as the semiconductor surface directly thereunder is used. For example, after the N-type polycrystalline silicon formed on the film 5 is selectively etched, it is thermally oxidized, a thick silicon oxide film 7 is grown on the silicons 6, 6' by thermal oxidizing, and then the film 5 of the portion to become an active region and a thin silicon oxide film 2 of the lower layer is removed by etching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果半導体集積回路装置に関し、特にゲ
ート絶縁膜と同程度の薄い絶縁膜と、基板と同電位のフ
ィールド電極により、素子間分離を行ういわゆるフィー
ルド・プレート分離の改良された構造とその製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a field effect semiconductor integrated circuit device, and in particular, an insulating film as thin as a gate insulating film and a field electrode having the same potential as a substrate are used to reduce the distance between elements. This invention relates to an improved structure of so-called field plate separation for performing separation and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

電界効果半導体集積回路装置に於ける素子分離には、第
5図の選択酸化分離と第6図のフィールド・プレート分
離等がある。現在の前記集積回路装置に用いられる分離
法は、活性領域とフィールド領域とが自己整合で形成さ
れる選択酸化分離が多用されており、後者のフィールド
・プレート分離は、自己整合でない事と、製造方法の困
難さから全くといっていい程、実甲化されていない。
Element isolation in field effect semiconductor integrated circuit devices includes selective oxidation isolation shown in FIG. 5 and field plate isolation shown in FIG. 6. Current isolation methods used in integrated circuit devices often use selective oxidation isolation in which the active region and field region are formed in self-alignment.The latter type of field plate isolation is not self-aligned, and Due to the difficulty of the method, it has never been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のフィールド・プレート分離法は、活性領域(MO
S)ランジスタ、拡散層等)と活性領域以外の領域(以
後フィールド領域と呼ぶ)とが自己整合に形成されない
為、フィールド領域と、活性領域を異なるマスクパター
ング加工する為、相互に重ならない様、1〜2μm程度
の合せ余裕を設ける必要があり、大規模集積回路を構成
する上での高密度化に障害となっている。
Traditional field plate isolation methods
S) Because transistors, diffusion layers, etc.) and regions other than the active region (hereinafter referred to as field regions) are not formed in self-alignment, the field region and active region are processed using different mask patterns, so that they do not overlap with each other. , it is necessary to provide an alignment margin of about 1 to 2 μm, which is an obstacle to increasing the density of large-scale integrated circuits.

更にフィールド・プレート用導体とその側部、上部に設
けられる各檀配線導体との容量を少くする為に、フィー
ルド・プレート表面を適度の厚さの絶縁膜で被接する必
要があるが、その製造上、上記合せ余裕領域にも、同程
度の厚い絶縁膜が成長する事になる。この厚い絶縁膜は
、耐放射線性に関し、絶縁膜一基板界面の界面準位生成
、絶縁膜中の多数の電子−正孔対発生により、拡散層−
基板間漏洩電流が増大する欠点となる。又、ソース−ド
レイン間チャンネル性漏洩電流を防止する為にゲート電
極は、フィールド領域に重ねる必要があるが、合せ余裕
分だけ、基板との容量が増大し、回路の動作速度低下と
なる等、多くの欠点がある。
Furthermore, in order to reduce the capacitance between the field plate conductor and the respective wiring conductors provided on its sides and top, it is necessary to cover the field plate surface with an insulating film of an appropriate thickness, but the manufacturing process is difficult. Moreover, a similarly thick insulating film will grow in the above-mentioned alignment margin area. This thick insulating film has radiation resistance due to the generation of interface states at the insulating film-substrate interface and the generation of many electron-hole pairs in the insulating film.
This has the disadvantage of increasing inter-board leakage current. In addition, in order to prevent source-drain channel leakage current, it is necessary to overlap the gate electrode with the field region, but the capacitance with the substrate increases by the amount of overlap, which reduces the operating speed of the circuit, etc. There are many drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のフィールド・プレート分離部分の構成は、MI
S型電界効果トランジスタの構成要素であるゲート絶縁
膜と同程度の薄い絶縁膜、シリコン窒化膜及びフィール
ド・プレート電極としてのN型多結晶シリコンから成る
。又、NチャネルMIS)ランジスタを含む領域のフィ
ールド領域には、寄生MISトランジスタの閾値電圧を
高くする為のチャネル・ストッパー用P型拡散層を備え
ている。
The configuration of the field plate separation portion of the present invention is based on the MI
It consists of an insulating film as thin as the gate insulating film which is a component of an S-type field effect transistor, a silicon nitride film, and an N-type polycrystalline silicon as a field plate electrode. Further, the field region including the N-channel MIS transistor is provided with a P-type diffusion layer for a channel stopper in order to increase the threshold voltage of the parasitic MIS transistor.

本発明のフィールド・プレート分離を活性領域と自己整
合に形成する方法は、以下の通りである。
The method of forming the field plate isolation of the present invention in self-alignment with the active region is as follows.

すなわち、前記シリコン窒化膜上に形成されたN型多結
晶シリコンを選択的にエツチングした後、熱酸化を行う
事によ抄、多結晶シリコン表面に厚いシリコン酸化膜を
成長させ、その後、活性領域とガる部分の前記シリコン
窒化膜及びその下層の薄いシリコン酸化膜をエツチング
除去する。以後は、従来技術に従って、ゲート絶縁膜を
熱酸化により成長させ、ゲート電極を形成した後、ソー
スドレイン等の拡散層をゲート電極と自己整合で形成す
る事によシ、本発明の集積回路装置が形成される。
That is, after selectively etching the N-type polycrystalline silicon formed on the silicon nitride film, thermal oxidation is performed to grow a thick silicon oxide film on the surface of the polycrystalline silicon, and then the active region is etched. The silicon nitride film and the thin silicon oxide film underlying it are removed by etching. Thereafter, according to the conventional technique, a gate insulating film is grown by thermal oxidation to form a gate electrode, and then a diffusion layer such as a source/drain is formed in self-alignment with the gate electrode to form an integrated circuit device of the present invention. is formed.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図から、第4回道は、本発明のフィールド・プレー
ト分離を用いて、相補型MO8集積回路を形成する工程
別断面図である。
From FIG. 1, the fourth circuit is a step-by-step cross-sectional view of forming a complementary MO8 integrated circuit using the field plate isolation of the present invention.

まず、第1図は、P型シリコン基板lの表面に500A
程度のシリコン酸化膜2を熱酸化により成長させ、次に
PチャネルMOSトランジスタを形成する領域に7オト
レジストをマスクに、N型不純物としてリンのイオン打
込や行い、Nウェル3を形成。更にNチャネルMO8)
ランジスタを形成する領域のフィールド領域4にチャネ
ル・ストッパー用のPfi不純物例えばボロンを同様に
イオン打込により形成する。第2図は、全面にシリコン
窒化膜5を500A程度、気相成長法により成長させ、
更に1μm程度の厚さのN型多結晶シリコン6.6′を
選択的に形成した後、多結晶シリコン6.6′、表面に
1μm程度のシリコン酸化膜7が成長する程度の熱酸化
を行う。こめ時、露出しているシリコン窒化膜5には、
高さ100A程度のシリコン酸化膜しか成長しない。次
に第3図では、シリコン酸化膜7をマスクに露出してい
るシリコン窒化膜5及びその下層のシリコン酸化膜2を
エツチングした後熱酸化により、300A程度のシリコ
ン酸化膜8を成長させ、これをゲート酸化膜とする。ゲ
ート酸化膜成長後、Pチャネル、Nチャネルトランジス
タの閾値電圧制御用イオン打込を各々必要に応じて行っ
た後、ゲート電極及び配線導体としてのN型多結晶シリ
コン9を選択的に形成する。更に、Nチャネルトランジ
スタ領域のソース、ドレイン10及びNウェル電位取出
用拡散JmlO’  として、ヒ素のイオン打込、又、
Pチャネルトランジスタ領域のソース、ドレイン11及
びP型シリコン基板電位取出用拡散層11′として、ボ
ロンのイオン打込をアルミニウムをマスクに行う。第4
図では層間絶縁膜として、気相成長法によるPSG膜1
2を1μm程度付着した後、コンタクト孔を開孔し、更
に配線導体として1/a程度の厚さのアルミニウム13
.13’ 、13″を選択的に付着したもので、アルミ
ニウム13′、によシP型基板1とシールド・プレート
6が同電位となる。又、アルミニウム131により、シ
ールドプレ−トロ′  とNウェル3が同電位となり、
Nチャネルトランジスタ間、Pチャネルトランジスタ間
の寄生MOSトランジスタによる絶縁が確保されるので
ある。
First, in Figure 1, 500A is applied to the surface of a P-type silicon substrate l.
A silicon oxide film 2 of about 100 mL is grown by thermal oxidation, and then ion implantation of phosphorus as an N-type impurity is performed in the region where a P-channel MOS transistor is to be formed, using a 7 photoresist as a mask to form an N-well 3. Furthermore, N channel MO8)
A Pfi impurity for a channel stopper, such as boron, is similarly formed by ion implantation in the field region 4 in the region where the transistor is to be formed. In FIG. 2, a silicon nitride film 5 of about 500 A is grown on the entire surface by vapor phase growth.
Furthermore, after selectively forming N-type polycrystalline silicon 6.6' with a thickness of about 1 μm, thermal oxidation is performed to the extent that a silicon oxide film 7 of about 1 μm is grown on the surface of polycrystalline silicon 6.6′. . At the time of heating, the exposed silicon nitride film 5 has
Only a silicon oxide film with a height of about 100A grows. Next, in FIG. 3, after etching the exposed silicon nitride film 5 and the underlying silicon oxide film 2 using the silicon oxide film 7 as a mask, a silicon oxide film 8 of about 300A is grown by thermal oxidation. is the gate oxide film. After the gate oxide film is grown, ion implantation for controlling the threshold voltage of P-channel and N-channel transistors is performed as necessary, and then N-type polycrystalline silicon 9 is selectively formed as a gate electrode and a wiring conductor. Furthermore, arsenic ions were implanted as the source and drain 10 of the N-channel transistor region and the diffusion JmlO' for taking out the N-well potential.
Boron ions are implanted using aluminum as a mask to form the source and drain 11 of the P-channel transistor region and the diffusion layer 11' for taking out the potential of the P-type silicon substrate. Fourth
In the figure, a PSG film 1 formed by vapor phase growth is used as an interlayer insulating film.
After depositing aluminum 13 with a thickness of about 1 μm, a contact hole is opened, and then aluminum 13 with a thickness of about 1/a is deposited as a wiring conductor.
.. 13' and 13'' are selectively attached, so that the aluminum 13' and the P-type substrate 1 and the shield plate 6 are at the same potential.Also, the aluminum 131 makes the shield plate 13' and the N-well 3 have the same potential,
Insulation by the parasitic MOS transistors between the N-channel transistors and between the P-channel transistors is ensured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のフィールド・プレート分離
法は、活性領域とフィールド領域が自己整合に形成され
るので、素子間隔を小さくでき、高密度化による大規模
集積回路に適した技術である。
As explained above, the field plate isolation method of the present invention allows the active region and the field region to be formed in self-alignment, so that the element spacing can be reduced, and is a technique suitable for large-scale integrated circuits due to high density.

フィールド領域と活性領域が自己整合に形成される為、
従来のフィールド・プレート分離法で問題となったフィ
ールド領域と活性領域の間の合せ余裕が不要となり、合
せ余裕領域に起因する耐放射線性の劣化やゲート−基板
間容量の増加も無視できる事になる。
Because the field region and active region are formed in self-alignment,
The alignment margin between the field region and the active region, which was a problem with the conventional field/plate separation method, is no longer required, and the degradation of radiation resistance and increase in gate-to-substrate capacitance caused by the alignment margin can be ignored. Become.

更に本発明によれば、選択酸化分離法で微細化を進めた
時、問題となるバーズビークによる活性領域の細りもな
くなり、マスクパターンと同じ形状の活性領域が実現で
きる等、微細化に適した素子分離法である。
Furthermore, according to the present invention, when miniaturization is advanced by selective oxidation separation, the thinning of the active region due to bird's beak, which is a problem, is eliminated, and an active region with the same shape as the mask pattern can be realized, making the device suitable for miniaturization. It is a separation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4回道は、本発明の自己整合によるフィー
ルド・プレート分離による相補型電界効果半導体集積回
路の製造工程別断面図である。又、第5図、第6図には
、従来の素子分離による同集積回路の断面図で第3図と
対比したもので、それぞれ、選択分離法、自己整合でな
いフィールドプレート分離の場合である。 1・・・・・・P型シリコン基板、2・・・・・・シリ
コン窒化R化膜、3・・・・・・Nフェル領域、4・・
・・・・Nチャネル・チャネル・ストッパー用P型拡散
層、5・・・・・・シリコン窒化[j4,6.6’・−
・・・・フィールド・プレート用N+型多結晶シリコン
、7・・・・・・シリコン酸化膜、8・・・ゲート絶&
t Haとしてのシリコン酸化膜、9・・・・・・ゲー
ト電極用N 型多結晶シリコン、10.10’・・・・
・・N 拡散層、11.11’・・・・・・P 拡散層
、12・・・・・・PSG膜、13.13’、13”・
・・・・・アルミニウム配線。 代理人 弁理士  内 原   1 白    1  ・ 箒 、5′″ 図 ?キシ  乙   p4
1 to 4 are cross-sectional views showing each manufacturing process of a complementary field effect semiconductor integrated circuit using field plate separation using self-alignment according to the present invention. Further, FIGS. 5 and 6 are cross-sectional views of the same integrated circuit using conventional element isolation, in comparison with FIG. 3, and show cases of selective isolation and non-self-aligned field plate isolation, respectively. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Silicon nitride R film, 3... N Fell region, 4...
...P-type diffusion layer for N channel, channel stopper, 5...Silicon nitride [j4,6.6'・-
...N+ type polycrystalline silicon for field plate, 7...Silicon oxide film, 8...Gate isolation &
t Silicon oxide film as Ha, 9...N-type polycrystalline silicon for gate electrode, 10.10'...
...N diffusion layer, 11.11'...P diffusion layer, 12...PSG film, 13.13', 13"
...Aluminum wiring. Agent Patent Attorney Uchihara 1 Shiro 1 ・ Houki , 5''' Diagram? Kishi Otsu p4

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に形成されるMIS型電界効果半
導体集積回路に於いて、少くともNチャネル型素子領域
の素子分離にチャネル・ストッパー用P^+拡散層を有
する事と、素子分離全領域が活性領域と接して形成され
、その構成が、ゲート絶縁膜と同程度の厚さの絶縁膜と
シリコン窒化膜とN型多結晶シリコンとから成り、且つ
前記N型多結晶シリコンが直下の半導体表面と同電位で
ある事を特徴とする素子分離法を用いた半導体装置。
In a MIS type field effect semiconductor integrated circuit formed on a semiconductor substrate of one conductivity type, at least a P^+ diffusion layer for a channel stopper is provided in the device isolation of the N-channel type device region, and a P^+ diffusion layer is provided for the device isolation in the entire device isolation region. is formed in contact with the active region, and consists of an insulating film with a thickness similar to that of the gate insulating film, a silicon nitride film, and N-type polycrystalline silicon, and the N-type polycrystalline silicon is in contact with the semiconductor directly below. A semiconductor device using an element isolation method that is characterized by having the same potential as the surface.
JP61088801A 1986-04-16 1986-04-16 Semiconductor device Pending JPS62244163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61088801A JPS62244163A (en) 1986-04-16 1986-04-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61088801A JPS62244163A (en) 1986-04-16 1986-04-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62244163A true JPS62244163A (en) 1987-10-24

Family

ID=13952969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61088801A Pending JPS62244163A (en) 1986-04-16 1986-04-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62244163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067000A (en) * 1988-09-29 1991-11-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having field shield isolation
DE4116690A1 (en) * 1990-05-23 1991-11-28 Mitsubishi Electric Corp ELEMENT ISOLATION STRUCTURE OF A SEMICONDUCTOR DEVICE AND METHOD FOR THE PRODUCTION THEREOF
US5164803A (en) * 1988-12-24 1992-11-17 Mitsubishi Denki Kabushiki Kaisha Cmos semiconductor device with an element isolating field shield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113456A (en) * 1983-11-24 1985-06-19 Nec Corp Ic device
JPS6142860B2 (en) * 1979-10-03 1986-09-24 Hitachi Seisakusho Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142860B2 (en) * 1979-10-03 1986-09-24 Hitachi Seisakusho Kk
JPS60113456A (en) * 1983-11-24 1985-06-19 Nec Corp Ic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067000A (en) * 1988-09-29 1991-11-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having field shield isolation
US5930614A (en) * 1988-09-29 1999-07-27 Mitsubishi Denki Kabushiki Kaisha Method for forming MOS device having field shield isolation
US5164803A (en) * 1988-12-24 1992-11-17 Mitsubishi Denki Kabushiki Kaisha Cmos semiconductor device with an element isolating field shield
DE4116690A1 (en) * 1990-05-23 1991-11-28 Mitsubishi Electric Corp ELEMENT ISOLATION STRUCTURE OF A SEMICONDUCTOR DEVICE AND METHOD FOR THE PRODUCTION THEREOF
US5164806A (en) * 1990-05-23 1992-11-17 Mitsubishi Denki Kabushiki Kaisha Element isolating structure of semiconductor device suitable for high density integration

Similar Documents

Publication Publication Date Title
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
JPH0691201B2 (en) Method for manufacturing CMOS semiconductor device
EP0104233A1 (en) Process for forming complementary integrated circuit devices
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH10214907A (en) Semiconductor device and its manufacture
JPH0557741B2 (en)
KR970005146B1 (en) Marking method of bi-cmos semiconductor device
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
JPS62244163A (en) Semiconductor device
JPH021159A (en) Manufacture of semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH0471236A (en) Manufacture of semiconductor device
JPS59168675A (en) Manufacture of semiconductor device
JPH023270A (en) Manufacture of hct semiconductor device
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JP2890532B2 (en) Method for manufacturing semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JPS60211867A (en) Semiconductor device and manufacture thereof
JPS59151467A (en) Vertical type metal oxide semiconductor field-effect transistor
JPS6395664A (en) Semiconductor device and manufacture thereof
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH10289961A (en) Method of manufacturing semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit