JPS63244768A - Bipolar cmos type semiconductor device and manufacture thereof - Google Patents

Bipolar cmos type semiconductor device and manufacture thereof

Info

Publication number
JPS63244768A
JPS63244768A JP7856787A JP7856787A JPS63244768A JP S63244768 A JPS63244768 A JP S63244768A JP 7856787 A JP7856787 A JP 7856787A JP 7856787 A JP7856787 A JP 7856787A JP S63244768 A JPS63244768 A JP S63244768A
Authority
JP
Japan
Prior art keywords
region
emitter
oxide film
film
emitter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7856787A
Other languages
Japanese (ja)
Other versions
JP2633559B2 (en
Inventor
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62078567A priority Critical patent/JP2633559B2/en
Publication of JPS63244768A publication Critical patent/JPS63244768A/en
Application granted granted Critical
Publication of JP2633559B2 publication Critical patent/JP2633559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Abstract

PURPOSE:To speed up operations by a method wherein an emitter electrode is built in an emitter region on a semiconductor substrate and the emitter electrode is equipped with side walls. CONSTITUTION:A diffusion region 21 is provided in a substrate 20 of the plane orientation (100), after which a P-type epitaxial layer 22 is allowed to grow. Next, after the formation of a diffusion region 23, an oxide film 24 is formed, and then a diffusion region 25 is formed so deep as to reach the diffusion region 21. A thermal oxide film 26 is formed, B<+> ions are implanted, and a heat treatment is accomplished. A part of the film 26 positioned on a region 27 is allowed to peel off, a polycrystalline silicon film 28 is deposited, and then As<+> ions are implanted. A process follows wherein the polycrystalline silicon film 28 is patterned for the construction of electrodes 281, 282, and 283, after which a thermal oxide film 29 is formed, when As diffusing out of an emitter electrode results in an emitter region 30. Ions P<+> and then B<+> are implanted for the realization of a high voltage withstanding structure. A CVD oxide film 31 is deposited, which is next etched back for partial retention. Implantation is accomplished of As<+> and BF<+>2, which is followed by a heat treatment whereby source and drain regions 321, 322, 331, 332 and a base region 34 are formed. A passivation film 35 is deposited, and an electrode 36 is built. In this way, base resistance just under the emitter region may be reduced.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) る・                      (
(従来の技術) 近年、半導体の技術分野においては、低消費電力化を図
るために、半導体装置に0M08回路を便りことか多く
なってきた。また、最近では、単に低消費電力化を図る
だけでなく、高速化を図るために0M08回路にバイポ
ーラトランジスタを付加したBi−CMOS型半導体装
置が注目されている。
[Detailed description of the invention] [Purpose of the invention (industrial application field)
(Prior Art) In recent years, in the field of semiconductor technology, 0M08 circuits have been increasingly used in semiconductor devices in order to reduce power consumption. Recently, Bi-CMOS type semiconductor devices have been attracting attention, in which a bipolar transistor is added to the 0M08 circuit in order not only to reduce power consumption but also to increase speed.

従来、このBi−CMOS半導体装置は、第3図に示す
製造工程に従って形成されていた。
Conventionally, this Bi-CMOS semiconductor device has been formed according to the manufacturing process shown in FIG.

まず、第3図(a)に示す工程においては、P型シリコ
ン基板I K選択的にN+型埋込拡散領域2を設けた後
、気相成長法にてP型エピタキシャル層(Pepi)J
を形成する。次にN+型埋込拡散領域2に達するように
、NPNバイポーラトランジスタのコレクタ領域となる
Nウェル拡散層(NW@11 ) 4を設ける。続いて
、フィールド酸化膜5を形成し、バイポーラトランジス
タを形成することになるNウェル拡散層4中に、N+型
埋込拡散領域2に達するように、深い耐塵拡散領域6を
形成する。N+型埋込拡散領域2、深い虻型拡散領域6
は、NPNバイポーラトランジスタのコレクタ領域とな
るNウェル拡散層4の抵抗を低減するのに有効である。
First, in the step shown in FIG. 3(a), after selectively providing an N+ type buried diffusion region 2 in a P type silicon substrate IK, a P type epitaxial layer (Pepi) is formed by vapor phase growth.
form. Next, an N well diffusion layer (NW@11) 4, which will become the collector region of the NPN bipolar transistor, is provided so as to reach the N+ type buried diffusion region 2. Subsequently, a field oxide film 5 is formed, and a deep dust-resistant diffusion region 6 is formed in the N-well diffusion layer 4 in which a bipolar transistor is to be formed, so as to reach the N+ type buried diffusion region 2. N+ type buried diffusion region 2, deep dovetail diffusion region 6
is effective in reducing the resistance of the N-well diffusion layer 4 which becomes the collector region of the NPN bipolar transistor.

第3図(b)に示す工程においては、r−ト酸化膜7を
設け、B+の低ドーズイオン注入により、P型内部ベー
ス領域8を形成した後、Pドープドポリシリコン膜9を
堆積する。
In the step shown in FIG. 3(b), an r-type oxide film 7 is provided, a P-type internal base region 8 is formed by low-dose B+ ion implantation, and then a P-doped polysilicon film 9 is deposited. .

第2図(c)工程においては、ポリシリコン膜9をRI
E法にてパターニングして、NMOS及びPMOSトラ
ンジスタのr−計電極9□ 、9.を形成する。続いて
、As+を高ドーズイオン注入して、NMOSトランジ
スタのN+型ソース、ドレイン領域101,10゜及ヒ
NPNバイポーラトランジスタのN+エミッタ領域Iノ
を形成する。次に、Bを高ドーズイオン注入してPMO
SトランジスタのP型ンース、ドレイン領域121.J
2.及びNPNバイポーラトランジスタのP+型外部ベ
ース領域13を形成する。
In the step of FIG. 2(c), the polysilicon film 9 is
Patterned by E method to form r-meter electrodes 9□, 9. of NMOS and PMOS transistors. form. Subsequently, As+ is ion-implanted at a high dose to form the N+ type source and drain regions 101 and 10° of the NMOS transistor and the N+ emitter region I of the NPN bipolar transistor. Next, high-dose ion implantation of B is performed to form the PMO.
P-type source and drain regions 121 of the S transistor. J
2. and a P+ type external base region 13 of an NPN bipolar transistor.

最後に、第3図(a)に示す工程において、パッシイペ
ーション膜J4を堆積した後、コンタクトを開孔し、さ
らにアルミニウム電極15を設けることにより、NMO
S、PMOS)ランジスタ及びNPNバイポーラトラン
ジスタが同一半導体基板l上に完成する。
Finally, in the step shown in FIG. 3(a), after depositing the passivation film J4, a contact hole is opened and an aluminum electrode 15 is further provided to form an NMO
S, PMOS) transistor and NPN bipolar transistor are completed on the same semiconductor substrate l.

以上述べたように従来は、Bi−CMOS半導体装置を
製造するのに、CMOSトランジスタの製造プロセス中
で、バイポーラトランジスタを製造するようになってい
る。
As described above, conventionally, when manufacturing a Bi-CMOS semiconductor device, a bipolar transistor is manufactured during the manufacturing process of a CMOS transistor.

しかし、従来は、P+型外部ベース領域J3を非自己整
合(非セル7アライン)で形成するため、N中型エミッ
タ領域ii下のベース抵抗rbb”第3図(a)参照〕
が大きくなp 、0M08回路と同一の基板1上で、バ
イポーラトランジスタの高速動作を実現することが困難
であっ九。
However, conventionally, since the P+ type external base region J3 is formed in a non-self-aligned manner (non-cell 7 alignment), the base resistance under the N medium emitter region ii is reduced (see FIG. 3(a)).
It is difficult to realize high-speed operation of a bipolar transistor on the same substrate 1 as the 0M08 circuit, which has a large p value.

(発明が解決しようとする問題点) 以上述べたように、従来のBl−CMOS半導体装置に
おいては、0M08回路と同一半導体基板に高速動作可
能なバイポーラトランジスタを搭載することが難しいと
いう問題があった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional BL-CMOS semiconductor device, there was a problem that it was difficult to mount a bipolar transistor capable of high-speed operation on the same semiconductor substrate as the 0M08 circuit. .

そこで、この発明は、0M08回路と同一半導体基板に
高速動作可能なバイポーラトランジスタを容易に搭載可
能なり i−CMOS半導体装置及びその製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an i-CMOS semiconductor device and a method for manufacturing the same, in which a bipolar transistor capable of high-speed operation can be easily mounted on the same semiconductor substrate as the 0M08 circuit.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために、この発明は、半導体基板の
エミッタ領域上にエミッタ電極を形成し、このエミッタ
電極の側壁にサイドウオールを設けるようにしたもので
ある。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention forms an emitter electrode on the emitter region of a semiconductor substrate, and provides a sidewall on the side wall of the emitter electrode. This is how it was done.

(作用) 上記構成によれば、上記サイドウオールをスペーサとし
て、エミッタ領域に対して外部ベース領域をセル7アラ
インで形成することができるため、エミッタ領域下のベ
ース抵抗を小さくすることができ、バイポーラトランジ
スタの高速動作を実現することができる。
(Function) According to the above configuration, since the external base region can be formed in cell 7 alignment with respect to the emitter region using the side wall as a spacer, the base resistance under the emitter region can be reduced, and the bipolar High-speed operation of the transistor can be achieved.

(実施例) 以下、図面を参照してこの発明の実施列を詳細に説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は一実施例の製造工程を示す図であるが、ここで
、この第1図を説明する前に、第2図を使って一実施例
の概略を説明する。
FIG. 1 is a diagram showing the manufacturing process of one embodiment. Here, before explaining this FIG. 1, the outline of one embodiment will be explained using FIG. 2.

近年、LSIの進展に伴ない、MOSトランジスタの微
細化が必須となり、MOSトランジスタのチャネル長が
たとえば0.8〜1.2μmと短かくなる傾向にある。
In recent years, with the advancement of LSI, miniaturization of MOS transistors has become essential, and the channel length of MOS transistors has tended to become shorter, for example, from 0.8 to 1.2 μm.

その結果、ショートチャネル効果、ホットエレクトロン
耐性が散しくなシ、トランジスタの動作の1J頼性が確
保できなくなる傾向にある。
As a result, the short channel effect, hot electron resistance tends to be poor, and 1J reliability of the transistor operation cannot be ensured.

このため、第2図(&)に示す如<、p−mシリコン基
板あるいはNウェル拡散層4ノ上にデート酸化膜42、
As又はPドーデボリシリコングート電極43を設け、
たとえば低ドーズP+あるいはB+イオン注入により、
N−型あるいはP″″型ソース、ドレイン領域44.4
5を形成し次後、CvD酸化膜を堆積し、これをRIE
 aにてエッチバックしてポリシリコアj”−)の側壁
にのみCVD r1!を化膜46..46゜を残存させ
る。続いて、たとえば高ドーズAs  あるいはBF2
  イオン注入により、N”#6るいはP+型ソース、
ドレイン領域47.48を形成することにより、超LS
Iに適した信頼性あるNMOSあるいはPMOS)ラン
ソスタを備えた0M08回路が提供される。
For this reason, as shown in FIG. 2(&), a date oxide film 42,
An As or P doped polysilicon goat electrode 43 is provided,
For example, by low-dose P+ or B+ ion implantation,
N-type or P″″ type source and drain regions 44.4
5 is formed, then a CvD oxide film is deposited, and this is RIE.
Etch back at step a to leave a CVD r1! film of 46..46° only on the sidewalls of the polysilicon core j"-). Then, for example, high-dose As or BF2
By ion implantation, N”#6 or P+ type source,
By forming drain regions 47 and 48, ultra-LS
A 0M08 circuit with a reliable NMOS or PMOS (PMOS) transistor suitable for I is provided.

この実施例は、第2図(b)に示す如く、上記技術を用
い、0M08回路を形成した同一半導体基板上に略同−
プロセスにより高速NPNバイポーラトランジスタを搭
載するものである。すなわち、バイポーラトランジスタ
のコレクタ領域となるNウェル拡散層5ノ上のゲート酸
化膜を剥離し、内部ベース領域となるP型拡赦領域52
を、まず低ドーズB+注入により形成した後、As又は
Pドープトポリシリコン膜52を堆積し、MOSトラン
ジスタのゲート電極と開時に加工してエミッタ領域の一
部となるエミッタ電極53を形成する。この後、前述し
た方法によりIリシリコンのエミッタ電a53の側壁に
CVD酸化膜54を残存させ、PMOSトランジスタの
P型ノース、ドレイン領域の形成に用いた高ドーズBF
+イオン注入、その後の熱工程によすP+型外部ベース
領域55がエミッタを惚53からP型内部ベース領域5
2中にAs又はPが拡散して形成され、N+型千円ミッ
タ領域56接せずに、かつセルファラインで作られるた
め、ベース抵抗rbb’が小さい高速バイポーラNPN
 )ランジスタが実現される。
In this embodiment, as shown in FIG. 2(b), using the above technology, approximately the same circuit is formed on the same semiconductor substrate on which the 0M08 circuit is formed.
A high-speed NPN bipolar transistor is mounted through the process. That is, the gate oxide film on the N-well diffusion layer 5, which will become the collector region of the bipolar transistor, is peeled off, and the P-type amended region 52, which will become the internal base region, is removed.
is first formed by low-dose B+ implantation, and then an As or P-doped polysilicon film 52 is deposited and processed to form the gate electrode of the MOS transistor when opened to form an emitter electrode 53 which becomes a part of the emitter region. Thereafter, the CVD oxide film 54 is left on the side wall of the I-resilicon emitter electrode a53 by the method described above, and the high-dose BF used to form the P-type north and drain regions of the PMOS transistor is removed.
+ ion implantation and subsequent thermal process to transfer the emitter from the P+ type external base region 55 to the P type internal base region 5
It is a high-speed bipolar NPN with a low base resistance rbb' because it is formed by diffusing As or P into the N+ type 1,000-yen emitter region 56 and is made with a self-line.
) transistors are realized.

では、第1図の製造工程を示す断面図に従ってこの発明
の一実施例を詳細に説明する。
An embodiment of the present invention will now be described in detail with reference to the cross-sectional view of FIG. 1 showing the manufacturing process.

まず、第1図(a)に示す工程において、面方位(10
0)、比抵抗20〜30Ω−倒のP−型シリコン基板2
0に、選択的に43〜2007口のN++埋込拡散領域
2ノを設けた後、厚さ2.0μm1比抵抗1〜2Ω−備
のP型エピタキシャル層22を成長させる。次に、PM
OS,NPNバイポーラトランジスタを形成する箇所に
xj=2.5μm1ρS〜2にΩ/口のNウェル拡散層
23を設けた後、厚さ0.8μmのフィールド酸化膜2
4を形成する。続いて、コレクタ抵抗を低減するため、
N++埋込拡散領域21に達するように、ρ5=20〜
30Ω/口の深いN+型拡I&憤域25を形成する。
First, in the step shown in FIG. 1(a), the surface orientation (10
0), P-type silicon substrate 2 with a specific resistance of 20 to 30Ω
After selectively providing 43 to 2007 N++ buried diffusion regions 2 to 0, a P type epitaxial layer 22 having a thickness of 2.0 μm and a resistivity of 1 to 2 Ω is grown. Next, P.M.
After providing an N-well diffusion layer 23 of Ω/hole at xj = 2.5 μm 1ρS ~ 2 where the OS and NPN bipolar transistors are to be formed, a field oxide film 2 with a thickness of 0.8 μm is formed.
form 4. Next, to reduce collector resistance,
ρ5=20~ so as to reach the N++ buried diffusion region 21
Forms a 30Ω/deep N+ type expansion I&R area 25.

第1図価)に示す工程において、f−)酸化膜となる厚
さ300Xの熱酸化膜26を形成し B+を40 K@
Vにて5X10  cm  イオン注入して熱処理を行
ない拡散深さxJ〜0.5μのPM内部ベース領域21
上の熱酸化膜26を剥離して厚さ0.4μのポリシリコ
ン膜28を堆積し、A1+をポリシリコン膜28中に5
 X 1015cm−2イオン注入する。
In the process shown in Figure 1), f-) a thermal oxide film 26 with a thickness of 300X, which will become an oxide film, is formed, and B+ is heated to 40 K@
PM internal base region 21 with diffusion depth xJ ~ 0.5 μ by 5×10 cm ion implantation and heat treatment at V
The upper thermal oxide film 26 is peeled off, a 0.4μ thick polysilicon film 28 is deposited, and A1+ is deposited in the polysilicon film 28.
X 1015 cm-2 ion implantation.

第1図(、)に示す工程において、前記ポリシリコン膜
28をRIE法にてパターニングしてNMOS。
In the step shown in FIG. 1(,), the polysilicon film 28 is patterned by RIE to form an NMOS.

PMOSのゲート電極2111.2B、、エミッタ電極
28、を形成した後、ゲート電極、エミッタ電極の周囲
、露出しているP型内部ベース領域270表面に熱酸化
膜29を形成する。この時、エミッタ電極からP″″盤
内部ベース領域中にAsが高濃度に拡散されてρ1〜3
0Ω/口xj〜0.15μのN++エミッタ領域30が
形成される。続いて、NMOS及びPMOS)ランジス
タの信頼性を確保するため、NMOS及びPMOSトラ
ンジスタ形成両所にそれぞれP及びB+を5OK@vに
て1×10133−2イオン注入して高耐圧構造を形成
する。この後、厚さ0.4μのCVD酸化膜3Jを堆積
する。
After forming the PMOS gate electrode 2111.2B and emitter electrode 28, a thermal oxide film 29 is formed around the gate electrode and emitter electrode and on the exposed surface of the P-type internal base region 270. At this time, As is diffused from the emitter electrode into the base region inside the P'''' board at a high concentration, and ρ1 to 3
An N++ emitter region 30 of 0Ω/gate xj to 0.15μ is formed. Subsequently, in order to ensure the reliability of the NMOS and PMOS transistors, 1×10133-2 ions of P and B+ are implanted at 5 OK@v into both the NMOS and PMOS transistor formation locations to form a high breakdown voltage structure. Thereafter, a CVD oxide film 3J having a thickness of 0.4 μm is deposited.

第1図(d)に示す工程において、前記CVD酸化膜3
JをRIE法にてエッチバックしてエミッタ電極及びM
o8 )ランジスタのf−)電極の側壁K CVD酸化
膜3ノを残存させる。続いて、NMo5トランジスタの
ソース、ドレイン領域形成のためAs+を40 KeV
にテ5X10  cm  、PMOS)ランジスタのソ
ース、ドレイン領域及びNPNバイポーラトランジスタ
の外部ベース領域形成のためBF2+を4゜KeVにて
5×10 口 イオン注入した後、熱処理を行ないイオ
ン注入層を電気的に活性として、NMOSトランジスタ
のxj〜0.4μ程度のN十領域及びN−領域から成る
ソース及びドレイン領域32□。
In the step shown in FIG. 1(d), the CVD oxide film 3
Etch back J using the RIE method to form the emitter electrode and M.
o8) Leave the CVD oxide film 3 on the side wall of the f-) electrode of the transistor. Next, As+ was heated to 40 KeV to form the source and drain regions of the NMo5 transistor.
After ion implantation of 5×10 cm of BF2+ at 4°KeV to form the source and drain regions of a transistor (PMOS) transistor and the external base region of an NPN bipolar transistor, heat treatment is performed to electrically connect the ion implanted layer. As an active source and drain region 32□ of the NMOS transistor, which consists of an N+ region and an N- region of about xj~0.4μ.

32、、PMOSトランジスタのx j 〜0.4μ程
度のP+領域及びP−領域から成るソース、及びドレイ
ン領域33..33.、NPNバイポーラトランジスタ
のxj〜0.2μのP十型外部ベース領域34が形成さ
れる。
32. Source and drain regions 33 of the PMOS transistor consisting of a P+ region and a P- region of about x j ~0.4μ. .. 33. , a P-shaped external base region 34 of xj~0.2μ of an NPN bipolar transistor is formed.

最後に、第2図(・)に示す工程において、厚さ1μm
のノぐツシイベーシ、ンmj5をjI積して、コンタク
トを開孔をし、アルミニュウム−シリコン電極36を設
けてBi−CMOS半導体装置が完成する。
Finally, in the step shown in Figure 2 (・), a thickness of 1 μm
A Bi-CMOS semiconductor device is completed by multiplying the base plate and mj5, forming a contact hole, and providing an aluminum-silicon electrode 36.

この実施列によれば、Mo8TRのゲート電極28□。According to this implementation, the gate electrode 28□ of Mo8TR.

28、側壁酸化膜31をバイポーラトランジスタのエミ
ッタ寛慣28.の側壁にも残存させサイドウオールを形
成することにより、このサイドウオールをスペーサとし
てP+型外部ベースをN++エミッタ領域30にセルフ
ァラインで形成することができるため、間遠動作に適し
たBi−CMOS半導体amを実現することができる。
28. Form the sidewall oxide film 31 into the emitter of a bipolar transistor. By forming a sidewall that remains on the sidewall of the Bi-CMOS semiconductor, it is possible to use this sidewall as a spacer to form a P+ type external base in the N++ emitter region 30 in a self-lined manner. am can be realized.

なおこの発明は、先の実施例2に限定されるものではな
い。
Note that the present invention is not limited to the second embodiment described above.

向えば、先の実施列においては、ff−ト[極、エミッ
タ篭極共にAsドープドポリシリコン膜if用する場合
を説明したが、r−計電極としてPドープドポリシリコ
ン膜を用いてもよい。更に N+型エミヴタ狽域をフィ
ールド酸化膜に接しであるいは接しないように形成して
も本兄明は実現できる。
On the other hand, in the previous example, the case where the As-doped polysilicon film is used for both the ff-t electrode and the emitter cage electrode was explained, but it is also possible to use a P-doped polysilicon film as the r-meter electrode. good. Furthermore, the present invention can be realized even if the N+ type emitter region is formed in contact with or not in contact with the field oxide film.

この他にも発明の要旨を逸脱しない範囲で種々様々変形
実施可能なことは勿論である。
It goes without saying that various other modifications can be made without departing from the spirit of the invention.

[発明の効果] 以上述べ泌菅$発明によれば、エミッタ電極の側壁に酸
化膜によってサイドウオールを設けるようにしたので、
これをスペーサとして外部ベース領域をエミッタ領域に
対してセルファラインで形成することができ、エミッタ
領域下のベース抵抗を小さくすることができる。
[Effects of the Invention] According to the above-mentioned invention, since the sidewall is provided with an oxide film on the sidewall of the emitter electrode,
Using this as a spacer, the external base region can be formed in a self-aligned manner with respect to the emitter region, and the base resistance under the emitter region can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の製造工程を示す断面図、
第2図は一実施例の概略を説明するために示す断面図、
第3図は従来のBi−CMOS半導体装置の製造方法の
一列を示す断面図である。 20・・・P−型シリコン基板、2J・・・鹸型埋込拡
散憤域、22・・・P戯エピタキシャル層、23・・・
Nウェル拡散層、24・・・フィールド酸化膜、25・
・・耐型拡散領域、26・・・熱は化膜、22・・・P
型内部ベース領域、28・・・ポリシリコン膜、29・
・・熱酸化膜、30・・・N+型型置ミッタ領域3ノ・
・・CVD酸化膜、321.321.33□ 、33.
・・・ソース及びドレイン領域、34・・・P+塵外部
ベース領域、35・・・パッジベージ、ン膜、36・・
・アルミニューム−シリコン電極。
FIG. 1 is a sectional view showing the manufacturing process of an embodiment of the present invention;
FIG. 2 is a sectional view shown for explaining the outline of one embodiment;
FIG. 3 is a cross-sectional view showing one line of a conventional method for manufacturing a Bi-CMOS semiconductor device. 20... P-type silicon substrate, 2J... sapon-type buried diffusion region, 22... P-type epitaxial layer, 23...
N-well diffusion layer, 24... field oxide film, 25.
...Type-resistant diffusion region, 26...Heat is a film, 22...P
Mold internal base region, 28... polysilicon film, 29.
...Thermal oxide film, 30...N+ type emitter region 3-
...CVD oxide film, 321.321.33□, 33.
. . . source and drain region, 34 . . . P+ dust external base region, 35 . . .
・Aluminum-silicon electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)同一半導体基板上に、MOS型トランジスタとバ
イポーラ型トランジスタとを有するバイポーラ−CMO
S型半導体装置において、 上記半導体基板のエミッタ領域上に形成されたエミッタ
電極と、 このエミッタ電極の側壁に絶縁膜によって形成されたサ
イドウォールとを上記バイポーラ型トランジスタが有す
ることを特徴とするバイポーラ−CMOS型半導体装置
(1) Bipolar-CMO having a MOS transistor and a bipolar transistor on the same semiconductor substrate
An S-type semiconductor device, wherein the bipolar transistor has an emitter electrode formed on an emitter region of the semiconductor substrate, and a sidewall formed of an insulating film on a sidewall of the emitter electrode. CMOS type semiconductor device.
(2)上記MOS型トランジスタは、上記半導体基板上
に絶縁膜を介して形成されたゲート電極と、このゲート
電極の側壁に絶縁材によって形成されたサイドウォール
とを有することを特徴とする特許請求の範囲第1項記載
のバイポーラ−CMOS型半導体装置。
(2) A patent claim characterized in that the MOS transistor has a gate electrode formed on the semiconductor substrate via an insulating film, and a sidewall formed of an insulating material on a side wall of the gate electrode. A bipolar CMOS type semiconductor device according to item 1.
(3)コレクタ領域及び内部ベース領域が形成された半
導体基板上にポリシリコン膜を形成する第1の工程と、 この第1の工程によって形成されたポリシリコン膜をエ
ッチングしてエミッタ電極を形成する第2の工程と、 この第2の工程によって形成されたエミッタ電極を被う
ように、上記半導体基板上に絶縁膜を形成する第3の工
程と、 この第3の工程によって形成された絶縁膜の上に配化膜
を形成する第4の工程と、 この第4の工程によって形成された酸化膜をエッチバッ
クして上記エミッタ電極の側壁にサイドウォールを形成
する第5の工程と、 上記半導体基板に不純物をイオン注入した後、熱処理す
ることにより、この半導体基板に外部ベース領域を形成
する第6の工程とによってバイポーラ型トランジスタが
形成されることを特徴とするバイポーラ−CMOS型半
導体装置の製造方法。
(3) A first step of forming a polysilicon film on the semiconductor substrate on which the collector region and internal base region have been formed, and etching the polysilicon film formed by this first step to form an emitter electrode. a second step; a third step of forming an insulating film on the semiconductor substrate so as to cover the emitter electrode formed in the second step; and an insulating film formed in the third step. a fourth step of forming an alignment film on the semiconductor; a fifth step of etching back the oxide film formed in the fourth step to form a sidewall on the sidewall of the emitter electrode; and a fifth step of forming a sidewall on the sidewall of the emitter electrode. Manufacturing a bipolar CMOS type semiconductor device, characterized in that a bipolar type transistor is formed by a sixth step of forming an external base region in this semiconductor substrate by ion-implanting impurities into the substrate and then performing heat treatment. Method.
JP62078567A 1987-03-31 1987-03-31 Method for manufacturing bipolar CMOS semiconductor device Expired - Lifetime JP2633559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078567A JP2633559B2 (en) 1987-03-31 1987-03-31 Method for manufacturing bipolar CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078567A JP2633559B2 (en) 1987-03-31 1987-03-31 Method for manufacturing bipolar CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS63244768A true JPS63244768A (en) 1988-10-12
JP2633559B2 JP2633559B2 (en) 1997-07-23

Family

ID=13665471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078567A Expired - Lifetime JP2633559B2 (en) 1987-03-31 1987-03-31 Method for manufacturing bipolar CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JP2633559B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164059A (en) * 1988-10-24 1990-06-25 Internatl Business Mach Corp <Ibm> Manufacture of
WO2003015163A3 (en) * 2001-08-07 2003-10-30 Infineon Technologies Ag Method for the parallel production of an mos transistor and a bipolar transistor
JP2010062564A (en) * 2008-09-02 2010-03-18 Dongbu Hitek Co Ltd Poly-emitter type bipolar transistor, bcd device, poly-emitter type bipolar transistor manufacturing method, and bcd device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615571A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Manufacture of semiconductor device
JPS61160965A (en) * 1985-01-08 1986-07-21 Matsushita Electric Ind Co Ltd Semiconductor ic device
JPS632365A (en) * 1986-06-23 1988-01-07 Hitachi Ltd Manufacture of semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615571A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Manufacture of semiconductor device
JPS61160965A (en) * 1985-01-08 1986-07-21 Matsushita Electric Ind Co Ltd Semiconductor ic device
JPS632365A (en) * 1986-06-23 1988-01-07 Hitachi Ltd Manufacture of semiconductor integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164059A (en) * 1988-10-24 1990-06-25 Internatl Business Mach Corp <Ibm> Manufacture of
WO2003015163A3 (en) * 2001-08-07 2003-10-30 Infineon Technologies Ag Method for the parallel production of an mos transistor and a bipolar transistor
US7005337B2 (en) 2001-08-07 2006-02-28 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
US7018884B2 (en) 2001-08-07 2006-03-28 Infineon Technologies Ag Method for a parallel production of an MOS transistor and a bipolar transistor
JP2010062564A (en) * 2008-09-02 2010-03-18 Dongbu Hitek Co Ltd Poly-emitter type bipolar transistor, bcd device, poly-emitter type bipolar transistor manufacturing method, and bcd device manufacturing method

Also Published As

Publication number Publication date
JP2633559B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
JPS62155553A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JPS6265358A (en) Integrated circuit and manufacturing thereof
JPH04226064A (en) Interconnection body for semiconductor device use its manufacture
JP2509690B2 (en) Semiconductor device
JP3097092B2 (en) Bi-CMOS integrated circuit and manufacturing method thereof
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
JPH0193159A (en) Manufacture of bicmos element
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JP3097095B2 (en) Method for manufacturing semiconductor device
JP3153358B2 (en) Method for manufacturing semiconductor device
US6930008B2 (en) Method of fabricating a complementary bipolar junction transistor
JPH0575032A (en) Semiconductor integrated circuit device
JP2889246B2 (en) Semiconductor device
JP3040211B2 (en) Manufacturing method of semiconductor integrated circuit
JP2881833B2 (en) Method for manufacturing semiconductor device
JP2847773B2 (en) Method for manufacturing semiconductor device
JPS60105265A (en) Manufacture of complementary type semiconductor device
JP2820284B2 (en) Method for manufacturing semiconductor device
JP2940471B2 (en) A method for manufacturing an engraved gate MOS transistor.
JPH0580155B2 (en)
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH09275154A (en) Semiconductor device and its manufacturing method
JPS6376470A (en) Manufacture of semiconductor device
JPH07335662A (en) Semiconductor device and its manufacture
JPH03278567A (en) Manufacture of bicmos integrated circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term