JPS60105265A - Manufacture of complementary type semiconductor device - Google Patents

Manufacture of complementary type semiconductor device

Info

Publication number
JPS60105265A
JPS60105265A JP58211884A JP21188483A JPS60105265A JP S60105265 A JPS60105265 A JP S60105265A JP 58211884 A JP58211884 A JP 58211884A JP 21188483 A JP21188483 A JP 21188483A JP S60105265 A JPS60105265 A JP S60105265A
Authority
JP
Japan
Prior art keywords
layer
substrate
well
conductivity type
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58211884A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawabuchi
川渕 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58211884A priority Critical patent/JPS60105265A/en
Publication of JPS60105265A publication Critical patent/JPS60105265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latch-up completely by a method wherein a second conduction type impurity is implanted to the surface of a semiconductor substrate, a buried layer, impurity concentration in the surface thereof is sufficiently lower than the inside, is formed, a first conduction type semiconductor layer is grown, and a second conduction type impurity is implanted to a position on the buried layer to shape a well. CONSTITUTION:A pattern 52 for an oxide film is formed on an n type silicon substrate 51. Boron ions are implanted selectively. Consequently, a high-concentration impurity layer 53 in which the position of a peak in ion implantation is positioned in depth of size such as approximately 5mum is formed to the surface of the substrate 51. The pattern 52 for the oxide film is removed, and an n type silicon single crystal layer 54 is shaped through epitaxial growth only by 1mum thickness. A pattern 55 for a photo-resist is formed, boron ions in low concentration are implanted to the whole surface, boron is diffused from a p-region 56 through heat treatment, and a p-well 57 is formed. A groove 58 reaching to the substrate 51 is shaped selectively to the silicon single crystal layer 54.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、相補型半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a complementary semiconductor device.

[発明の技術的背景とその問題点] 相補型半導体装置としては、従来第1図に示す如くpチ
ャネルMOSトランジスタ1とnチャネルMO8t−ラ
ンジスタ2とを接続したC−MOSインバータが知られ
ている。このC−MOSインバータは、出力がH(h+
gh)レベル、L(low)レベルのいずれの場合にあ
っても定常電流が流れない構造のため、消費電力の問題
に悩まされることなく高集積化をはかることができ、今
後の大規第2図はC−MOSインバータの概略構造を示
す断面図であり、図中3はn型S1基板、4はp型不純
物領域(以後pウェルと略記する)である。
[Technical background of the invention and its problems] As a complementary semiconductor device, a C-MOS inverter in which a p-channel MOS transistor 1 and an n-channel MO8t-transistor 2 are connected as shown in FIG. 1 is conventionally known. . This C-MOS inverter has an output of H (h+
Because the structure does not allow steady current to flow in either the gh) level or the L (low) level, it is possible to achieve high integration without worrying about power consumption issues, and it will be useful for future large-scale Figure 2. is a cross-sectional view showing a schematic structure of a C-MOS inverter, in which numeral 3 represents an n-type S1 substrate, and 4 represents a p-type impurity region (hereinafter abbreviated as p-well).

基板3の表面層である0型不純物領域にはソース・ドレ
イン領域5,6及びゲート電極7からなるnチャネルM
OSトランジスタ1が形成され、pウェル4にはソース
・ドレイン領域8,9及びゲート電極からなるnチャネ
ルMOSトランジスタ2が形成されている。また、上記
各領域の間にはpウェル4の深さに比して厚みの小さい
素子分離用酸化膜11が、例えばLOCO8法で形成さ
れている。このような構造であれば、入力がHのときは
トランジスタ1がOFF、トランジスタ2がONで出力
はLとなり、また入力がLのときはトランジスタ1がO
N1トランジスタ2がO,FFで出力はHとなる。つま
り、出力がH,Lのいずれの場合にあってもトランジス
タ1,2の一方がOFFとなり、定常電流は流れないこ
とになる。
In the 0-type impurity region which is the surface layer of the substrate 3, there is an n-channel M composed of source/drain regions 5, 6 and a gate electrode 7.
An OS transistor 1 is formed, and an n-channel MOS transistor 2 consisting of source/drain regions 8, 9 and a gate electrode is formed in a p-well 4. Further, between each of the above regions, an element isolation oxide film 11 having a thickness smaller than the depth of the p-well 4 is formed by, for example, the LOCO8 method. With this structure, when the input is H, transistor 1 is OFF, transistor 2 is ON and the output is L, and when the input is L, transistor 1 is OFF.
When the N1 transistor 2 is O, FF, the output becomes H. That is, regardless of whether the output is H or L, one of transistors 1 and 2 is turned off, and no steady current flows.

しかしながら、この種の装置にあってはラッチアップと
称される特有の現象が発生し、このラッチアップが高集
積化を妨げる大きな要因となっている。ラッチアップと
は、nチャネルMOSトランジスタ1のソース5(p+
領領域、n型Si基板3、pウェル及びnチャネルトラ
ンジスタ2のソース8で形成されるpnpn構造の寄生
サイリスタが、基板電流等のトリガでON状態となる現
象である。その結果、素子内に大電流が流れ、素子の破
壊にまで至ることもある。上記pnpn構造は、次の2
つの寄生バイポーラトランジスタとして考えることがで
きる。すなわち、トランジスタ1のソース5をエミッタ
、基板3をベース及びpウェル4をコレクタとするPN
P型バイポーラトランジスタAと、トランジスタ2のソ
ース8をエミッタ、pウェルをベース及び基板3をコレ
クタとするNPN型バイポーラトランジスタBとに分解
できる。
However, in this type of device, a unique phenomenon called latch-up occurs, and this latch-up is a major factor hindering high integration. Latch-up is the source 5 (p+
This is a phenomenon in which a parasitic thyristor of a pnpn structure formed by a region, an n-type Si substrate 3, a p-well, and a source 8 of an n-channel transistor 2 is turned on by a trigger such as a substrate current. As a result, a large current flows within the element, which may even lead to destruction of the element. The above pnpn structure is the following 2
It can be thought of as two parasitic bipolar transistors. That is, a PN with the source 5 of the transistor 1 as the emitter, the substrate 3 as the base, and the p-well 4 as the collector.
It can be divided into a P-type bipolar transistor A and an NPN-type bipolar transistor B, in which the source 8 of the transistor 2 is the emitter, the p-well is the base, and the substrate 3 is the collector.

トランジスタA、Bの各電流増幅率をそれぞれβPNP
、βNPNとすると、ラッチアップはβPNPXβNP
N>1の条件下で起こることが知られている。C−MO
Sインバータで構成される集積回路の集積度を高める目
的で微細化を施すと、寄生バイポーラトランジスタのベ
ース幅が狭くなりβが大きくなり、その結果ラッチアッ
プが起こり易くなる。このため、高集積化をはかること
が困難であった。
Each current amplification factor of transistors A and B is βPNP.
, βNPN, the latch-up is βPNPXβNP
It is known that this occurs under the condition of N>1. C-MO
When miniaturization is performed for the purpose of increasing the degree of integration of an integrated circuit constituted by an S inverter, the base width of the parasitic bipolar transistor becomes narrower, β becomes larger, and as a result, latch-up becomes more likely to occur. For this reason, it has been difficult to achieve high integration.

ラッチアップを防止する1つの手法として、第3図に示
す如くpウェル4の下部にp型の高濃度不純物領域(p
+領領域12を設けた構造が提案されティる。(I n
ternatiOnal E 1ectron Dev
ice McetinL 1978年、230頁)。こ
の構造では、p+領域12の存在によって前記NPNト
ランジスタBのベース領域のグンメル(Gummel 
)数が増大し、βNPNが減少する。その結果、ラッチ
アップの発生をある程度抑えることはできる。しかしな
がら、ラッチアップの発生を完全に防止することはでき
ない。すなわち、NPNトランジスタBのコレクタ電流
の経路には、第3図中矢印に示す如くp+領域12を経
由する経路13と、p+領領域経由しない経路14との
2種類がある。経路13では、コレクタであるn型3i
基板3に流入しようとする電子は、その相当数がp+領
域12で再結合を起こしベース電流となり、βNPNを
低下させる。また、経路14では、電子は再結合するこ
となくn型3i基板3に流入することになるので、βN
PNの低下に何等寄与しない。したがって、ラッチアッ
プを十分に抑えることは困難であった。
As one method for preventing latch-up, a p-type high concentration impurity region (p
A structure in which a positive region 12 is provided is proposed. (In
ternatiOnal E 1ectron Dev
ice McetinL 1978, p. 230). In this structure, the existence of the p+ region 12 causes the Gummel (Gummel) of the base region of the NPN transistor B to be
) number increases and βNPN decreases. As a result, the occurrence of latch-up can be suppressed to some extent. However, the occurrence of latch-up cannot be completely prevented. That is, there are two types of paths for the collector current of NPN transistor B: a path 13 that goes through the p+ region 12, and a path 14 that does not go through the p+ region, as shown by the arrows in FIG. In path 13, the collector n-type 3i
A considerable number of electrons attempting to flow into the substrate 3 cause recombination in the p+ region 12 and become a base current, reducing βNPN. In addition, in the path 14, electrons flow into the n-type 3i substrate 3 without recombining, so βN
It does not contribute in any way to a decrease in PN. Therefore, it has been difficult to sufficiently suppress latch-up.

そこで本発明者等は、ラッチアップを完全に防止するも
のとして、第4図に示す如くつJル4の側壁を絶縁膜1
5で囲い、その絶縁膜15の底部が高濃度不純物領域1
2に接触した構造のC−MOSインバータを提案した(
特願昭58−53531号)。しかしながら、この種の
構造を従来の製造技術で実現することは極めて困難であ
った。
Therefore, in order to completely prevent latch-up, the inventors of the present invention covered the side wall of the J-ru 4 with an insulating film 1 as shown in FIG.
5, and the bottom of the insulating film 15 is a high concentration impurity region 1.
We proposed a C-MOS inverter with a structure in contact with 2 (
(Patent Application No. 58-53531). However, it has been extremely difficult to realize this type of structure using conventional manufacturing techniques.

以下、この問題をpウェルを例にとり説明する。This problem will be explained below using a p-well as an example.

第4図に示す構造を実現するには、まずn型半導体基板
3に拡散技術を用いて高濃度のボロン領域(p+領領域
以後埋め込み層と呼ぶ)12を形成する。次いで、10
00[℃]程度の高温でエピタキシャル成長技術を用い
てn型の半導体層を成長させる。その後、埋め込み層上
12のn型半導体層にボロンを導入しpウェル4を形成
する。続いて、ウェル4内にnチャネルMO8I−ラン
ジスタを、一方ウエル4外にはpチャネルMOSトラン
ジスタを形成し相補型半導体装置を完成させる。
In order to realize the structure shown in FIG. 4, first, a highly-concentrated boron region (p+ region hereinafter referred to as a buried layer) 12 is formed in the n-type semiconductor substrate 3 using a diffusion technique. Then 10
An n-type semiconductor layer is grown using an epitaxial growth technique at a high temperature of about 0.00°C. Thereafter, boron is introduced into the n-type semiconductor layer 12 above the buried layer to form a p-well 4. Subsequently, an n-channel MO8I-transistor is formed inside the well 4, and a p-channel MOS transistor is formed outside the well 4, thereby completing a complementary semiconductor device.

ところが、上記のエピタキシャル成長の工程にオートド
ーピングという現象が発生し、埋め込み層12の高濃度
のボロンがエピタキシャル成長層に自動的にドーピング
されエピタキシャル成長層の下層部が高濃度のp型頭域
となる。この高濃度層は後述のMOSトランジスタの形
成に悪影響を及ぼすため、エピタキシャル成長層の厚み
を数[μm]以上としてオー1へドーピングの及ばない
領域をエピタキシャル成長層の上層に形成し、この上層
にMOS t−ランジスタを形成する必要があった。
However, a phenomenon called autodoping occurs in the above-mentioned epitaxial growth process, and the high concentration boron in the buried layer 12 is automatically doped into the epitaxial growth layer, and the lower part of the epitaxial growth layer becomes a high concentration p-type head region. Since this high concentration layer has a negative effect on the formation of a MOS transistor, which will be described later, the thickness of the epitaxially grown layer is set to several [μm] or more, and a region where doping does not reach O1 is formed in the upper layer of the epitaxially grown layer. - It was necessary to form a transistor.

ラッチアップを完全に防止するためにはこのように厚い
エピタキシャル層を縦断して絶縁膜15を形成すること
が既述のように要求されるが、このような厚い埋め込み
絶縁膜15の形成は極めて困難であり、従来の製造方法
では事実上ラッチアップを完全に阻止する既述の構造を
実現することが不可能に近かった。
In order to completely prevent latch-up, it is required to form the insulating film 15 vertically across such a thick epitaxial layer, but forming such a thick buried insulating film 15 is extremely difficult. This is difficult, and it has been nearly impossible to achieve the above-described structure that completely prevents latch-up using conventional manufacturing methods.

[発明の目的] 本発明の目的は、ラッチアップを完全に阻止できる構造
をもった相補型半導体装置の製造方法を提供することに
ある。
[Object of the Invention] An object of the present invention is to provide a method for manufacturing a complementary semiconductor device having a structure that can completely prevent latch-up.

[発明の概要] 本発明の骨子は、埋め込み層の形成にイオン注入法を利
用し、エピタキシャル成長時に高濃度の埋め込み層が表
面に露出しないようにすることにある。
[Summary of the Invention] The gist of the present invention is to utilize an ion implantation method to form a buried layer so that the highly concentrated buried layer is not exposed to the surface during epitaxial growth.

埋め込み層はできるだけ高濃度にすることが望まれ、1
0” 〜1020[cm−3]の濃度にすることが必要
である。これに加え、埋め込み層表面の不純物濃度はで
きるだけ低くする必要がある。これら両者の要望を満た
すべく本発明者等が鋭意研究を重ねた結果、埋め込み層
の形成にイオン注入法を用いればよいことが判った。さ
らに、イオン注入のピーク位置が表面から0.4[μm
]よりも深くなるようにすれば、表面濃度を内部濃度よ
り1〜2桁以上低くできるのが判明した。
It is desirable to make the buried layer as highly concentrated as possible;
It is necessary to keep the concentration between 0" and 1020 [cm-3]. In addition, the impurity concentration on the surface of the buried layer needs to be as low as possible. The present inventors have worked hard to satisfy both of these demands. As a result of repeated research, it was found that ion implantation should be used to form the buried layer.Furthermore, the peak position of ion implantation was 0.4 μm from the surface.
] It has been found that the surface concentration can be lowered by one to two orders of magnitude or more than the internal concentration.

本発明はこのような点に着目し、相補型半導体装置の製
造方法において、第1導電型の半導体基板表面に第2導
電型の不純物を選択的にイオン注入し、かつ表面の不純
物i度が内部の不純物濃度よりも十分低くなるようイオ
ン注入して埋め込み層を形成したのち、上記基板上に第
1導電型の半導体層を成長形成し、次いで上記埋め込み
層上の半導体層に第2導電型の不純物をドーピングして
ウェルを形成し、しかるのち上記ウェル内に第1導電型
のキャリアが電流として流れるMISトランジスタを形
成し、かつウェル外の半導体層内に第2導電型のキャリ
アが電流として流れるMIS[−ランジスタを形成する
ようにした方法である。
The present invention focuses on these points, and provides a method for manufacturing a complementary semiconductor device in which impurities of a second conductivity type are selectively ion-implanted into the surface of a semiconductor substrate of a first conductivity type, and the degree of impurity on the surface is reduced. After forming a buried layer by implanting ions to a level sufficiently lower than the internal impurity concentration, a semiconductor layer of a first conductivity type is grown on the substrate, and then a semiconductor layer of a second conductivity type is grown on the semiconductor layer on the buried layer. A well is doped with an impurity, and then a MIS transistor is formed in which carriers of a first conductivity type flow as a current, and carriers of a second conductivity type flow as a current in a semiconductor layer outside the well. This is a method for forming a flowing MIS transistor.

[発明の効果] 本発明によれば、埋め込み層の内部に比べ表面の不純物
濃度を十分低くできるので、埋め込み層上に形成するエ
ピタキシャル成長層の厚みを十分薄くすることができる
。このため、ラッチアップを完全に阻止できる構造をも
った相補型半導体装置を容易に実現することができる。
[Effects of the Invention] According to the present invention, since the impurity concentration at the surface of the buried layer can be made sufficiently lower than that inside the buried layer, the thickness of the epitaxial growth layer formed on the buried layer can be made sufficiently thin. Therefore, a complementary semiconductor device having a structure that can completely prevent latch-up can be easily realized.

[発明の実施例] 第5図は本発明の一実施例に係わるC−MOSインバー
タ製造工程を示す断面図である。まず、第5図(a )
に示す如く比抵抗1[0cm ]のn型(100)シリ
コン基板51上に酸化膜のパターン52を形成する。次
いで、第5図(b)に示す如くイオン注入技術を用い、
加速電圧200[ke■コ、ドーズ量1×1015 [
cm′2]の条件でボロン(B ”)を基板51中に選
択的にイオン注入する。これにより、基板51表面には
、イオン注入のピーク位置が表面より例えば5[μm]
程度の深さに位置する高濃度不純物層(埋め込み層)5
3が形成されることになる。次いで、酸化膜のパータン
52を除去したのち、気相成長法によるエピタキシャル
成長技術を用い、第5図(C)に示す如<1000[’
C]でn型のシリコン単結晶層54を厚み1[μIIl
]だけ成長形成する。次いで、第5図(d )に示す如
くフォトレジストのパターン55を形成したのち、全面
に低濃度のボロン(B+)をイオン注入する。その後、
熱処理を施しp領域56からボロンを拡散させ、第5図
(e )に示す如くpウェル57を形成する。次いで、
ドライエツチング技術を用い、M5図([)に示す如く
シリコン単結晶層54に前記基板51に達する溝58を
選択形成する。続いて、第5図((] )に示す如く上
記溝58内に酸化膜59を周知の方法により埋め込む。
[Embodiment of the Invention] FIG. 5 is a sectional view showing a C-MOS inverter manufacturing process according to an embodiment of the invention. First, Figure 5 (a)
As shown in FIG. 2, an oxide film pattern 52 is formed on an n-type (100) silicon substrate 51 having a resistivity of 1 [0 cm 2 ]. Next, using ion implantation technology as shown in FIG. 5(b),
Accelerating voltage 200[ke■ko], dose amount 1×1015[
Boron (B'') is selectively ion-implanted into the substrate 51 under conditions of 5 [μm] from the surface.
High concentration impurity layer (buried layer) 5 located at a depth of approximately
3 will be formed. Next, after removing the pattern 52 of the oxide film, an epitaxial growth technique using a vapor phase growth method is used to form a film with a thickness of <1000['] as shown in FIG. 5(C).
C], the n-type silicon single crystal layer 54 is formed to a thickness of 1 [μIIl
] only grows and forms. Next, as shown in FIG. 5(d), a photoresist pattern 55 is formed, and then low concentration boron (B+) ions are implanted over the entire surface. after that,
A heat treatment is performed to diffuse boron from the p-region 56, forming a p-well 57 as shown in FIG. 5(e). Then,
Using a dry etching technique, a trench 58 reaching the substrate 51 is selectively formed in the silicon single crystal layer 54 as shown in FIG. M5 ([). Subsequently, as shown in FIG. 5(), an oxide film 59 is buried in the trench 58 by a well-known method.

これ以降′は、従来と同様に第5図(i))に示す如く
pウェル57内にnチャネルMoSトランジスタ2を、
nウェル54内にpチャネルトランジスタ1を作成する
。すなわち、周知の技術を用い、ソース・ドレイン領域
61.62.64.65及びゲート電極63.66等を
形成することによってC−MOSインバータが完成する
ことになる。
From then on, as in the conventional case, the n-channel MoS transistor 2 is placed in the p-well 57 as shown in FIG. 5(i).
A p-channel transistor 1 is created in an n-well 54. That is, a C-MOS inverter is completed by forming source/drain regions 61, 62, 64, 65, gate electrodes 63, 66, etc. using a well-known technique.

かくして製造されたC−MOSインバータにおいては、
0チャネルMOSトランジスタ2のソース64からpウ
ェル57に注入され、基板51に流入しようとするマイ
ノリティキャリアは、必ずp+領域53を経由しなけれ
ばならず、大半のマイノリティキャリアはこのp+領域
53で再結合する。このため、上記ソース64、pウェ
ル57及び基板51等からなるNPNバイポーラトラン
ジスタ(寄生トランジスタ)のβNPNが大幅に減少す
ることになる。その結果、ラッチアップの発生を確実に
防止することができる。特に、p+領域53の不純物濃
度が1X10” Ecm” ]を越えると上記再結合が
顕著に起こり、ラッチアップの防止に効果的であった。
In the C-MOS inverter thus manufactured,
Minority carriers injected into the p-well 57 from the source 64 of the 0-channel MOS transistor 2 and attempting to flow into the substrate 51 must necessarily pass through the p+ region 53, and most minority carriers are regenerated in the p+ region 53. Join. Therefore, βNPN of the NPN bipolar transistor (parasitic transistor) consisting of the source 64, p-well 57, substrate 51, etc. is significantly reduced. As a result, latch-up can be reliably prevented from occurring. Particularly, when the impurity concentration of the p+ region 53 exceeds 1×10"Ecm", the above-mentioned recombination occurs significantly and is effective in preventing latch-up.

また、本実施例方法では埋め込み絶縁膜59の厚みが1
[μm]と十分小さくて済むことになり、したがって絶
縁膜59の形成を容易に行い得る等の利点がある。
Further, in the method of this embodiment, the thickness of the buried insulating film 59 is 1
The thickness can be as small as [μm], which has the advantage that the insulating film 59 can be easily formed.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記埋め込み層形成のためのイオン注入
の条件は、表面の不純物濃度が内部のそれよりも十分低
くなる範囲で、適宜定めればよい。好ましくは、イオン
注入のピークが表面から0.4[μm]よりも深くなる
ように上記条件を定めればよい。また、半導体基板の導
電型はn型に限るものではなく、n型であってもよいの
は勿論のことである。さらに、半導体基板として、81
02等の絶縁膜上に半導体膜を形成したものを用いるこ
とも可能である。また、高濃度不純物領域の不純物濃度
は、仕様に応じて適宜定めればよい。また、前記MOS
トランジスタはゲート酸化膜の代りにゲート絶縁膜を用
いるMISトランジスタであってもよいのは勿論のこと
である。その他、本発明の要旨を逸脱しない範囲で、種
々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the conditions for ion implantation for forming the buried layer may be appropriately determined within a range such that the impurity concentration on the surface is sufficiently lower than that inside. Preferably, the above conditions may be determined so that the peak of ion implantation is deeper than 0.4 [μm] from the surface. Further, the conductivity type of the semiconductor substrate is not limited to the n-type, and it goes without saying that the conductivity type may be the n-type. Furthermore, as a semiconductor substrate, 81
It is also possible to use a structure in which a semiconductor film is formed on an insulating film such as 02. Further, the impurity concentration of the high concentration impurity region may be determined as appropriate according to specifications. In addition, the MOS
Of course, the transistor may be an MIS transistor using a gate insulating film instead of the gate oxide film. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来のC−MOSインバー
タを説明するためのもので第1図は等価回路図、第2図
は構造断面図、第3図はラッチアップの改善をはかった
従来装置の概略構造を示す実施例に係わるC−MOSイ
ンバータ製造工程を示す断面図である。 1・・・nチャネルMOSトランジスタ、2・・・nチ
ャネルMOSトランジスタ、51・・・n型S1基板(
第1導電型半導体基板)、53・・・p+層(高濃度不
純物理め込み層)、54・・・n型シリコン単結晶層(
第1導電型半導体層)、57・・・pウェル(第2導電
型領域)、59・・・酸化膜(素子分離用絶縁膜>、6
1.62・・・p+領領域ソース・ドレイン領域)、6
3.66・・・ゲート電極、64,65・・・n+領領
域ソース・トレイン領域)。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第5図 52 第5図
Figures 1 and 2 are for explaining conventional C-MOS inverters, respectively. Figure 1 is an equivalent circuit diagram, Figure 2 is a cross-sectional view of the structure, and Figure 3 is a conventional C-MOS inverter with latch-up improvement. FIG. 2 is a cross-sectional view illustrating a C-MOS inverter manufacturing process according to an embodiment showing a schematic structure of the device. DESCRIPTION OF SYMBOLS 1...n channel MOS transistor, 2...n channel MOS transistor, 51...n type S1 substrate (
53... p+ layer (high concentration impurity physical inlay layer), 54... n-type silicon single crystal layer (
(first conductivity type semiconductor layer), 57... p well (second conductivity type region), 59... oxide film (element isolation insulating film), 6
1.62...p+ region source/drain region), 6
3.66...gate electrode, 64,65...n+ region source/train region). Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 5 Figure 52 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板表面に第2導電型の不純
物を選択的にイオン注入し、かつ表面の不純物濃度が内
部の不純物濃度よりも十分低くなるようイオン注入して
埋め込み層を形成する工程と、次いで前記基板上に第1
導電型の半導体層を成長形成する工程と、次いで前記埋
め込み層上の半導体層に第21電型の不純物をドーピン
グしてウェルを形成する工程と、次いで上記ウェル内に
第1導電型のキャリアが電流として流れるM I S 
l−ランジスタを形成し、かつウェル外の半導体層内に
第2導電型のキャリヤが電流として流れるMISトラン
ジスタを形成する工程とを含むことを特徴とする相補型
半導体装置の製造方法。 (29前記埋め込み層を形成する工程として、前記基板
表面にピーク位置が表面から0.4[μm]よりも深く
なるよう第2導電型の不純物をイオン注入することを特
徴とする特許請求の範囲第1項記載の相補型半導体装置
の製造方法。
(1) Form a buried layer by selectively ion-implanting impurities of the second conductivity type into the surface of the semiconductor substrate of the first conductivity type, and implanting the ions so that the impurity concentration on the surface is sufficiently lower than the impurity concentration inside. and then depositing a first layer on the substrate.
a step of growing a semiconductor layer of a conductivity type, a step of doping the semiconductor layer on the buried layer with an impurity of a 21st conductivity type to form a well, and then a step of forming a well with carriers of a first conductivity type in the well. M I S flowing as a current
1. A method for manufacturing a complementary semiconductor device, comprising the steps of forming an L-transistor and forming an MIS transistor in which carriers of a second conductivity type flow as a current in a semiconductor layer outside the well. (29) Claims characterized in that the step of forming the buried layer includes ion-implanting impurities of a second conductivity type into the substrate surface so that the peak position is deeper than 0.4 [μm] from the surface. 2. A method for manufacturing a complementary semiconductor device according to item 1.
JP58211884A 1983-11-11 1983-11-11 Manufacture of complementary type semiconductor device Pending JPS60105265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211884A JPS60105265A (en) 1983-11-11 1983-11-11 Manufacture of complementary type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211884A JPS60105265A (en) 1983-11-11 1983-11-11 Manufacture of complementary type semiconductor device

Publications (1)

Publication Number Publication Date
JPS60105265A true JPS60105265A (en) 1985-06-10

Family

ID=16613219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211884A Pending JPS60105265A (en) 1983-11-11 1983-11-11 Manufacture of complementary type semiconductor device

Country Status (1)

Country Link
JP (1) JPS60105265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908310A (en) * 1995-12-27 1999-06-01 International Business Machines Corporation Method to form a buried implanted plate for DRAM trench storage capacitors
WO2001095389A3 (en) * 2000-06-06 2002-04-18 Infineon Technologies Corp Shielding of analog circuits on semiconductor substrates
WO2001099186A3 (en) * 2000-06-20 2002-10-10 Infineon Technologies Corp Shielding of analog circuits on semiconductor substrates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908310A (en) * 1995-12-27 1999-06-01 International Business Machines Corporation Method to form a buried implanted plate for DRAM trench storage capacitors
WO2001095389A3 (en) * 2000-06-06 2002-04-18 Infineon Technologies Corp Shielding of analog circuits on semiconductor substrates
WO2001099186A3 (en) * 2000-06-20 2002-10-10 Infineon Technologies Corp Shielding of analog circuits on semiconductor substrates

Similar Documents

Publication Publication Date Title
JPS6228577B2 (en)
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
JP2950577B2 (en) Method for manufacturing BiCMOS semiconductor integrated circuit
KR900005123B1 (en) Bipolar transistor manufacturing method
US4669179A (en) Integrated circuit fabrication process for forming a bipolar transistor having extrinsic base regions
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH02283032A (en) Vertical bipolar transistor
JP2611450B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0575032A (en) Semiconductor integrated circuit device
KR940001257B1 (en) Method of making semiconductor device
JPS5854502B2 (en) Manufacturing method of semiconductor device
KR940010913B1 (en) High voltage bipolar transistor and manufacturing method thereof
JPH03222357A (en) Semiconductor device and manufacture thereof
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JPH03116774A (en) Manufacture of semiconductor device
JPS62293665A (en) Manufacture of semiconductor integrated circuit device
JP3077168B2 (en) Bi-MOS semiconductor device and method of manufacturing the same
JPS61208235A (en) Manufacture of semiconductor device
JPH09275154A (en) Semiconductor device and its manufacturing method
JPH09223746A (en) Semiconductor device
JPH0834214B2 (en) Method for manufacturing semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH07176621A (en) Semiconductor device and fabrication thereof
JPH05109745A (en) Semiconductor device
JPS63164356A (en) Manufacture of semiconductor integrated circuit