JPH03116774A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03116774A
JPH03116774A JP25427689A JP25427689A JPH03116774A JP H03116774 A JPH03116774 A JP H03116774A JP 25427689 A JP25427689 A JP 25427689A JP 25427689 A JP25427689 A JP 25427689A JP H03116774 A JPH03116774 A JP H03116774A
Authority
JP
Japan
Prior art keywords
region
type
conductivity type
transistor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25427689A
Other languages
Japanese (ja)
Inventor
Masaru Oki
勝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25427689A priority Critical patent/JPH03116774A/en
Publication of JPH03116774A publication Critical patent/JPH03116774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form the base width of a bipolar transistor uniformly so as to form a semiconductor device, which has a bipolar transistor of properties small in dispersion, by forming a second conductivity type of base region and a first conductivity type of collector region, by ion implantation method, within the region surrounded by a first conductivity type well region. CONSTITUTION:An N<+> type pushed-in region 2 and a P-type pushed in region 3 are formed in a P-type semiconductor substrate 1, and then an N-type epitaxial layer 4 is grown by approximately 2mum. Next, P-type wells 5 are formed in an NchMOS transistor formation area, the element isolating region of a bipolar transistor, and the collector region of a vertical PNP transistor, and an N-type well region 7 is formed in a PchMOS transistor formation area, and then an element isolating oxide film 6 is formed. Next, at the same time when the base region 8 of the vertical PNP transistor is formed by ion implantation of phosphorus (P<+>), ions of boric acid (B<+>) are implanted to form a P-type collector region 17. Accordingly, the width of the base of the PNP transistor is not affected by the dispersion of the protrusion of the P-type pushed-in layer 3, so it can be maintained constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に相補型MO
3電界効果トランジスタとバイポーラトランジスタを同
一基板上に有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a semiconductor device having three field effect transistors and a bipolar transistor on the same substrate.

〔従来の技術〕[Conventional technology]

バイポーラトランジスタと相補型MO3電界効果トラン
ジスタを同一基板上に有する半導体装置(以下Bi−C
MO3ICと記す)は、CMOSトランジスタの低消費
電力動作と、バイポーラトランジスタの高速動作、高駆
動能力を同時に実現出来ることから、近年多く実用化さ
れている。
A semiconductor device (hereinafter referred to as Bi-C) having a bipolar transistor and a complementary MO3 field effect transistor on the same substrate.
MO3IC) has been put into practical use in recent years because it can simultaneously achieve the low power consumption operation of a CMOS transistor and the high speed operation and high drive ability of a bipolar transistor.

第4図に従来のB i−CMO3I Cの断面図を示す
。以下その製造方法を順を追って説明する。
FIG. 4 shows a cross-sectional view of a conventional B i-CMO3IC. The manufacturing method will be explained step by step below.

まず、P型半導体基板1にN+型型埋領領域2P型埋込
領域3を形成し、次でその上にN型エピタキシャル層4
を形成する。次に、NchMOSトランジスタ(Tr)
を形成する領域と、パイボ−ラトランジスタの素子分離
領域及び縦型PNPトランジスタ(Tr)のコレクタ領
域にP型ウェル領域5を形成し、PchMOSトランジ
スタを形成する領域にN型ウェル領域7を形成した後、
所定の形状をしたシリコン窒化膜を形成し、この窒化膜
を耐酸化用マスクとして、素子分離酸化膜6を形成する
First, an N+ type buried region 2P type buried region 3 is formed in a P type semiconductor substrate 1, and then an N type epitaxial layer 4 is formed thereon.
form. Next, NchMOS transistor (Tr)
A P-type well region 5 was formed in a region where a PchMOS transistor is to be formed, an element isolation region of a piebora transistor, and a collector region of a vertical PNP transistor (Tr), and an N-type well region 7 is formed in a region where a PchMOS transistor is to be formed. rear,
A silicon nitride film having a predetermined shape is formed, and using this nitride film as an oxidation-resistant mask, an element isolation oxide film 6 is formed.

次に、縦型PNPトランジスタのN型ベース領域8を形
成後、ゲート酸化膜を介してゲート多結晶シリコン9を
形成し、NPN)ランジスタのP型ベース領域10を形
成する。その後、NchMOSトランジスタのソース・
ドレイン領域11とNPNトランジスタのN++エミッ
タ領域12を同時に形成し、PchMO3)ランジスタ
のソース・ドレイン領域13と縦型PNPトランジスタ
のP+型エミッタ領域14及びNPNトランジスタのP
+型ベースコンタクト領域15を同時に形成する。
Next, after forming an N-type base region 8 of a vertical PNP transistor, a gate polycrystalline silicon 9 is formed via a gate oxide film, and a P-type base region 10 of an NPN transistor is formed. After that, the source of the NchMOS transistor
The drain region 11 and the N++ emitter region 12 of the NPN transistor are simultaneously formed, and the source/drain region 13 of the PchMO3) transistor, the P+ type emitter region 14 of the vertical PNP transistor, and the P of the NPN transistor are formed.
+ type base contact region 15 is formed at the same time.

以上の様にしてNPN、及びPNPトランジスタとCM
OSトランジスタを同一基板上に集積化したB i −
CMOS I Cを形成していた。この時の縦型PNP
トランジスタのA−A’線断面における不純物濃度の分
布を第5図に示す。
As described above, NPN and PNP transistors and CM
B i - with OS transistors integrated on the same substrate
It formed a CMOS IC. Vertical PNP at this time
FIG. 5 shows the impurity concentration distribution in a cross section taken along the line AA' of the transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のB i−CMOS I Cの製造方法で
は、縦型PNPトランジスタを形成する際、第5図に示
したように、PNPトランジスタのベースの幅が、エピ
タキシャル層4の厚さやP壁埋込領域3のせり上りによ
り大きく変化するため、特性も大きく変化してしまう。
In the conventional Bi-CMOS IC manufacturing method described above, when forming a vertical PNP transistor, as shown in FIG. Since the characteristics change greatly due to the rise of the included region 3, the characteristics also change greatly.

又、N+型型埋領領域2内、PNP)ランジスタのコレ
クタ領域となるP壁埋込領域3を形成するが、このP壁
埋込領域3が、N1型埋込領域2に相殺されてしまい、
コレクタ抵抗が高くなってしまう等の欠点があり、PN
P )ランジスタのコレクタ抵抗を下げるなめには、P
壁埋込領域3を高濃度にしなければならない。
Furthermore, a P-wall buried region 3 is formed within the N+ type buried region 2, which becomes the collector region of the PNP transistor, but this P-wall buried region 3 is canceled out by the N1-type buried region 2. ,
There are disadvantages such as high collector resistance, and PN
P) To lower the collector resistance of the transistor, P
The wall-embedded area 3 must be highly concentrated.

しかし、P壁埋込領域3を高濃度にすると、NchMO
Sトランジスタ形成領域のP型埋込領域も高濃度になり
、後の熱処理によりエピタキシャル層表面にせり上り、
NchMO3トランジスタのしきい値電圧VTの変動を
もたらすと共に、PNPトランジスタのコレクターベー
ス間耐圧の減少も発生する。この問題を解決するために
、P壁埋込領域3を2度に分けて形成する方法が考えら
れるが、工程の増加を伴うためコストアップにつながる
等の欠点がある。
However, when the P-wall buried region 3 is made highly concentrated, NchMO
The P-type buried region in the S transistor formation region also becomes highly concentrated and rises to the surface of the epitaxial layer due to subsequent heat treatment.
This causes a change in the threshold voltage VT of the NchMO3 transistor, and also causes a decrease in the collector-base breakdown voltage of the PNP transistor. In order to solve this problem, a method can be considered in which the P wall buried region 3 is formed in two steps, but this method has drawbacks such as an increase in the number of steps, which leads to an increase in cost.

本発明の目的は、上述した様な欠点をなくし、高性能な
り i −CMOS I Cにおける縦型PNPトラン
ジスタを製造工程を増やすことなく形成出来る半導体装
置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks and can form a high-performance vertical PNP transistor in an i-CMOS IC without increasing the number of manufacturing steps.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、バイポーラトランジ
スタと相補型MOSトランジスタを同一基板上に含む半
導体装置の製造方法において、第一導電型半導体基板に
第二導電型埋込層を形成する工程と、この第二導電型埋
込層内に第一導電型の埋込層を形成する工程と、この第
一導電型埋込層を含む全面に第二導電型エピタキシャル
層を成長する工程と、前記第一導電型の埋込層周辺にそ
って第一導電型ウェル領域を形成する工程と、前記第一
導電型ウェル領域に囲まれた領域内に第二導電型のベー
ス領域及び第一導電型のコレクタ領域を同一のイオン注
入マスクを用いるイオン注入法により形成する工程とを
含んで構成される。
A method of manufacturing a semiconductor device of the present invention includes a step of forming a buried layer of a second conductivity type in a semiconductor substrate of a first conductivity type, in a method of manufacturing a semiconductor device including a bipolar transistor and a complementary MOS transistor on the same substrate; a step of forming a first conductivity type buried layer within the second conductivity type buried layer; a step of growing a second conductivity type epitaxial layer over the entire surface including the first conductivity type buried layer; forming a first conductivity type well region along the periphery of the buried layer of one conductivity type, and forming a second conductivity type base region and a first conductivity type base region in a region surrounded by the first conductivity type well region; The method includes a step of forming a collector region by an ion implantation method using the same ion implantation mask.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の第1の実施例を説明す
るための半導体チップの断面図である。
FIGS. 1(a) and 1(b) are cross-sectional views of a semiconductor chip for explaining a first embodiment of the present invention.

まず第1図(a)に示す様に、P型半導体基板1にN+
型型埋領領域2P壁埋込領域3を形成後、N型エピタキ
シャル層4を2μm程度成長させる9次に、NchMO
S)ランジスタ形成領域及び、バイポーラトランジスタ
の素子分離領域。
First, as shown in FIG. 1(a), N+
After forming the type-type buried region 2P wall-buried region 3, the N-type epitaxial layer 4 is grown to a thickness of about 2 μm.
S) Transistor formation region and bipolar transistor element isolation region.

縦形PNPトランジスタのコレクタ領域にP型ウェル5
を形成し、PchMOSトランジスタ形成領域にN型ウ
ェル領域7を形成後、素子分離酸化膜6を形成する。
A P-type well 5 is installed in the collector region of the vertical PNP transistor.
After forming an N-type well region 7 in the PchMOS transistor formation region, an element isolation oxide film 6 is formed.

次に、縦形PNP)ランジスタのベース領域8を、15
0keV、lX1013cm−2の条件でリン(P+)
をイオン注入して形成すると同時に、ホウ素(B+)を
200〜400keV、IXl 012〜I X 10
 ”c m−2の条件でイオン注入しP型コレクタ領域
17を形成する。
Next, the base area 8 of the vertical PNP transistor is 15
Phosphorus (P+) under the conditions of 0 keV, lX1013 cm-2
At the same time, boron (B+) is ion-implanted at 200 to 400 keV, IXl 012 to IX10
Ion implantation is performed under the condition of "cm-2" to form a P-type collector region 17.

次に第1図(b)に示す様に、NPN)ランジスタのP
型ベース領域10を形成し、NchMOSトランジスタ
のソース・ドレイン領域11゜NPNトランジスタのN
++エミッタ領域12を同時に形成し、PChMOSト
ランジスタのP+型ソース・ドレイン領域13と、PN
PトランジスタのP1型エミッタ領域14及びNPNト
ランジスタのP+型ベースコンタクト領域15を同時に
形成する。この様にして、B i−0MO8I Cが完
成する。この時の縦型PNPトランジスタのB−B’線
断面における不純物濃度の分布を第3図に示す。
Next, as shown in Figure 1(b), P
A type base region 10 is formed, and a source/drain region 11° of the NchMOS transistor is formed.
++ emitter region 12 is formed at the same time, and P+ type source/drain region 13 of the PChMOS transistor and PN
A P1 type emitter region 14 of a P transistor and a P+ type base contact region 15 of an NPN transistor are formed simultaneously. In this way, B i-0MO8IC is completed. FIG. 3 shows the impurity concentration distribution in the cross section taken along the line B-B' of the vertical PNP transistor at this time.

第3図に示す様に本実施例によれば、P型埋込層3に加
えてイオン注入により、P型コレクタ領域17を形成す
るため、PNP)ランジスタのベースの幅は、従来のよ
うにN型エピタキシャル層4の膜厚ばらつきや、P型埋
込層3のせり出しのばらつきの影響を受けなくなるため
、一定に保つことが出来る。これにより、安定した高性
能なPNP)ランジスタが得られる。又、コレクタ領域
の幅を広くでき、コレクタ領域の不純物濃度も高く出来
るためコレクタ抵抗も低減出来る。
As shown in FIG. 3, according to this embodiment, in addition to the P-type buried layer 3, a P-type collector region 17 is formed by ion implantation, so that the width of the base of the PNP transistor is the same as in the conventional one. Since it is not affected by variations in the thickness of the N-type epitaxial layer 4 or variations in the protrusion of the P-type buried layer 3, it can be kept constant. As a result, a stable and high performance PNP) transistor can be obtained. Furthermore, since the width of the collector region can be increased and the impurity concentration in the collector region can be increased, collector resistance can also be reduced.

第2図は、本発明の第2の実施例の断面図である。従来
用いられていた縦形PNPトランジスタのコレクタ領域
であるP型埋込層を除き、PNPトランジスタのN型ベ
ース領域8の形成時にP型コレクタ領域17を同時に形
成することにより、縦形PNP)ランジスタを形成する
FIG. 2 is a cross-sectional view of a second embodiment of the invention. A vertical PNP transistor is formed by excluding the P-type buried layer, which is the collector region of the conventionally used vertical PNP transistor, and simultaneously forming the P-type collector region 17 when forming the N-type base region 8 of the PNP transistor. do.

この方法によれば、P型埋込層がない場合でも高性能な
PNPトランジスタが得られるだけでなく、エピタキシ
ャル層の厚さに依存することなく、又、高濃度N++込
領域2と、PNPトランジスタのコレクタ領域が接して
いないため、コレクターN+埋込領域間の接合容量が非
常に小さくなり、高性能な特性が得られるという利点が
ある。
According to this method, not only a high-performance PNP transistor can be obtained even without a P-type buried layer, but also a high-concentration N++ buried region 2 and a PNP transistor can be obtained without depending on the thickness of the epitaxial layer. Since the collector regions of N and N are not in contact with each other, the junction capacitance between the collector N and the buried region becomes extremely small, and there is an advantage that high performance characteristics can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、バイポーラトランジスタ
と相補型MOSトランジスタを同一基板上に含む半導体
装置の製造方法において、第一導電型ウェル領域に囲ま
れた領域内に、同一のイオン注入マスクを用いるイオン
注入法により第二導電型のベース領域と第一導電型のコ
レクタ領域を形成することにより、バイポーラトランジ
スタのベース幅を一定に形成することができる。従って
ばらつきの少い特性のバイポーラトランジスタを有する
半導体装置が得られる。更に、コレクタ領域の不純物濃
度を高くでき、その幅も広くできるため、コレクタ抵抗
を低減できるという効果もある。
As explained above, the present invention uses the same ion implantation mask in a region surrounded by a first conductivity type well region in a method for manufacturing a semiconductor device including a bipolar transistor and a complementary MOS transistor on the same substrate. By forming the base region of the second conductivity type and the collector region of the first conductivity type by ion implantation, the base width of the bipolar transistor can be formed to be constant. Therefore, a semiconductor device having a bipolar transistor with characteristics with little variation can be obtained. Furthermore, since the impurity concentration of the collector region can be increased and its width can be increased, there is also the effect that the collector resistance can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(b)及び第2図は本発明の第1及び第
2の実施例を説明するための半導体チップの断面図、第
3図は第1図(b)のB−B’線断面における不純物の
濃度分布を示す図、第4図は従来技術を説明するための
断面図、第5図は第4図のA−A’線断面における不純
物の濃度分布を示す図である。 l・・・P型牛導体基板、2・・・N+型型埋領領域3
・・・P型埋込領域、4・・・N型エピタキシャル層、
5・・・P型ウェル領域、6・・・素子分離酸化膜、7
・・・N型ウェル領域、8・・・N型ベース領域、9・
・・ゲート多結晶シリコン、10・・・P型ベース領域
、11・・・N++ソース・ドレイン領域、12・・・
N++エミッタ領域、13・・・P+型ソース・ドレイ
ン領域、14・・・P+型エミッタ領域、15・・・P
+型ベースコンタクト領域、16・・・イオン注入マス
ク、17・・・P型コレクタ領域。
1(a)-(b) and FIG. 2 are cross-sectional views of a semiconductor chip for explaining the first and second embodiments of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor chip shown in FIG. FIG. 4 is a cross-sectional view for explaining the prior art; FIG. 5 is a diagram showing the impurity concentration distribution in the A-A' line cross section of FIG. 4. be. l...P-type conductor board, 2...N+ type buried region 3
... P type buried region, 4... N type epitaxial layer,
5... P-type well region, 6... Element isolation oxide film, 7
... N type well region, 8... N type base region, 9.
...Gate polycrystalline silicon, 10...P type base region, 11...N++ source/drain region, 12...
N++ emitter region, 13...P+ type source/drain region, 14...P+ type emitter region, 15...P
+ type base contact region, 16... ion implantation mask, 17... P type collector region.

Claims (1)

【特許請求の範囲】[Claims] バイポーラトランジスタと相補型MOSトランジスタを
同一基板上に含む半導体装置の製造方法において、第一
導電型半導体基板に第二導電型埋込層を形成する工程と
、この第二導電型埋込層内に第一導電型の埋込層を形成
する工程と、この第一導電型埋込層を含む全面に第二導
電型エピタキシャル層を成長する工程と、前記第一導電
型の埋込層周辺にそって第一導電型ウェル領域を形成す
る工程と、前記第一導電型ウェル領域に囲まれた領域内
に第二導電型のベース領域及び第一導電型のコレクタ領
域を同一のイオン注入マスクを用いるイオン注入法によ
り形成する工程とを含むことを特徴とする半導体装置の
製造方法。
In a method of manufacturing a semiconductor device including a bipolar transistor and a complementary MOS transistor on the same substrate, a step of forming a second conductivity type buried layer in a first conductivity type semiconductor substrate, and a step of forming a second conductivity type buried layer in the second conductivity type buried layer. a step of forming a buried layer of a first conductivity type; a step of growing an epitaxial layer of a second conductivity type on the entire surface including the buried layer of the first conductivity type; and a step of growing an epitaxial layer of a second conductivity type on the entire surface including the buried layer of the first conductivity type; forming a first conductivity type well region using the same ion implantation mask; and forming a second conductivity type base region and a first conductivity type collector region in a region surrounded by the first conductivity type well region using the same ion implantation mask. 1. A method of manufacturing a semiconductor device, comprising a step of forming it by an ion implantation method.
JP25427689A 1989-09-28 1989-09-28 Manufacture of semiconductor device Pending JPH03116774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25427689A JPH03116774A (en) 1989-09-28 1989-09-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25427689A JPH03116774A (en) 1989-09-28 1989-09-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03116774A true JPH03116774A (en) 1991-05-17

Family

ID=17262718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25427689A Pending JPH03116774A (en) 1989-09-28 1989-09-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03116774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162469A (en) * 1994-11-30 1996-06-21 Rohm Co Ltd Vertical pnp transistor
US6043541A (en) * 1996-01-16 2000-03-28 Micron Technology, Inc. Bipolar-CMOS (BiCMOS) process for fabricating integrated circuits
KR100317688B1 (en) * 1998-05-26 2001-12-22 니시가키 코지 Semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162469A (en) * 1994-11-30 1996-06-21 Rohm Co Ltd Vertical pnp transistor
US6043541A (en) * 1996-01-16 2000-03-28 Micron Technology, Inc. Bipolar-CMOS (BiCMOS) process for fabricating integrated circuits
US6475850B2 (en) 1996-01-16 2002-11-05 Micron Technology, Inc. Bipolar-CMOS (BiCMOS) process for fabricating integrated circuits
KR100317688B1 (en) * 1998-05-26 2001-12-22 니시가키 코지 Semiconductor device manufacturing method
US6337252B1 (en) 1998-05-26 2002-01-08 Nec Corporation Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
EP0093304B1 (en) Semiconductor ic and method of making the same
JPH0315346B2 (en)
JPH01264253A (en) Manufacture of semiconductor device
JP3097092B2 (en) Bi-CMOS integrated circuit and manufacturing method thereof
JP3122118B2 (en) Semiconductor device
JPH08195399A (en) Insulated vertical pnp transistor dispensing with embedded layer
JPH03116774A (en) Manufacture of semiconductor device
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JP2528926B2 (en) Semiconductor device and manufacturing method thereof
KR100309641B1 (en) Method for manufacturing bicmos memory cells
JPH045851A (en) Manufacture of semiconductor device
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPH03222357A (en) Semiconductor device and manufacture thereof
JPS63164356A (en) Manufacture of semiconductor integrated circuit
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JPH07101717B2 (en) Method for manufacturing semiconductor device
JPH07335662A (en) Semiconductor device and its manufacture
JPH07176621A (en) Semiconductor device and fabrication thereof
JPH09223746A (en) Semiconductor device
JPH0580155B2 (en)
JPH04256355A (en) Semiconductor device
JPH09275154A (en) Semiconductor device and its manufacturing method
JPH04162718A (en) Manufacture of semiconductor device
JPH0897226A (en) Pnp transistor, semiconductor integrated circuit, manufacture of semiconductor device, and manufacture of semiconductor integrated circuit