JPS5856417A - Low-temperature activating method for boron ion implanted layer in silicon - Google Patents

Low-temperature activating method for boron ion implanted layer in silicon

Info

Publication number
JPS5856417A
JPS5856417A JP15514881A JP15514881A JPS5856417A JP S5856417 A JPS5856417 A JP S5856417A JP 15514881 A JP15514881 A JP 15514881A JP 15514881 A JP15514881 A JP 15514881A JP S5856417 A JPS5856417 A JP S5856417A
Authority
JP
Japan
Prior art keywords
ion
layer
implanted layer
boron
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15514881A
Other languages
Japanese (ja)
Other versions
JPH0334649B2 (en
Inventor
Kei Kirita
桐田 慶
Katsuo Koike
小池 勝夫
Hirosaku Yamada
山田 啓作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15514881A priority Critical patent/JPS5856417A/en
Publication of JPS5856417A publication Critical patent/JPS5856417A/en
Publication of JPH0334649B2 publication Critical patent/JPH0334649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form p-n-junctions with small leak by a method wherein heat processing is carried out with the concentration profiles of first and second ion implanted layers being regulated to electrically activate the first ion implanted layer, resulting in the reduced influence of an amorphous layer and residual defects due to the second ion implanted layer. CONSTITUTION:Boron ions are implanted into an n type Si substrate and silicon ions are implanted over the boron ion implanted layer. At this time, the ions implanted into the Si substrate show the concentration profiles as illustrated in the graph. The Si substrate is subjected to heat processing in the atmosphere of nitrogen at temperature of 480 deg.C for 30min. After this heat processing, the ion implanted layer had the resistance value of 0.24kOMEGA/square. As to the characteristic of reversed direction leak current between the boron ion implanted layer and the substrate, the leak current density was about 3X10<-9> A against the reversed direction applied voltage of 8V. Even at low temperature of 480 deg.C, sufficient electrical activation can be effected practically and the level of the leak current density brings about no problem in the practical use.

Description

【発明の詳細な説明】 本発明は、シリコン基体中にイオン注入法によって導入
した硼素イオン注入層の改良された低温活性化方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved low temperature activation method of a boron ion implantation layer introduced into a silicon substrate by ion implantation.

シリコン集積回路等を中心とする半導体集積回路は高密
度化、高速化する目的で、回路を構成する種々の能動素
子や受動素子の微細化が進められている。シリコン集積
回路の製造工程においては、種々の熱処理工程(最高温
度1000〜1100℃)を必要とするが、熱処理温度
管できるだけ下げて基体中のドーピング不純物の移動乃
至再分布を抑制することは、上記微細化を図ってゆく場
合に重要である。近年、シリコン等の半導体基体中への
不純物精密ドーピング万法として、イオン注入法が広範
に用いられるようになった0通常、イオン注入工程を経
た基体には熱処理工程が加えられ、ドーピング不純物の
電気的活性化とイオン注入時基体結晶中に生じた結晶損
傷の回復とが同時に図られる。この場合の熱処理温度と
しては、通常、900〜1000℃程度が必要とされる
。このような温度領域では、硼素(B)tはじめとする
ドーピング不純物の殆どはシリコン基体中で拡散してし
まい、よツ一層の微細素子の製造は困難である。
BACKGROUND ART In order to increase the density and speed of semiconductor integrated circuits, mainly silicon integrated circuits, various active elements and passive elements that constitute the circuits are being miniaturized. The manufacturing process of silicon integrated circuits requires various heat treatment steps (maximum temperature 1000 to 1100°C), but it is important to lower the heat treatment temperature as much as possible to suppress the movement or redistribution of doping impurities in the substrate. This is important when trying to achieve miniaturization. In recent years, the ion implantation method has become widely used as a method for precisely doping impurities into semiconductor substrates such as silicon.Normally, the substrate that has undergone the ion implantation process is subjected to a heat treatment process to remove the electricity of the doping impurity. Activation of the crystal and recovery of crystal damage caused in the base crystal during ion implantation are simultaneously achieved. The heat treatment temperature in this case is usually about 900 to 1000°C. In such a temperature range, most of the doping impurities including boron (B)t diffuse into the silicon substrate, making it difficult to manufacture even finer devices.

微細素子実現のためには、イオン注入によって基体中に
ドーピングされた不純物の再分布が殆ど生じない様な、
低温度領域での不純物の電気的活性化の方法が強く望ま
れる。
In order to realize microscopic devices, it is necessary to create a structure in which there is almost no redistribution of impurities doped into the substrate by ion implantation.
A method of electrically activating impurities in a low temperature region is strongly desired.

シリコン基体中にイオン注入された硼素不純物の低温活
性化を図る場合に、従来、硼素イオン注入とシリコン等
のイオン注入とt重!L嘔せる方法が知られている。こ
の方法によると、硼素イオン注入層管形成後、シリコン
等硼素原子よシも大きい質量数含有する元素をシリコン
基体中に高濃度に注入して、非晶質シリコン層を硼素イ
オン注入層を内包するが如く形成しておく仁とによって
、600℃程度の熱処理で硼素イオン注入層’k12)
100%近く活性化できる。
Conventionally, when attempting low-temperature activation of boron impurities ion-implanted into a silicon substrate, boron ion implantation and ion implantation of silicon, etc., have been combined. There are known ways to make people vomit. According to this method, after forming a boron ion-implanted layer tube, an element containing a larger mass number than boron atoms, such as silicon, is implanted at a high concentration into the silicon substrate to form an amorphous silicon layer containing the boron ion-implanted layer. The boron ion-implanted layer 'k12) is formed by heat treatment at about 600°C, depending on the layer formed as described above.
It can be activated close to 100%.

ところが、シリコン集積囲路等の製造工程においては、
硼素等の不純物をイオン注入した後・例えば500℃以
下の温度下で熱処理をしなければ力らない場合がしばし
ばある。斯様な場合に上記従来の方法を其侭用いると熱
処理温度が500℃以下に制限されるために、硼素イオ
ン注入後のシリコンイオン注入によりて生ぜしめた非晶
質層が充分に再結晶化せず、特にP+−n接合を形成し
た際には、接合部より深部の領域に存在する。シリコン
イオン注入による残留欠陥のために接合リークが生じ易
く、良好な素子を形成することができなかつ九。
However, in the manufacturing process of silicon integrated enclosures, etc.
After ion implantation of impurities such as boron, it is often necessary to perform heat treatment at a temperature of, for example, 500° C. or lower. If the above conventional method is used in such a case, the heat treatment temperature is limited to 500°C or less, so that the amorphous layer produced by silicon ion implantation after boron ion implantation cannot be sufficiently recrystallized. In particular, when a P+-n junction is formed, it exists in a region deeper than the junction. Junction leakage is likely to occur due to residual defects caused by silicon ion implantation, making it impossible to form a good device.

本発明は上記従来法の欠点を解消した・シリコン基体中
の硼素イオン注入層の低温活性化方法を提供するもので
ある。
The present invention provides a method for low-temperature activation of a boron ion implanted layer in a silicon substrate, which eliminates the drawbacks of the above-mentioned conventional methods.

本発明は、シリコン基体中に硼Xをイオン注入して得ら
れる第1のイオン注入層と硼素イオンよシも質量数が大
きく且つシリコン基体の導電型に影響を与えないイオン
管注入して得られる第2のイオン注入層とを、その濃度
分布の極太値の位置を略合致させ、且つその極大値より
深い領域での第2のイオン注入層の濃度分布の広がシが
第1のイオン注入層の濃度分布の広がシを越えない様に
重畳せしめて形成した後、熱処理を行うことにより第1
のイオン注入層、即ち硼素イオン注入層の電気的活性化
管口ることを特徴としている。第2のイオン注入層の注
入量は、イオン種により異なるが少くとも5×1014
個/♂以上とすることが好ましい。不発・明によれば、
第1.第2のイオン注入層の濃度分布を規定することに
よりて、その後の熱処理を例えば500℃以下の低い温
度で行りたとしても、第2のイオン注入層による非晶質
層や残留欠陥の影響が少なく、リーク等の少ないpn接
合を形成することができる。
The present invention provides a first ion-implanted layer obtained by ion-implanting boron X into a silicon substrate, and a first ion-implanted layer obtained by ion tube implantation, which has a larger mass number than boron ions and does not affect the conductivity type of the silicon substrate. The position of the thickest value of the concentration distribution of the second ion-implanted layer is made to substantially coincide with that of the first ion-implanted layer, and the concentration distribution of the second ion-implanted layer in a region deeper than the maximum value is made to match that of the first ion-implanted layer. After forming the injection layers so as not to exceed the width of the concentration distribution, the first layer is formed by heat treatment.
It is characterized by an electrically activated channel for the ion-implanted layer, that is, the boron ion-implanted layer. The implantation amount of the second ion implantation layer varies depending on the ion species, but is at least 5×1014
It is preferable to set the number to 1/2 or more. According to Undiscovered Ming,
1st. By defining the concentration distribution of the second ion-implanted layer, even if the subsequent heat treatment is performed at a low temperature of 500°C or less, the influence of the amorphous layer and residual defects caused by the second ion-implanted layer It is possible to form a pn junction with less leakage and the like.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

〔実施例1〕 比抵抗〜20Ω・国のn型S1基体に注入エネルギー2
0 keV テ例工ばI X 10” 個/cm”O注
入量にて硼素イオン(B+:質量数11)を注入する・
続いてこの硼素イオン注入層に重畳せしめて、注入エネ
に! −45k@V テI X 10”個/♂、ノ注入
量にてシリコンイオン(st” :質量数28)を注入
する。この時の注入イオンのSi基体中における濃度分
布は略第1図に示す如く1なる。尚、上記イオン注入は
云わゆるチャネリング現象を生ぜしめない状況下にて行
なりた。上記工程度、81基体を窒素(N2)雰囲気中
で熱処理した。
[Example 1] Specific resistance ~20Ω・Injected energy 2 into n-type S1 substrate
For example, boron ions (B+: mass number 11) are implanted at a dose of 0 keV I x 10"/cm"O.
Next, superimpose it on this boron ion implantation layer to create implantation energy! Silicon ions (st": mass number 28) are implanted at an implantation amount of -45 k@V teI x 10"/♂. At this time, the concentration distribution of the implanted ions in the Si substrate is approximately 1 as shown in FIG. Incidentally, the above ion implantation was performed under conditions that did not cause the so-called channeling phenomenon. At the above step, 81 substrates were heat treated in a nitrogen (N2) atmosphere.

熱処理温度は480℃、熱処理時間は30分であった。The heat treatment temperature was 480°C and the heat treatment time was 30 minutes.

該熱処理後の上記イオン注入層の層抵抗値は0.24に
Ω10でありた・又1この硼素イオン注入層(P+層)
と基体(n型)との間の逆方向リーク電流特性(接合リ
ーク)金調べた結果、逆方向印加電圧8vに対し〜3×
10A/cyr”程度のリーク電流密度であった。
The layer resistance value of the ion-implanted layer after the heat treatment was 0.24Ω10. Also, the boron ion-implanted layer (P+ layer)
As a result of investigating the reverse leakage current characteristics (junction leakage) between the substrate and the substrate (n-type), it was found that ~3× for a reverse applied voltage of 8V.
The leakage current density was about 10A/cyr''.

比較の友めに1000℃、10分間の熱処理な施した場
合には、得られた層抵抗値は0.13にΩ/口であり、
また、イオン注入層と基体との間のリーク電流密度は〜
10  A/m”(逆方向電圧8v印加時)であった。
For comparison, when heat treatment was performed at 1000°C for 10 minutes, the obtained layer resistance value was 0.13Ω/mouth,
Also, the leakage current density between the ion-implanted layer and the substrate is ~
10 A/m'' (when applying a reverse voltage of 8 V).

1000℃の熱処理と比較すると活性化の度合が若干少
なく、またリーク電流も若干大きい〃ζ480℃という
低温であっても実用的には充分な電気的活性化が行われ
、またリーク電流密度も実用上全く問題にならないレベ
ルに抑、tられていることがわかる。
Compared to heat treatment at 1000°C, the degree of activation is slightly lower, and the leakage current is also slightly larger.Even at a low temperature of ζ480°C, sufficient electrical activation is achieved for practical use, and the leakage current density is also low enough for practical use. It can be seen that this has been suppressed to a level that does not pose a problem at all.

〔実施例2〕 比抵抗〜20Ω・創のn型S1基体に注入エネルギー2
0ke■でI X 10”個/個3の注入量にて硼素イ
オン(B+、質量数11)を注入する。続いて前記硼素
イオンの注入層に重畳せしめて注入エネルギー150 
keVで、5 X 1014個/G″の注入量にて錫イ
オン(Sn” 、質量数118.7)を注入する。この
時の上記注入イオンのSi基体中における濃度分布は略
第2図に示す如くなる。尚、実施例1と同様上記イオン
注入はチャネリング現象を生せしめない条件下にて行な
った。上記工程後、St基体を窒素(N2)雰囲気中で
熱処理した。熱処理温度は480℃、熱処理時間は30
分であった。該熱処理後の上記イオン注入層の層抵抗値
は、実施例1の場合よシさらに小さく、0.19にΩ/
口であった。また、逆方向リーク電流特性を調べ次結果
、逆方向印加電圧8■に対し〜I X 10  A/m
”となり、さらに改善が認められた。
[Example 2] Energy 2 injected into n-type S1 substrate with specific resistance ~20Ω/wound
Boron ions (B+, mass number 11) are implanted at an implantation dose of I x 10''/3 at 0ke.Subsequently, the boron ions are superimposed on the implanted layer of boron ions, and the implantation energy is 150.
Tin ions (Sn'', mass number 118.7) are implanted at keV and at an implantation dose of 5 x 1014 ions/G''. At this time, the concentration distribution of the implanted ions in the Si substrate is approximately as shown in FIG. Note that, as in Example 1, the ion implantation was performed under conditions that did not cause the channeling phenomenon. After the above steps, the St substrate was heat treated in a nitrogen (N2) atmosphere. Heat treatment temperature is 480℃, heat treatment time is 30
It was a minute. The layer resistance value of the ion-implanted layer after the heat treatment is even smaller than that of Example 1, and is 0.19Ω/
It was the mouth. In addition, we investigated the reverse leakage current characteristics and found that for a reverse applied voltage of 8 cm, ~I x 10 A/m
”, further improvement was observed.

〔実施例3〕 本実施例では、実施例1.2で述べたシリコンイオン、
錫イオンの代わりにゲルマニウムイオン(G@+、質量
数73)を硼素イオン注入層に重畳せしめて注入した。
[Example 3] In this example, silicon ions described in Example 1.2,
Instead of tin ions, germanium ions (G@+, mass number 73) were implanted to overlap the boron ion implantation layer.

ゲルマニウムのイオン注入条件は、注入エネルギー11
0 keV、注入量5 X 1014個/cm”であっ
た。他の条件は実施例1.2と略同様である。窒素雰囲
気中、480℃30分の熱処理後に得られた上記イオン
注入層の層抵抗値は0.21にΩ10であった。
The germanium ion implantation conditions are implantation energy 11
0 keV, and the implantation amount was 5 x 1014 ions/cm''.Other conditions were almost the same as in Example 1.2. The layer resistance value was 0.21Ω10.

又、逆方向の接合リーク特性は、逆方向印加電圧8■に
対し、1.8 X 10  A/cm”と実用的に充分
なレベルのリーク電流密度であっ几。
In addition, the junction leakage characteristic in the reverse direction is 1.8 x 10 A/cm'' for a reverse applied voltage of 8 cm, which is a practically sufficient level of leakage current density.

上記実施例で明らかな様に、本発明の方法を用いること
によって、実用的に充分なレベルの硼素イオン注入層の
低温活性化全初期の濃度分布を殆ど変えないで図ること
ができる。本発明の特徴は、従来例の様に・硼素イオン
注入後のシリコン基体に単にシリコンイオンを非晶質化
に充分な量注入するだけではなく、硼素イオン注入層に
対するシリコンイオン注入層濃度分布を厳密に駆足して
形成することにある。すなわち、具体的には、シリコン
基体に硼素イオン注入層形成後・前記硼素イオン注入層
の深部において硼素濃度分布の広がりを越えない様に、
且つ深さ方向からみた濃度分布の極太値の位置を略合致
させる様にしてシリコンイオン注入層を形成する。シリ
コンイオン注入濃度分布の極大値位置が硼素イオンの注
入濃度分布の極大値位置より離れると、熱処理時の硼素
不純物の電気的活性化効率が悪くなる。極太値の位置は
注入エネルギーに依って一義的に決定されるので、シリ
コンイオンの注入エネルギーを変え次場合の熱処理後の
硼素イオン注入層々抵抗値を、硼素イオン注入量lX1
0”個/♂、シリコンイオン注入11X101′1個/
lyr”の組み合わせについて、下表に示す。
As is clear from the above embodiments, by using the method of the present invention, it is possible to achieve a practically sufficient level of low-temperature activation of the boron ion-implanted layer with almost no change in the initial concentration distribution. The feature of the present invention is that unlike the conventional example, silicon ions are not simply implanted in a sufficient amount to make the silicon substrate amorphous after boron ion implantation, but the concentration distribution of the silicon ion implanted layer relative to the boron ion implanted layer is The goal is to form it through rigorous efforts. Specifically, after forming a boron ion implanted layer on a silicon substrate, in order not to exceed the spread of the boron concentration distribution in the deep part of the boron ion implanted layer,
In addition, the silicon ion implantation layer is formed so that the positions of the thickest values of the concentration distribution as seen from the depth direction are substantially coincident with each other. If the maximum value position of the silicon ion implantation concentration distribution is far from the maximum value position of the implantation concentration distribution of boron ions, the electrical activation efficiency of boron impurities during heat treatment deteriorates. Since the position of the thickest value is uniquely determined by the implantation energy, the resistance value of the boron ion implanted layer after heat treatment in the following case is determined by changing the boron ion implantation amount lX1.
0" piece/♂, silicon ion implantation 11X101' 1 piece/
The combinations of "lyr" are shown in the table below.

注入エネルギー20 keVの硼素イオン注入層の濃度
分布極大値がシリコン基体表面から深さ略660Xの位
置にあるのに対し、注入エネルギーが(a) 25 k
@V 、 (b) 45 k@V 、 (e) 100
 keVのシリコンイオン注入層の濃度極大値の位置は
、シリコン基体表面からの深さが、夫々略(a)350
芙、 (b) 630 X 、 (e) 1470 X
の位置にある。
The maximum value of the concentration distribution of the boron ion implanted layer with an implantation energy of 20 keV is located at a depth of approximately 660X from the silicon substrate surface, whereas the implantation energy is (a) 25 k
@V, (b) 45 k@V, (e) 100
The position of the maximum concentration value of the keV silicon ion-implanted layer is located at a depth of approximately (a) 350 m from the silicon substrate surface.
Frog, (b) 630 X, (e) 1470 X
It is located at

これらイオン注入層の濃度分布状態を第3図に示す。エ
ネルギーが45 keVの場合に層抵抗値が最も小さく
なることが我から分かる。尚、注入エネルギーが100
 keVの場合のシリコンイオン注入層の濃度分布の広
がりは基体の深部では硼素イオン注入層の濃度分布領域
から完全にはみ出しておシ、480℃程度の熱処理温度
ではシリコンイオン注入による基体シリコン中の残留欠
陥が基体深部に多量に存在するため、逆方向リーク電流
レベルが高< (10A/a++”以上)、実用に供し
得ないことは云うまでもない。
FIG. 3 shows the concentration distribution state of these ion-implanted layers. We know that the layer resistance value is the smallest when the energy is 45 keV. In addition, the injection energy is 100
In the case of keV, the concentration distribution of the silicon ion implantation layer spreads completely beyond the concentration distribution region of the boron ion implantation layer in the deep part of the substrate. Needless to say, since there are a large number of defects deep within the substrate, the level of reverse leakage current is high < (10 A/a++" or more) and cannot be put to practical use.

第4図は、上記硼素イオン注入層(Bζ20keV I
 X 10”個/cpII” )に重畳せしめて、注入
エネルギー45 keVにてシリコンイオンを注入し基
体を窒素芥囲気中で低温処理(480℃、30分)した
場合の、シリコンイオン注入量に対する硼素イオン注入
層の層抵抗値を示したものである。第4図にはまた、上
記シリコンイオン注入の代わシに錫イオンを注入エネル
ギー150に・V(濃度極大値はシリコンイオン表面か
らの深さ〜640Xの位置)にて注入した場合、および
ゲルマニウムを注入エネルギー110keV (濃度極
大値位置はシリコン表面からの深さ〜650X)にて注
入した場合の同様の低温処理による結果も示した。第4
図から明らかな様に、硼素イオン注入層の低温活性化効
果は重畳注入せしめるイオンの質量数が大きい程大きく
、又重畳注入イオンの質量数が大きくなれば、比較的低
い注入量(2〜3 X 1014個/♂)で硼素イオン
注入層の低温活性化が実現できる。
FIG. 4 shows the boron ion-implanted layer (Bζ20keV I
When silicon ions are implanted at an implantation energy of 45 keV and the substrate is treated at a low temperature (480°C, 30 minutes) in a nitrogen atmosphere, the boron ion implantation amount is It shows the layer resistance value of the ion-implanted layer. Figure 4 also shows the case where tin ions are implanted at an implantation energy of 150 V (the maximum concentration is at a depth of ~640X from the silicon ion surface) instead of the silicon ion implantation described above, and germanium. The results of similar low-temperature treatment when implanted at an implantation energy of 110 keV (maximum concentration position: depth from the silicon surface to 650X) are also shown. Fourth
As is clear from the figure, the low-temperature activation effect of the boron ion-implanted layer increases as the mass number of the ions to be superimposedly implanted increases, and as the mass number of the superimposedly implanted ions increases, the implantation amount (2 to 3 Low-temperature activation of the boron ion-implanted layer can be realized with X 1014 pieces/male).

なお、本発明において、第1.第2のイオン注入層の濃
度分布の極大値そのものはいずれが大きくても構わない
。また実施例では、硼素イオン注入層の形成は注入エネ
ルギー20keV。
In addition, in the present invention, 1. It does not matter whether the maximum value of the concentration distribution of the second ion-implanted layer is large. Further, in the example, the boron ion implantation layer was formed at an implantation energy of 20 keV.

注入量I X 10”個/cIIK”にて行なったが、
注入エネルギー、注入量とも前記値に限定石れるもので
はなく任意で良い、又低温熱処理条件ケ災施例の如く4
80℃、30分間に限定されるものではなく、400℃
以下においても(480℃におけるよりも活性化率は劣
るが)本発明の効果は確認できた。一般には、熱処理温
度の上昇や熱処理時間の増加と共に硼素の活性化率が増
力口することも確められた。第2のイオン注入層を本発
明の如く形成し゛て硼素の活性化率が高められる熱処理
温度の領域は、種々の冥験の結果、400℃〜900℃
であル、900℃以上の温度領域の熱処理では、硼素イ
オン注入層単独のは殆どみられなかった・熱処理雰囲気
は窒素ガスに限定されるものではなく、アルゴンや水素
等の不活性ガス、酸化性ガス或いはそれらの混合物であ
っても良い。熱処理方法としては、通常の炉による場合
の他、場合によってはレーザービーム、′#L子ビーム
等の高密度、エネルギー蘇照射法を用いても良い。又、
上記実施例では、硼素イオン注入層に重畳せしめて行な
うイオン注入のイオン種としてシリコン(81”)、錫
(Sn )、ゲルマニウム(G@”)を用いた力!、シ
+ リコン基体中に導入して導電型を変イヒさせず、且つシ
リコン基体を非晶質化するために有効なイオンならば何
んでも良い。一般的には硼素イオン二やも質量数が大き
い、第■族元素および・稀ガス元素の中から選ばれる。
The injection amount was I x 10”/cIIK”.
Both the injection energy and the injection amount are not limited to the above values and can be set arbitrarily, and the low temperature heat treatment conditions are 4 as in the case example.
Not limited to 80℃ for 30 minutes, but 400℃
The effect of the present invention was also confirmed below (although the activation rate was inferior to that at 480°C). It was also confirmed that, in general, the activation rate of boron increases as the heat treatment temperature and heat treatment time increase. As a result of various experiments, the heat treatment temperature range in which the activation rate of boron is increased by forming the second ion-implanted layer as in the present invention is 400°C to 900°C.
However, during heat treatment in the temperature range of 900°C or higher, a single boron ion implanted layer was hardly seen.The heat treatment atmosphere is not limited to nitrogen gas, but may also include inert gases such as argon or hydrogen, or oxidizing gases. It may be a gas or a mixture thereof. As the heat treatment method, in addition to using a normal furnace, high-density, energy resuscitation irradiation methods such as laser beams and '#L beams may be used depending on the case. or,
In the above embodiment, silicon (81"), tin (Sn), and germanium (G@") were used as ion species for ion implantation superimposed on the boron ion implantation layer. , + Any ion may be used as long as it does not change the conductivity type when introduced into the silicon substrate and is effective for making the silicon substrate amorphous. In general, boron ions are selected from group Ⅰ elements and rare gas elements, which have large mass numbers.

或いはζこれ等を組み合わせて使用しても良い・これ等
のイオン稲を用いる場合には、本発明の効果を達成する
友めに・注入エネルギー、注入量(略5×1014個/
♂以上)を適宜選択すべきことは云うまでもない、勿論
、硼素イオン注入をはじめ上記した種々のイオン注入を
行なうに際してはチャネリング現象管抑制しなければな
らない・尚、上記実施例では、シリコン基体中に硼素イ
オン注入層を形成した後に選ばれた他のイオンの注入層
を前記硼素イオン注入層に重畳せしめて形成したが、こ
れらの形成順序は逆でも良い。
Alternatively, these may be used in combination. When using these ionized rice, the injection energy and injection amount (approximately 5 x 1014 particles/
Of course, when performing the various ion implantations mentioned above, including boron ion implantation, the channeling phenomenon must be suppressed. In the above embodiment, the silicon substrate After forming a boron ion implanted layer therein, a selected ion implanted layer was formed to overlap the boron ion implanted layer, but the order of formation may be reversed.

又実施例ではシリコン基体に其侭イオン注入を行なった
がシリコン基体上に酸化膜や窒化膜を設けた後に行なっ
ても良い。また本発明の方法は、単結晶シリコン基体は
勿論Sol (5ilicon−On −In5ula
tor )基板上にMO8累子電子?イポの結晶性は単
結晶、非単結晶を問わない。
Further, in the embodiment, the ion implantation was performed on the silicon substrate, but it may be performed after forming an oxide film or a nitride film on the silicon substrate. In addition, the method of the present invention can be applied not only to single crystal silicon substrates but also to Sol (5ilicon-On-In5ula
tor) MO8 electrons on the substrate? The crystallinity of IPO does not matter whether it is single crystal or non-single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の詳細な説明するための注
入イオン濃度分布を示す図、第3図は本発明の詳細な説
明するための注入イオン濃度分布を示す図、第4図は同
じくB+注入層抵抗値と重畳イオン注入量の関係管示す
図である。 出願人代理人 弁理士 鈴 江 武 彦第1図    
  第2図 第3図      第4図
1 and 2 are diagrams showing the implanted ion concentration distribution for explaining the present invention in detail, FIG. 3 is a diagram showing the implanted ion concentration distribution for explaining the present invention in detail, and FIG. FIG. 3 is a diagram showing the relationship between the resistance value of the B+ implanted layer and the amount of superimposed ion implantation. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)  シリコン基体中に硼素イオンを注入して得ら
れるilのイオン注入層と硼素イオンよシも質量数が大
きく且つ該基体の導電型に影響を与えないイオンを注入
して得られる第2のイオン注入層と管形成し、900℃
以下の温度で熱、処理先して第1のイオン注入層管活性
化する方法において、前記第1および第2のイオン注入
層t、その濃度分布の極大値、の位置を略合致させ且つ
その極太値の位置よ)深部での第2のイオン注入層の濃
度分布の広が9が第1のイオン注入層の濃度分布の広が
シを越えない様に重畳せしめて形成することt−特徴と
するシリコン中の硼素イオン注入層の低温活性化方法。
(1) An ion-implanted layer of IL obtained by implanting boron ions into a silicon substrate and a second layer obtained by implanting ions which have a larger mass number than boron ions and do not affect the conductivity type of the substrate. Form a tube with an ion-implanted layer of 900°C.
In the method of activating the first ion-implanted layer tube by heat treatment at the following temperature, the positions of the first and second ion-implanted layers t and the maximum value of their concentration distribution are made to substantially coincide with each other; t-Characteristics A low-temperature activation method for a boron ion-implanted layer in silicon.
(2)[2のイオン注入層の注入量は’5 X 10”
個/創3以上である特許請求の範囲第1項記載のシリコ
ン中の硼素イオン注入層の低温活性化方法。
(2) [The implantation amount of the ion implantation layer in step 2 is '5 x 10''
A method for low temperature activation of a boron ion implanted layer in silicon according to claim 1, wherein the number of defects is 3 or more.
(3)第2ノイオン注入層のイオン種は、シリコン、錫
ま九はrルマニウムである特許請求の
(3) The ion species of the second ion implantation layer is silicon, and the ion species of the second ion implantation layer is rumanium.
JP15514881A 1981-09-30 1981-09-30 Low-temperature activating method for boron ion implanted layer in silicon Granted JPS5856417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15514881A JPS5856417A (en) 1981-09-30 1981-09-30 Low-temperature activating method for boron ion implanted layer in silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15514881A JPS5856417A (en) 1981-09-30 1981-09-30 Low-temperature activating method for boron ion implanted layer in silicon

Publications (2)

Publication Number Publication Date
JPS5856417A true JPS5856417A (en) 1983-04-04
JPH0334649B2 JPH0334649B2 (en) 1991-05-23

Family

ID=15599580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15514881A Granted JPS5856417A (en) 1981-09-30 1981-09-30 Low-temperature activating method for boron ion implanted layer in silicon

Country Status (1)

Country Link
JP (1) JPS5856417A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000694A1 (en) * 1983-07-25 1985-02-14 American Telephone & Telegraph Company Shallow-junction semiconductor devices
JPS63169057A (en) * 1985-12-27 1988-07-13 ビユル エス. アー. Method of forming electric resistor by doping semiconductor material and integrated circuit manufactured by the method
US4968635A (en) * 1987-09-18 1990-11-06 Kabushiki Kasiha Toshiba Method of forming emitter of a bipolar transistor in monocrystallized film
JPH04225520A (en) * 1990-12-27 1992-08-14 Shimadzu Corp Method of suppressing silicon crystal defect caused by ion implantation
US5298434A (en) * 1992-02-07 1994-03-29 Harris Corporation Selective recrystallization to reduce P-channel transistor leakage in silicon-on-sapphire CMOS radiation hardened integrated circuits
JPH07142421A (en) * 1993-11-22 1995-06-02 Nec Corp Method and equipment for forming shallow junction in semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673355B2 (en) 2007-10-30 2011-04-20 Tmtマシナリー株式会社 Confounding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000694A1 (en) * 1983-07-25 1985-02-14 American Telephone & Telegraph Company Shallow-junction semiconductor devices
JPS63169057A (en) * 1985-12-27 1988-07-13 ビユル エス. アー. Method of forming electric resistor by doping semiconductor material and integrated circuit manufactured by the method
JPH0558672B2 (en) * 1985-12-27 1993-08-27 Bull Sa
US4968635A (en) * 1987-09-18 1990-11-06 Kabushiki Kasiha Toshiba Method of forming emitter of a bipolar transistor in monocrystallized film
JPH04225520A (en) * 1990-12-27 1992-08-14 Shimadzu Corp Method of suppressing silicon crystal defect caused by ion implantation
US5298434A (en) * 1992-02-07 1994-03-29 Harris Corporation Selective recrystallization to reduce P-channel transistor leakage in silicon-on-sapphire CMOS radiation hardened integrated circuits
JPH07142421A (en) * 1993-11-22 1995-06-02 Nec Corp Method and equipment for forming shallow junction in semiconductor device

Also Published As

Publication number Publication date
JPH0334649B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
EP0146233B1 (en) Low temperature process for annealing shallow implanted n+/p junctions
KR100204856B1 (en) Method for producing shallow junction in surface region of semiconductor substrate and apparatus therfor
JPS5821419B2 (en) Lattice defect removal method
JPH08203842A (en) Manufacture of semiconductor device
JPS60501927A (en) Shallow junction semiconductor devices
JPS5856417A (en) Low-temperature activating method for boron ion implanted layer in silicon
US6518150B1 (en) Method of manufacturing semiconductor device
JPH03201535A (en) Semiconductor device and manufacture thereof
JPH0526343B2 (en)
KR100671594B1 (en) Method of manufacturing a transistor having a shallow junction in a semiconductor device
KR100388463B1 (en) A method of fabricating semiconductor device with dual polysilicon gate structure
KR100587050B1 (en) Method for manufacturing semiconductor device
JPH03265131A (en) Manufacture of semiconductor device
KR100319873B1 (en) Low Temperature Activation Method of High Ion Implantation Layer
JP3384439B2 (en) Method for manufacturing semiconductor device
JPS60175416A (en) Manufacture of semiconductor device
KR960012288A (en) Wafer for semiconductor device manufacturing and its manufacturing method
TW521351B (en) Fabrication method of semiconductor device with low resistivity/ultra-shallow junction
JP2022173926A (en) Semiconductor epitaxial wafer and method for manufacturing the same
KR101348400B1 (en) Gate-Oxide Manufacturing Method of Semiconductor Device
KR100434960B1 (en) Method for manufacturing semiconductor device for trapping impurities using gettering layer
JPS60213019A (en) Manufacture of semiconductor device
JPH06151348A (en) Manufacture of semiconductor device
JPH0239534A (en) Manufacture of semiconductor device
Heo et al. Ultrashallow arsenic n+/p junction formed by AsH3 plasma doping