JPS60501927A - Shallow junction semiconductor devices - Google Patents

Shallow junction semiconductor devices

Info

Publication number
JPS60501927A
JPS60501927A JP59502397A JP50239784A JPS60501927A JP S60501927 A JPS60501927 A JP S60501927A JP 59502397 A JP59502397 A JP 59502397A JP 50239784 A JP50239784 A JP 50239784A JP S60501927 A JPS60501927 A JP S60501927A
Authority
JP
Japan
Prior art keywords
depth
substrate
species
junction
neutral species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59502397A
Other languages
Japanese (ja)
Inventor
ケリー,マイケル ジエームス
レヴインステイン,ハイマン ジヨセフ
ムラーカ,シヤム プラサド
ヤニー,デイヴイツド スタンレイ
Original Assignee
アメリカン テレフオン アンド テレグラフ カムパニ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アメリカン テレフオン アンド テレグラフ カムパニ− filed Critical アメリカン テレフオン アンド テレグラフ カムパニ−
Publication of JPS60501927A publication Critical patent/JPS60501927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

浅い接合の半導体デバイス 本発明の背景 本発明は浅い接合の半導体デバイスに係る。 金属−酸化物一半導本電界効果トランジスタ(MOSFET)のような各種の半 導体デバイスにおいて、デバイスのp−n接合は、できるだけ基板表面に近いこ とが望ましい。 本発明は従来得られたより、半導体基体表面に著しく近接したp −n接合を得 るための手段を実現する。 本発明の要約 中性種が最初、半導体基体の表面領域の中に注入される。−例において、中性種 が注入され、最大濃度がその後形成されるp−n接合より、深い位置で生じるよ うな層が形成される。(別の例((おいて、中性種層のピーク濃度の深さより深 い位置に接合が続いて形成される。)次に、ドーパント種が、先に注入された中 性種の最大儂′ 度の深さより、浅い深さの表面領域に注入される。次に、ドー パント種を活性化するだめのアニーリングが行われる。 このアニーリング工程中、中性種層はデバイスの基体中の点欠陥をゲッタする働 きをする。加えて、この層はドーパント種の拡散に対する物理的な障壁として働 く。 その結果、基体中のドーパント種の拡散の程度は、中性種層を形成しない場合に 比べ、著しく下げられる。いずきわめて浅い深さに形成されることになる。 図面の簡単な説明 第1ないし4図(は本発明の原理を実施する製作工程の、順次行われる段階にお けるMO!5FETデバイスの一部を概略的に示す図である。 詳細な記述 本発明に従うと、浅・ハル−n接合が各種の半導体デバイス中に、形成できる。 これらのデバイスには、たとえばp−nダイオード、バイポーラトランジスタ及 びMO3FETデバイスが含まれる。例として、本発明について、MO8FET デバイス中に浅いp−n接合を形成することに関して述べる。 製作工程の中間の段階におけるそのようなMOSデバイスの一部が、第1図て示 されており、そのような部分は周知のゲート及びソース及びドレイン(GASA D)構造から成る。構造は上に耐電界用酸rヒ物(二酸化シリコン)部分12. 14を有するシリコン基体1oがら唆る。 構造は更にゲート酸化物(二酸化シリコン)層16、ドープされたポリシリコン 層18及び金属シリサイド(たとえば、タンタル・シシリサイド)層2oを含む 。 また、構造は追加された二酸化シリコン層22.24を含む。開口25.26が 酸化物層12.22及び14.24によシ規定される。ソース及びドレイン領域 がその後これら開口に近接して位置合せされ、基体10中に形成される。 本発明 Shallow junction semiconductor devices Background of the invention The present invention relates to shallow junction semiconductor devices. Various semiconductors such as metal-oxide-semiconductor field-effect transistors (MOSFETs) In conductor devices, the p-n junction of the device should be as close to the substrate surface as possible. is desirable. The present invention provides a p-n junction that is much closer to the surface of the semiconductor substrate than was previously possible. Realize the means to do so. Summary of the invention Neutral species are first implanted into the surface region of the semiconductor body. - In the example, the neutral species is implanted, and the maximum concentration occurs deeper than the subsequently formed p-n junction. A layer is formed. (Another example (()) is deeper than the depth of the peak concentration of the neutral species layer. A bond is subsequently formed at the new location. ) The dopant species is then added to the previously injected medium. It is injected into the surface region at a shallower depth than the maximum depth of the species. Next, do Further annealing is performed to activate the punt species. During this annealing step, the neutral species layer acts as a getter for point defects in the device substrate. to read. In addition, this layer acts as a physical barrier to the diffusion of dopant species. Ku. As a result, the extent of diffusion of dopant species in the substrate is reduced when no neutral species layer is formed. In comparison, it is significantly lower. Eventually, it will be formed at an extremely shallow depth. Brief description of the drawing Figures 1 through 4 (showing the sequential steps of a fabrication process embodying the principles of the invention) MO! 1 schematically shows a portion of a 5FET device; FIG. detailed description According to the present invention, shallow, hull-n junctions can be formed in a variety of semiconductor devices. These devices include, for example, p-n diodes, bipolar transistors, and and MO3FET devices. As an example, for the present invention, MO8FET A discussion will be made regarding forming shallow p-n junctions in devices. A portion of such a MOS device at an intermediate stage of the fabrication process is shown in Figure 1. such parts are well-known gate, source and drain (GASA) D) consists of a structure. The structure consists of an acid and arsenide (silicon dioxide) portion for electric field resistance on top12. A silicon substrate 1o having a diameter of 14 is shown. The structure further includes a gate oxide (silicon dioxide) layer 16, doped polysilicon layer 18 and metal silicide (e.g., tantalum silicide) layer 2o. . The structure also includes an added silicon dioxide layer 22.24. opening 25.26 Defined by oxide layers 12.22 and 14.24. source and drain region are then aligned proximate these openings and formed in the substrate 10. present invention

【従うと、いわゆる中性種が、開O25,26により規定された基体10 の領域中に、注入される。周知のイオン注入技術が使用できる。 ″中性種パという用語は、半導体基体中に能動キャリヤを生じず、基体中の能動 様の拡散をおさえる働きをする物質を意味する。そのような中性種には、炭素、 酸素、アルゴン又は他の不活性気体、シリコン、ゲルマニウム及びスズのような ■族元素及び窒素(活性化率が小さい)が含まれる。 第2図の構造に向けられたイオンが、矢印28で表され、イオンは開口25.2 6を通してのみ、基体10に到達する。第2図において、基体10中に注入され た中性種のほぼガウス形分布のピーク又は量大濃度がXから成る線30.32に より、概;賂的に示されている。 たとえば、第2図に示された中性注入様のドーズ量は、ピーク濃度深さにおいて 、中・課程のほぼ1ないし2単原子層を生じるように、選択される。加えて、図 示されたMOSFETの例では、入射イオンのエネルギーハ、注入中課程のピー ク濃度が、基体10の表面下約2000八に生じるように、選択される。デバイ スによっては、中性注入様のピーク濃度は、その後基体10中に形成されるp− n接合の深さより、深い所に生じるように選択される。そのようなデバイスにお いて、その後形成されるp−n接合の深さは、たとえば中性種のピーク濃度の深 さのほぼ10分の1ないし4分の3の深さになる。(他のデバイスにおいて、以 下で述べるように、p n接合の深さは、中性・注入様のピークa度の深さより 大きい。)各種のドーズ量及びエネル牛−を用いることができる。 上で示した中性種に対する一組のドーズ量及びエネルギーの値は、以下のとうり である。炭素、1平方センチメートル当り(i/Cm2) 5X1o”’ 80 キロ電子ボルト(KeV);酸素、5×10151/cIn2.80 KeV  ;シリコン、5×10151/Cm2.150KeV;ゲルマニウム、5X]0 ”’i/Cm2300 KeV ;スズ、5×1015】/cIn2.400  KeV ;アルゴン、5X1015i/cm” 、] 80 KeV ;及び窒 素5X]、0’51/c−In2.80Keyoこれらの値に対して、中性種の それぞれのピーク濃度深さは、第2図(に示される基体10の表面下、約200 0人である。 すべての場合ではないが、場合によってd、第21スに示されたデバイスの構造 は、次にアニーリング工程を受ける。(ヒ素のようなその後に導入される活性種 の場合、製作工程のこの時点で、注入された中性種をアニールしない方が、実際 には有利であろう。)このアニーリング工8において、中性種注入により生じた 基体10の結晶構造の損傷が、減少する。更に、注入様は安定化され、実効的に 基体10中に閉じ込められる。また、基体10中の欠陥及び不純物をある程度ゲ ッタリンクすることが、このア二−リンク工程中起る。 アニーリングは、たとえば不活性雰囲気中、約30分間、700ないし900℃ の範囲の温度で、行われる。 アニーリング中、注入された中性種の本質的な垂直又は横方向の移動は、起らな い。以下で述べる後のいわゆる活性化アニーリング工程中も、本質的な移動は起 らない。 次に、活性種が、たとえばイオン注入により、各種の周知の手段のいずれかによ り、第3図中の矢印34で示されるように、構造に導入される。注入された活性 種は、たとえばヒ素、リン又はアンチモンのような5価p形不純物、或いはホウ 素又はガリウムのような3価n形不純′吻から成る。 基体10中の活性注入柱のほぼガウス型分布のピーク又は最大濃度の深さは、点 から成る@3・6.38により1、第3図中に概略的に示されている。 注入された活性種のピーク濃度は、たとえば約200ないし100OAの深さと いった基体1oの最上部表面に、比較的近接して生じる。 よシ具体的には、約2000へのピーク濃度深さ30゜32(第3図)を有する 炭素中性注入様の場き、約200人のピーク濃度深さ36.38を有するヒ素注 入は、30 KeVにおける4X10I5i/cm2の注入により達成される。 約2000へのピーク濃度深さ30,32(第3図)を有する炭素又は窒素注入 の場合、約100 OAのピーク濃度深さ36.38を有するホウ素注入は、3 ’0KeVにおける4 X 10 ” i/cIt2の注入によシ達成される。 続いて第2の注入工程又は活性ドーパント種の、標準的な活性化アニーリングが 行われる。この工程中、基体10中で点欠陥及び金属不純物のゲッタリングが起 ると、信じられている。このゲッタリング動作のため、活性種の熱拡散は、中性 種注入を行わない場合よシ、本質的に抑えられることがわかる。加えて、先に形 成された中性注入種は、活性種の拡散に対する物理的な障壁として働くことがわ かる。しかし、含まれる物理的な現象にかかわらず、ここで述べたプロセスの結 果は、活性種の注入により形成されたp−n接合は、もし中性種注入を行5つな い場合に生じる深さより、はるかに浅い所に生じるということである。それによ り、きわめて浅いp−n接合が形成される。 ヒ素の活性種注入の場合、活性化アニーリングは、たとえば約1000℃で約3 時間、標準的なおだやかな乾式酸化雰囲気中で行われる。得られるp−n接合は 、約1400Aの深さにある。あらかじめ中性種の注入を行わず、他のすべての プロセス条件をほぼ同じに保つならば、p−n接合は約3700への深さになる 。 ホウ素の活性種注入の場合、活性化アニーリングは、たとえば約900℃で約5 時間、標準的なおだやかな乾式酸化雰囲気中で行われる。p−n接合は、約33 00Aに生じる。中性種の注入を行わず、すべての他のプロセス条件全回じにす るならば、p−n接合は約6700Aの深さに生じる。 活性種がヒ素から成る上の例において、p n接合は注入された中性種層のピー ク濃度の深さよシ、浅い所になる。逆に、活性種がホウ素から成る上の例におい て、p −n接合は注入された中性種層のピーク濃度の深さより深い所になる。 一般に、注入された中性種層のピーク濃度の深さの、約10分の1ないし2倍の 範囲の深さに、p−n接合を形成することが可能である。 注入された中性種層のピークa度の深さより浅い深さに、多くの方法でp−n接 合を形成することが可能である。たとえば、活性不純物様に対しては、最初、上 でホウ素に対して示した深さより浅いデバイス構造中に導入するか、上で述べた より低温で構造を活性化アニーリングすることのいずれか又は両方を行うことが できる。あるいは、中性種層のピーク濃度は、最初十分深く形成し、アニーリン グ後接合が中性種層のピーク濃度の深さより、浅い所に形成されるようにするこ ともできる。 国際調査報告[Accordingly, the so-called neutral species is the substrate 10 defined by the open O25,26 is injected into the area. Well known ion implantation techniques can be used. ``The term neutral specie does not produce active carriers in the semiconductor substrate and A substance that works to suppress the diffusion of substances. Such neutral species include carbon, oxygen, argon or other inert gases, such as silicon, germanium and tin Contains group Ⅰ elements and nitrogen (low activation rate). Ions directed into the structure of FIG. 2 are represented by arrows 28, and the ions are The base body 10 is reached only through 6. In FIG. 2, injected into the substrate 10, The peak or mass concentration of the nearly Gaussian distribution of neutral species is on the line 30.32 consisting of X. It's more like a bribe. For example, the neutral implant-like dose shown in Figure 2 is , is selected to yield approximately 1 to 2 monolayers of medium to high density. In addition, fig. In the MOSFET example shown, the energy of the incident ion is The concentration is selected to occur approximately 2,000 times below the surface of the substrate 10. Debye Depending on the source, the neutral implant-like peak concentration may be affected by the p- It is selected so that it occurs deeper than the depth of the n-junction. For such devices The depth of the subsequently formed p-n junction is, for example, the depth of the peak concentration of neutral species. The depth is about one-tenth to three-quarters of the original size. (On other devices, As discussed below, the depth of the pn junction is greater than the depth of the neutral/injection-like peak a degree. big. ) Various doses and energies can be used. The set of dose and energy values for the neutral species shown above is as follows: It is. Carbon, per square centimeter (i/Cm2) 5X1o”’80 Kiloelectron volt (KeV); oxygen, 5×10151/cIn2.80 KeV ;Silicon, 5×10151/Cm2.150KeV;Germanium, 5X]0 ”’i/Cm2300 KeV; Tin, 5×1015]/cIn2.400 KeV; argon, 5X1015i/cm",] 80 KeV; and nitrogen element 5X], 0'51/c-In2.80KeyoFor these values, the neutral species The depth of each peak concentration is approximately 200 mm below the surface of the substrate 10 shown in FIG. There are 0 people. In some cases, but not all cases, d, the structure of the device shown in paragraph 21. is then subjected to an annealing step. (active species introduced subsequently such as arsenic) , it is actually better not to anneal the injected neutral species at this point in the fabrication process. would be advantageous. ) In this annealing process 8, the Damage to the crystal structure of the substrate 10 is reduced. Furthermore, the injection pattern is stabilized and effectively It is confined within the base body 10. Also, defects and impurities in the substrate 10 can be removed to some extent. terlinking occurs during this anneal linking process. Annealing can be carried out, for example, at 700 to 900° C. for about 30 minutes in an inert atmosphere. It is carried out at a temperature in the range of . During annealing, no substantial vertical or lateral movement of the implanted neutral species occurs. stomach. During the later so-called activation annealing step described below, no essential migration occurs. No. Activated species are then introduced by any of a variety of well-known means, such as by ion implantation. is introduced into the structure as indicated by arrow 34 in FIG. injected activity The seeds may contain pentavalent p-type impurities such as arsenic, phosphorous or antimony, or boron. It consists of trivalent n-type impurities such as elemental or gallium. The depth of the peak or maximum concentration of the approximately Gaussian distribution of active injection columns in the substrate 10 is at the point 1, schematically illustrated in FIG. The peak concentration of the injected active species may be, for example, at a depth of about 200 to 100 OA. occurs relatively close to the top surface of the substrate 1o. Specifically, it has a peak concentration depth of 30°32 (Figure 3) to about 2000 Carbon neutral injection-like field, arsenic injection with a peak concentration depth of about 200 36.38 The injection is achieved by implanting 4×10I5i/cm2 at 30 KeV. Carbon or nitrogen implantation with peak concentration depth 30,32 (Figure 3) to approximately 2000 For the case, a boron implant with a peak concentration depth of about 100 OA is 36.38 This is achieved by implanting 4×10” i/cIt2 at 0 KeV. A second implantation step or standard activation anneal of the active dopant species follows. It will be done. During this process, point defects and gettering of metal impurities occur in the substrate 10. It is believed that. Because of this gettering behavior, the thermal diffusion of active species becomes neutral. It can be seen that if seed injection is not performed, it can be essentially suppressed. In addition, the shape first The resulting neutral implant species is known to act as a physical barrier to the diffusion of active species. Karu. However, regardless of the physical phenomena involved, the outcome of the process described here is As a result, the p-n junction formed by the injection of active species is This means that it occurs at a much shallower depth than would otherwise occur. That's it As a result, an extremely shallow pn junction is formed. In the case of arsenic active species implantation, the activation annealing is, for example, about 3 time in a standard mild dry oxidizing atmosphere. The resulting p-n junction is , at a depth of about 1400A. Without prior injection of neutral species, all other If process conditions are kept approximately the same, the p-n junction will be approximately 3700 mm deep. . In the case of boron active species implantation, the activation annealing is, for example, about 5 time in a standard mild dry oxidizing atmosphere. The p-n junction is approximately 33 Occurs at 00A. No injection of neutral species and all other process conditions maintained throughout. If so, the p-n junction occurs at a depth of about 6700A. In the above example where the active species is arsenic, the pn junction is located at the peak of the implanted neutral species layer. Depending on the depth of the concentration, it will be shallow. Conversely, in the above example where the active species is boron, Therefore, the p-n junction is deeper than the depth of the peak concentration of the injected neutral species layer. Generally, the depth of the peak concentration of the injected neutral species layer is approximately one-tenth to twice the depth. It is possible to form p-n junctions to a range of depths. Many methods can be used to create a p-n junction at a depth shallower than the peak depth of the injected neutral species layer. It is possible to form a combination. For example, for active impurities, first or introduced into the device structure shallower than the depth shown for boron in or as described above. Either or both of activation annealing of the structure at a lower temperature can be performed. can. Alternatively, the peak concentration of the neutral species layer may be initially formed deep enough and annealed After mixing, the junction should be formed at a shallower depth than the depth of the peak concentration of the neutral species layer. Can also be done. international search report

Claims (1)

【特許請求の範囲】 1.半導体基体(10)を含むデバイスにおいて、前記基体中の中性種層(30 ,32)は、前記基体の表面下の、あらかじめ決められた深さに、ピーク濃度が あるような分布を有し、 前記表面下の深さにおける前記基体中のp−n接合(36,3B)は、前記あら かじめ決められた深さの、約10分の1ないし2倍にあることを特徴とするデバ イス。 2 請求の範囲第1項に記載されたデバイスにおいて、前記中性種は炭素、酸素 、シリコン、ゲルマニウム、スズ、不活性ガス及び窒素から成るグループから選 択されることを特徴とするデバイス。 3 請求の範囲第2項に記載されたデバイスにおいて、@記p−n接合は前記中 四種のピーク濃度の深さの、約10分の1fxいし4分の3の深さにおける前記 基体中に形成されることを特徴とするデバイス。 4 請求の範囲第1項に記載されたデバイスにおいて、前記中性種層のピーク濃 度は、前記表面下約2000AKあり、前記接合は前記表面下約1400Aにあ ることを特徴とするデバイス。 5、半導体デバイスの製作方法において、前記表面下のあらかじめ決められた深 さに、ピーク濃度を有する中囲種層(30,32)を形成するため、半導オ基体 (10)の表面を通して、中性種を注入する工程、 前記表面を通して、活性種を導入する工程、及び前記活性°種を活性化し、前記 基体中にp−n接合(36,3B)を形成するだめ、前記基体を7ニーリングす る工程を特徴とする方法。 6 請求の範囲第5項に記載された方法において、前記表面を通して導入された 活性種のピーク濃度は、アニーリング前、前記中性種層のピーク濃度の深さより 浅い深さにおいて形成されることを特徴とする方法。 7 請求の範囲第6項に記載された方法において、前記接合はアニーリング後、 前記あらかじめ決められた深さの約10分の1ないし2倍の範囲゛の深さに形成 されることを特徴とする方法。 8 請求の範囲第7項π記載された方法において、前記中性種は、炭素、酸素、 シリコン、ゲルマニウム、スズ、不活性ガス及び窒素から成るグループから選択 されることを特徴とする特許[Claims] 1. In a device comprising a semiconductor substrate (10), a neutral species layer (30 , 32) has a peak concentration at a predetermined depth below the surface of the substrate. have a certain distribution, The p-n junction (36, 3B) in the substrate at the subsurface depth is A device characterized by being approximately one-tenth to twice the predetermined depth. chair. 2. In the device according to claim 1, the neutral species is carbon, oxygen, etc. , silicon, germanium, tin, inert gas and nitrogen. A device characterized in that it is selected. 3. In the device according to claim 2, the p-n junction is The above at a depth of about 1/10 to 3/4 of the depth of the four types of peak concentrations. A device characterized in that it is formed in a substrate. 4. In the device according to claim 1, the peak concentration of the neutral species layer is The angle is about 2000 AK below the surface, and the junction is about 1400 AK below the surface. A device characterized by: 5. In the method of manufacturing a semiconductor device, the predetermined depth below the surface is In order to form a middle seed layer (30, 32) having a peak concentration, the semiconductor substrate is (10) injecting a neutral species through the surface of the introducing an active species through said surface, and activating said active species and said To form a p-n junction (36, 3B) in the substrate, the substrate was annealed 7 times. A method characterized by a step of 6. In the method according to claim 5, introduced through the surface The peak concentration of active species is greater than the depth of the peak concentration of the neutral species layer before annealing. A method characterized in that the formation occurs at a shallow depth. 7. In the method according to claim 6, the bonding is performed after annealing, Formed at a depth ranging from approximately 1/10 to twice the predetermined depth. A method characterized by: 8. In the method described in claim 7, the neutral species is carbon, oxygen, Selected from the group consisting of silicon, germanium, tin, inert gas and nitrogen A patent characterized by
JP59502397A 1983-07-25 1984-06-04 Shallow junction semiconductor devices Pending JPS60501927A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51675583A 1983-07-25 1983-07-25
US516755 1995-08-18

Publications (1)

Publication Number Publication Date
JPS60501927A true JPS60501927A (en) 1985-11-07

Family

ID=24056961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59502397A Pending JPS60501927A (en) 1983-07-25 1984-06-04 Shallow junction semiconductor devices

Country Status (4)

Country Link
EP (1) EP0151585A4 (en)
JP (1) JPS60501927A (en)
CA (1) CA1222835A (en)
WO (1) WO1985000694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190849A (en) * 1992-01-14 1993-07-30 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578096A1 (en) * 1985-02-28 1986-08-29 Bull Sa Method of manufacturing an MOS transistor and resulting integrated circuit device
NL8501992A (en) * 1985-07-11 1987-02-02 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
US4683637A (en) * 1986-02-07 1987-08-04 Motorola, Inc. Forming depthwise isolation by selective oxygen/nitrogen deep implant and reaction annealing
US4786608A (en) * 1986-12-30 1988-11-22 Harris Corp. Technique for forming electric field shielding layer in oxygen-implanted silicon substrate
EP0350845A3 (en) * 1988-07-12 1991-05-29 Seiko Epson Corporation Semiconductor device with doped regions and method for manufacturing it
US5654209A (en) * 1988-07-12 1997-08-05 Seiko Epson Corporation Method of making N-type semiconductor region by implantation
JP2773957B2 (en) * 1989-09-08 1998-07-09 富士通株式会社 Method for manufacturing semiconductor device
EP0806794A3 (en) * 1996-04-29 1998-09-02 Texas Instruments Incorporated Method of forming shallow doped regions in a semiconductor substrate, using preamorphization and ion implantation
JP4139907B2 (en) * 1996-05-08 2008-08-27 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Ion implantation method, integrated circuit manufacturing process, and integrated circuit MOS manufacturing process
US6051460A (en) * 1997-11-12 2000-04-18 Advanced Micro Devices, Inc. Preventing boron penetration through thin gate oxide of P-channel devices by doping polygate with silicon
US6146934A (en) * 1997-12-19 2000-11-14 Advanced Micro Devices, Inc. Semiconductor device with asymmetric PMOS source/drain implant and method of manufacture thereof
US6013546A (en) * 1997-12-19 2000-01-11 Advanced Micro Devices, Inc. Semiconductor device having a PMOS device with a source/drain region formed using a heavy atom p-type implant and method of manufacture thereof
US6087209A (en) * 1998-07-31 2000-07-11 Advanced Micro Devices, Inc. Formation of low resistance, ultra shallow LDD junctions employing a sub-surface, non-amorphous implant
FR2828331A1 (en) * 2001-07-31 2003-02-07 St Microelectronics Sa METHOD FOR MANUFACTURING BIPOLAR TRANSISTOR IN A CMOS INTEGRATED CIRCUIT

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492786B1 (en) * 1969-03-28 1974-01-22
US3796929A (en) * 1970-12-09 1974-03-12 Philips Nv Junction isolated integrated circuit resistor with crystal damage near isolation junction
JPS553828B2 (en) * 1972-11-30 1980-01-26
US4069068A (en) * 1976-07-02 1978-01-17 International Business Machines Corporation Semiconductor fabrication method for improved device yield by minimizing pipes between common conductivity type regions
JPS53120263A (en) * 1977-03-29 1978-10-20 Nec Corp Manufacture of semiconductor device
JPS5583263A (en) * 1978-12-19 1980-06-23 Fujitsu Ltd Mos semiconductor device
JPS55121680A (en) * 1979-03-13 1980-09-18 Nec Corp Manufacture of semiconductor device
JPS5627924A (en) * 1979-08-14 1981-03-18 Toshiba Corp Semiconductor device and its manufacture
JPS5632742A (en) * 1979-08-24 1981-04-02 Toshiba Corp Manufacture of semiconductor device
JPS5693367A (en) * 1979-12-20 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
JPS577161A (en) * 1980-06-16 1982-01-14 Toshiba Corp Mos semiconductor device
JPS57106123A (en) * 1980-12-24 1982-07-01 Toshiba Corp Manufacture of semiconductor device
JPS5856417A (en) * 1981-09-30 1983-04-04 Toshiba Corp Low-temperature activating method for boron ion implanted layer in silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190849A (en) * 1992-01-14 1993-07-30 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
EP0151585A1 (en) 1985-08-21
CA1222835A (en) 1987-06-09
WO1985000694A1 (en) 1985-02-14
EP0151585A4 (en) 1986-02-20

Similar Documents

Publication Publication Date Title
US6184112B1 (en) Method of forming a MOSFET transistor with a shallow abrupt retrograde dopant profile
JPS60501927A (en) Shallow junction semiconductor devices
JPH0727965B2 (en) Method for manufacturing device including embedded SiO 2 layer
US4243433A (en) Forming controlled inset regions by ion implantation and laser bombardment
JPS63174355A (en) Semiconductor device
EP0258148B1 (en) Modification of properties of p-type dopants with other p-type dopants
JP2003142420A (en) Method of manufacturing integrated circuit
JPS5917243A (en) Manufacture of semiconductor device
JP3165051B2 (en) Semiconductor element well formation method
JPH05190849A (en) Manufacture of semiconductor device
JPH0366165A (en) Diffusion of impurities to semiconductor substrate
JPS5856417A (en) Low-temperature activating method for boron ion implanted layer in silicon
JPH0411736A (en) Semiconductor device and manufacture thereof
JPH0526343B2 (en)
CN114496760B (en) Forming method of MOS transistor
KR100671594B1 (en) Method of manufacturing a transistor having a shallow junction in a semiconductor device
KR100319873B1 (en) Low Temperature Activation Method of High Ion Implantation Layer
JPH01256124A (en) Manufacture of mos type semiconductor device
JP3035941B2 (en) Method for manufacturing group III-V compound semiconductor device
JP2527545B2 (en) Method for manufacturing semiconductor device
KR100694971B1 (en) Method for forming a Junction region of a semiconductor device
JPH04363025A (en) Semiconductor device and its manufacture
JPS6321825A (en) Manufacture of semiconductor device
KR100642410B1 (en) Manufacturing Method for Semiconductor Device
JP2626485B2 (en) Method for manufacturing semiconductor device