JPH05190849A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH05190849A JPH05190849A JP455492A JP455492A JPH05190849A JP H05190849 A JPH05190849 A JP H05190849A JP 455492 A JP455492 A JP 455492A JP 455492 A JP455492 A JP 455492A JP H05190849 A JPH05190849 A JP H05190849A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- diffusion
- impurities
- heat treatment
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体に導入された不
純物が必要以上に拡散しないようにした熱処理工程を有
する半導体素子の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a heat treatment step in which impurities introduced into a semiconductor are prevented from diffusing more than necessary.
【0002】[0002]
【従来の技術】従来、このような分野の技術としては、
例えば「MOS LSI製造技術」編者 徳山 巍,橋
本 哲一 日経マグロヒル社 P.30に記載されるも
のがあった。イオン注入法はシリコン半導体への不純物
導入法として広く用いられているが、注入不純物はその
ままでは電気的に活性化していないために、イオン注入
工程の後に必ず、電気的活性化のための熱処理工程を必
要とする。2. Description of the Related Art Conventionally, as a technique in such a field,
For example, “MOS LSI manufacturing technology” edited by Shiba Tokuyama, Tetsuichi Hashimoto P. Nikkei Tuna Hill Co. 30 were listed. The ion implantation method is widely used as a method for introducing impurities into a silicon semiconductor. However, since the implanted impurities are not electrically activated as they are, the heat treatment step for electrical activation must be performed after the ion implantation step. Need.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述の
方法では、通常1000℃程度で行なわれる熱処理時
に、不純物は電気的に活性化すると同時に、拡散も行わ
れ、不純物の分布が必要以上に大きくなってしまうとい
った問題点があった。本発明は、以上述べた不純物が活
性化熱処理時に必要以上に拡散するといった問題点を除
去するために、不純物拡散が予定される領域にC(炭
素)を導入し、そのCの不純物拡散抑止効果によって、
不純物の必要以上の拡散を低減させ得る半導体素子の製
造方法を提供するものである。However, in the above method, impurities are electrically activated and diffused at the same time during the heat treatment usually performed at about 1000 ° C., and the distribution of impurities becomes larger than necessary. There was a problem that it would end up. The present invention introduces C (carbon) into a region where impurity diffusion is planned and eliminates the impurity diffusion suppressing effect of the C in order to eliminate the above-mentioned problem that the impurity diffuses more than necessary during activation heat treatment. By
Provided is a method for manufacturing a semiconductor device capable of reducing unnecessary diffusion of impurities.
【0004】[0004]
【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体素子の製造方法において、シリコ
ン基板において不純物拡散が予定される部位に予めCイ
オンを注入する工程と、該Cイオンの注入領域に不純物
を注入し、該不純物を前記Cにより覆うように形成する
工程と、その後、熱処理工程とを施すようにしたもので
ある。In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device, in which C ions are preliminarily implanted into a portion of a silicon substrate where impurity diffusion is planned, An impurity is implanted into an ion implantation region, the impurity is formed so as to be covered with C, and a heat treatment process is performed thereafter.
【0005】[0005]
【作用】本発明によれば、上記のように、シリコン基板
への不純物導入法であるイオン注入法において、不純物
分布領域に予めCを導入し、そのCの不純物拡散抑止効
果によって、不純物が熱処理時に必要以上に拡散しない
ようにする。したがって、イオン注入工程に伴う熱処理
時にも、注入された不純物の必要以上の拡散が抑えら
れ、電気的な活性化が可能となる。According to the present invention, as described above, in the ion implantation method which is an impurity introduction method into a silicon substrate, C is previously introduced into the impurity distribution region, and the impurity diffusion suppressing effect of the C causes the impurities to be heat treated. Sometimes try not to spread more than necessary. Therefore, even during the heat treatment associated with the ion implantation process, unnecessary diffusion of the implanted impurities is suppressed, and electrical activation becomes possible.
【0006】[0006]
【実施例】以下、本発明の実施例について図を参照しな
がら詳細に説明する。図1は本発明の実施例を示す半導
体素子の製造工程断面図、図2は本発明の実施例を示す
半導体素子の拡散層の深さとB(ボロン)濃度の特性図
である。ここでは、PチャンネルMOSFETの製造工
程を示している。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of a manufacturing process of a semiconductor device showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram of the depth of a diffusion layer and B (boron) concentration of the semiconductor device showing an embodiment of the present invention. Here, the manufacturing process of the P-channel MOSFET is shown.
【0007】まず、図1(a)に示すように、通常工程
によってN型シリコン基板11表面に、フィールド酸化
膜12、ゲート酸化膜13、低抵抗多結晶シリコンゲー
ト電極14を形成する。次に、図1(b)に示すよう
に、その後、シリコン基板のソース・ドレイン部15を
形成するために、Cイオンを注入する。そのソース・ド
レイン部15のC濃度を1×1020cm-3とするため
に、Cイオンをエネルギー90KeV、ドーズ量2×1
015cm-2で注入する。これにより、基板表面から深さ
200nmまでが、C濃度1×1020cm-3となる。First, as shown in FIG. 1A, a field oxide film 12, a gate oxide film 13, and a low resistance polycrystalline silicon gate electrode 14 are formed on the surface of an N-type silicon substrate 11 by a normal process. Next, as shown in FIG. 1B, C ions are then implanted to form the source / drain portions 15 of the silicon substrate. In order to set the C concentration of the source / drain portion 15 to 1 × 10 20 cm −3 , the C ion has an energy of 90 KeV and a dose amount of 2 × 1.
Inject at 0 15 cm -2 . As a result, the C concentration is 1 × 10 20 cm −3 from the surface of the substrate to a depth of 200 nm.
【0008】次に、図1(c)に示すように、ソース・
ドレイン部15に、P+ 層16を形成するために、Bイ
オンの注入を、エネルギー20KeV、ドーズ量2×1
015cm-2で行なう。これにより、Bが深さ100nm
に、濃度1×1020cm-3で打ち込まれる。その後、図
1(d)に示すように、1000℃、75s(秒)の熱
処理を施すことによって、Bは、電気的に活性化される
が、Bの拡散は、図2に示すように、深さ200nmに
おいて、C注入なしの場合に比べて、100nm以上抑
えられたものとすることができる。Next, as shown in FIG.
In order to form the P + layer 16 in the drain portion 15, B ions are implanted with an energy of 20 KeV and a dose amount of 2 × 1.
Perform at 0 15 cm -2 . As a result, B has a depth of 100 nm
To be implanted at a concentration of 1 × 10 20 cm -3. Thereafter, as shown in FIG. 1D, B is electrically activated by heat treatment at 1000 ° C. for 75 s (seconds), but the diffusion of B is as shown in FIG. At a depth of 200 nm, it can be suppressed by 100 nm or more as compared with the case without C implantation.
【0009】上述のように、ソース・ドレインP+ 層1
6を形成した後に、図1(e)に示すように、通常、M
OSLSI製造工程によって層間絶縁膜17、Al電極
18を形成してPチャンネルMOSFETの製造が完了
する。なお、図2において、横軸は深さ(nm)、縦軸
はB濃度(cm-3)を示し、曲線は熱処理前、曲線
はC濃度が1×1020cm-3、曲線はC濃度が1×1
018cm-3、曲線はCの注入がない場合を示してい
る。熱処理は1000℃で75秒行った。As described above, the source / drain P + layer 1
6 is formed, then, as shown in FIG.
The interlayer insulating film 17 and the Al electrode 18 are formed by the OSLSI manufacturing process, and the manufacturing of the P-channel MOSFET is completed. In FIG. 2, the horizontal axis represents depth (nm), the vertical axis represents B concentration (cm −3 ), the curve is before heat treatment, the curve has a C concentration of 1 × 10 20 cm −3 , and the curve has a C concentration. Is 1 × 1
0 18 cm -3 , the curve shows the case without C implantation. The heat treatment was performed at 1000 ° C. for 75 seconds.
【0010】また、上記実施例におけるC注入によって
不純物の拡散を抑制する方法は、Bにのみ有効であるの
ではなく、他の不純物にとっても有効である。特にSi
中での拡散がBと同じインタースティシャルシィ(in
terstitialcy)機構によっていることが知
られているV族の不純物であるPやAs、及び重金属で
あるFe,Co,Ni,Cu,Au等の拡散抑制にも有
効であることは明らかである。The method of suppressing the diffusion of impurities by C implantation in the above embodiment is effective not only for B but also for other impurities. Especially Si
The diffusion in the same interstitially as B (in
It is clear that it is also effective in suppressing the diffusion of P and As, which are impurities of Group V, and the heavy metals Fe, Co, Ni, Cu, Au, etc., which are known to be based on the tertsity mechanism.
【0011】このため、本発明は、先に述べたPチャン
ネルMOSFETのソース・ドレイン部分の形成の際に
有効であるばかりでなく、他のイオン注入を用いる形成
方法の場合、例えばPチャンネルMOSFETのチャン
ネル部、nチャンネルMOSFETのチャンネル部及び
ソース・ドレイン部、バイポーラトランジスタのコレク
タ・ベース・エミッタ部の形成の場合にも有効であるこ
とは当然である。Therefore, the present invention is not only effective in forming the source / drain portions of the P-channel MOSFET described above, but also in the case of another forming method using ion implantation, for example, in the case of the P-channel MOSFET. Of course, it is also effective when forming the channel part, the channel part and the source / drain part of the n-channel MOSFET, and the collector / base / emitter part of the bipolar transistor.
【0012】更に、イオン注入の際に、所望のイオンと
は異なる重金属不純物が導入された場合、これらの重金
属が拡散することを抑制することができるので、デバイ
スの特性の劣化を防ぐことも可能である。なお、本発明
は上記実施例に限定されるものではなく、本発明の趣旨
に基づき種々の変形が可能であり、それらを本発明の範
囲から排除するものではない。Further, when heavy metal impurities different from desired ions are introduced during ion implantation, diffusion of these heavy metals can be suppressed, and therefore deterioration of device characteristics can be prevented. Is. It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
【0013】[0013]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、シリコン基板の不純物分布領域に予めCを導入
し、そのCの不純物拡散抑止効果によって、不純物が熱
処理時に必要以上に拡散しないようにしたので、イオン
注入工程に伴う熱処理時にも、注入された不純物の必要
以上の拡散が抑えられ、電気的な活性化が可能となる。As described above in detail, according to the present invention, C is introduced into the impurity distribution region of the silicon substrate in advance, and the impurity diffusion suppressing effect of C diffuses impurities more than necessary during the heat treatment. Since this is not done, even during the heat treatment associated with the ion implantation step, unnecessary diffusion of the implanted impurities is suppressed, and electrical activation becomes possible.
【0014】また、イオン注入の際に、所望のイオンと
は異なる重金属不純物が導入された場合、これらの重金
属が拡散するを抑制することができるので、デバイスの
特性の劣化を防ぐことができる。Further, when heavy metal impurities different from desired ions are introduced at the time of ion implantation, diffusion of these heavy metals can be suppressed, so that deterioration of device characteristics can be prevented.
【図1】本発明の実施例を示す半導体素子の製造工程断
面図である。FIG. 1 is a sectional view of a semiconductor device manufacturing process showing an embodiment of the present invention.
【図2】本発明の実施例を示す半導体素子の拡散層の深
さとB濃度の特性図である。FIG. 2 is a characteristic diagram of depth and B concentration of a diffusion layer of a semiconductor device showing an example of the present invention.
11 N型シリコン基板 12 フィールド酸化膜 13 ゲート酸化膜 14 低抵抗多結晶シリコンゲート電極 15 ソース・ドレイン部 16 P+ 層 17 層間絶縁膜 18 Al電極11 N-type silicon substrate 12 Field oxide film 13 Gate oxide film 14 Low resistance polycrystalline silicon gate electrode 15 Source / drain portion 16 P + layer 17 Interlayer insulating film 18 Al electrode
Claims (2)
予定される部位に予めCイオンを注入する工程と、 (b)該Cイオンの注入領域に不純物を注入し、該不純
物をCにより覆うように形成する工程と、 (c)その後、熱処理工程とを施すことを特徴とする半
導体素子の製造方法。1. A step of: (a) implanting C ions in advance in a portion of a silicon substrate where impurity diffusion is planned; and (b) implanting impurities into the C ion implantation region and covering the impurities with C. And a heat treatment step (c) are subsequently performed.
る請求項1記載の半導体素子の製造方法。2. The method for manufacturing a semiconductor device according to claim 1, wherein the C concentration is 1 × 10 18 cm −3 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP455492A JPH05190849A (en) | 1992-01-14 | 1992-01-14 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP455492A JPH05190849A (en) | 1992-01-14 | 1992-01-14 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05190849A true JPH05190849A (en) | 1993-07-30 |
Family
ID=11587269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP455492A Pending JPH05190849A (en) | 1992-01-14 | 1992-01-14 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05190849A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654210A (en) * | 1994-09-13 | 1997-08-05 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form one or more barrier regions capable of inhibiting migration of dopant materials in substrate |
US5858864A (en) * | 1994-09-13 | 1999-01-12 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form barrier region capable of inhibiting migration of dopant materials in substrate |
JP2001094098A (en) * | 1999-09-21 | 2001-04-06 | Denso Corp | Silicon carbide semiconductor device and fabrication method thereof |
JP2008091876A (en) * | 2006-08-04 | 2008-04-17 | Interuniv Micro Electronica Centrum Vzw | Method for junction formation in semiconductor device, and semiconductor device produced thereby |
JP2008524858A (en) * | 2004-12-17 | 2008-07-10 | インテル コーポレイション | Strained nMOS transistor featuring deep carbon doped regions and source and drain doped with raised donors |
JP2009518869A (en) * | 2005-12-09 | 2009-05-07 | セムイクウィップ・インコーポレーテッド | System and method for manufacturing semiconductor devices by implantation of carbon clusters |
JP2013125763A (en) * | 2011-12-13 | 2013-06-24 | Toyota Motor Corp | Switching element and method of manufacturing the same |
US11056558B2 (en) | 2018-09-14 | 2021-07-06 | Toshiba Memory Corporation | Semiconductor device and semiconductor memory device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60501927A (en) * | 1983-07-25 | 1985-11-07 | アメリカン テレフオン アンド テレグラフ カムパニ− | Shallow junction semiconductor devices |
JPS61296712A (en) * | 1985-06-26 | 1986-12-27 | Toshiba Corp | Manufacture of semiconductor device |
JPH03157941A (en) * | 1989-11-16 | 1991-07-05 | Sony Corp | Manufacture of mis type semiconductor device |
-
1992
- 1992-01-14 JP JP455492A patent/JPH05190849A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60501927A (en) * | 1983-07-25 | 1985-11-07 | アメリカン テレフオン アンド テレグラフ カムパニ− | Shallow junction semiconductor devices |
JPS61296712A (en) * | 1985-06-26 | 1986-12-27 | Toshiba Corp | Manufacture of semiconductor device |
JPH03157941A (en) * | 1989-11-16 | 1991-07-05 | Sony Corp | Manufacture of mis type semiconductor device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654210A (en) * | 1994-09-13 | 1997-08-05 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form one or more barrier regions capable of inhibiting migration of dopant materials in substrate |
US5858864A (en) * | 1994-09-13 | 1999-01-12 | Lsi Logic Corporation | Process for making group IV semiconductor substrate treated with one or more group IV elements to form barrier region capable of inhibiting migration of dopant materials in substrate |
JP2001094098A (en) * | 1999-09-21 | 2001-04-06 | Denso Corp | Silicon carbide semiconductor device and fabrication method thereof |
JP2008524858A (en) * | 2004-12-17 | 2008-07-10 | インテル コーポレイション | Strained nMOS transistor featuring deep carbon doped regions and source and drain doped with raised donors |
JP2009518869A (en) * | 2005-12-09 | 2009-05-07 | セムイクウィップ・インコーポレーテッド | System and method for manufacturing semiconductor devices by implantation of carbon clusters |
JP2014160856A (en) * | 2005-12-09 | 2014-09-04 | Semequip Inc | System and method for manufacturing semiconductor device by implantation of carbon cluster |
JP2008091876A (en) * | 2006-08-04 | 2008-04-17 | Interuniv Micro Electronica Centrum Vzw | Method for junction formation in semiconductor device, and semiconductor device produced thereby |
JP2013125763A (en) * | 2011-12-13 | 2013-06-24 | Toyota Motor Corp | Switching element and method of manufacturing the same |
US11056558B2 (en) | 2018-09-14 | 2021-07-06 | Toshiba Memory Corporation | Semiconductor device and semiconductor memory device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7235843B2 (en) | Implanting carbon to form P-type source drain extensions | |
US5783469A (en) | Method for making nitrogenated gate structure for improved transistor performance | |
JPH05218081A (en) | Formation method of shallow semiconductor junction | |
JPH10313114A (en) | Manufacture of semiconductor device | |
JPS62130522A (en) | Manufacture of semiconductor device | |
JPS60501927A (en) | Shallow junction semiconductor devices | |
JPH05190849A (en) | Manufacture of semiconductor device | |
JPH04157766A (en) | Manufacture of silicon gate p-channel mos semiconductor device | |
KR100350748B1 (en) | Method of manufacturing a semiconductor device | |
US5830802A (en) | Process for reducing halogen concentration in a material layer during semiconductor device fabrication | |
JPH09172176A (en) | Manufacture of mos device | |
JPH05226593A (en) | Manufacture of semiconductor device | |
JP2850813B2 (en) | Method for manufacturing semiconductor device | |
US5646057A (en) | Method for a MOS device manufacturing | |
JP2781989B2 (en) | Method for manufacturing semiconductor device | |
JP2544806B2 (en) | Method for manufacturing semiconductor device | |
JPH05190848A (en) | Manufacture of mosfet | |
JP3384439B2 (en) | Method for manufacturing semiconductor device | |
JPH05267338A (en) | Manufacture of semiconductor device | |
JP3525464B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JPH07221044A (en) | Manufacture of semiconductor device | |
JPH04158529A (en) | Fabrication of semiconductor element | |
JP2000260983A (en) | Semiconductor device and manufacture thereof | |
JPH04354329A (en) | Production of semiconductor device | |
JPH11204783A (en) | Semiconductor device and manufacture therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980721 |