JPH03201535A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03201535A
JPH03201535A JP34089189A JP34089189A JPH03201535A JP H03201535 A JPH03201535 A JP H03201535A JP 34089189 A JP34089189 A JP 34089189A JP 34089189 A JP34089189 A JP 34089189A JP H03201535 A JPH03201535 A JP H03201535A
Authority
JP
Japan
Prior art keywords
layer
impurity
ions
semiconductor substrate
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34089189A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Takahashi
光俊 高橋
Yutaka Sakakibara
裕 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34089189A priority Critical patent/JPH03201535A/en
Publication of JPH03201535A publication Critical patent/JPH03201535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an effect on the characteristics of a device of a secondary defect such as a dislocation easy to be formed after annealing when the deep impurity distribution of a collector, etc., is formed through ion implantation, by forming a gettering layer, which does not contribute to conduction, at a position deeper than an impurity layer on viewing from the surface of a silicon semiconductor substrate. CONSTITUTION:An oxide film 2 is formed onto a silicon substrate 1, and a polyimide 3 and an amorphous silicon 4 are deposited as a mask for implanting ions. An N-well forming region is bored, P<+> ions are implanted in dosage of 1X10<14>cm<-2> by 1MeV energy, an N well 5 is shaped, Ar ions are implanted in 1X10<15>cm<-2> by 5MeV, and a gettering layer 6 as a defect is formed. The gettering layer at that time is formed in an approximately 1mum region before and after a projection range. The spread of the region is increased with the augmentation of dosage. When annealing for thirty min at 1000 deg.C is conducted after the mask for implantation is removed, phosphorus is activated, and a secondary defect is gettered to the Ar implanting layer 6, thus shaping the N well 5 containing no secondary defect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造において、イオン注入によ
り不純物を表面から埋め込まれるような深い領域に導入
する際、デバイス特性を悪化させる接合リークの原因と
なる二次欠陥の発生を防止するようにした半導体装置と
その製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention aims to prevent junction leakage that deteriorates device characteristics when impurities are introduced from the surface into deep regions by ion implantation in the manufacture of semiconductor devices. The present invention relates to a semiconductor device and a method for manufacturing the same that prevents the occurrence of secondary defects that may cause such defects.

(従来の技術) バイポーラトランジスタのコレクタ層、0MO3におけ
るウェル等の形成のため、数100keV〜数MeVの
エネルギーを持ったイオンを半導体基板に注入する、い
わゆる高エネルギーイオン注入により深い不純物分布を
形成する方法が提案されている。
(Prior art) In order to form a collector layer of a bipolar transistor, a well in OMO3, etc., a deep impurity distribution is formed by so-called high-energy ion implantation, in which ions with an energy of several 100 keV to several MeV are implanted into a semiconductor substrate. A method is proposed.

(発明が解決しようとする課題) 上記の方法において、注入不純物を基板表面から埋め込
まれるほど深く導入した場合には、アニール後、転位等
の二次欠陥が形成されやすい。これらの欠陥が表面付近
のデバイス活性領域、ウェル基板間PN接合中に形成さ
れた場合には、接合リークを生じ、デバイス特性を悪化
させてしまう。
(Problems to be Solved by the Invention) In the above method, if the implanted impurity is introduced so deep that it is embedded from the substrate surface, secondary defects such as dislocations are likely to be formed after annealing. If these defects are formed in the device active region near the surface or in the well-substrate PN junction, junction leakage will occur and device characteristics will deteriorate.

現在のところ、このような事態を防ぐ有効な手段がない
ため、不純物の注入量を少なくすることにより欠陥の発
生を少なく抑えている状況である。
At present, there is no effective means to prevent such a situation, so the current situation is to suppress the occurrence of defects by reducing the amount of impurity implanted.

しかし、不純物注入量が制限されていると、より抵抗の
低い層を形成することができず、デバイスの高機能化に
対応できないという欠点がある。
However, if the amount of impurity implanted is limited, it is not possible to form a layer with lower resistance, and there is a drawback that it is not possible to respond to higher functionality of devices.

本発明は上記の欠点を改善するために提案されたもので
、その目的は、CMO3,バイポーラトランジスタ等の
半導体装置の製造において、ウェルあるいはコレクタな
どの深い不純物分布を、イオン注入により形成する際に
、アニール後に形成され易い転位などの二次欠陥が、デ
バイスの特性に影響を及ぼすのを防止する方法を提供す
ることにある。
The present invention was proposed to improve the above-mentioned drawbacks, and its purpose is to form deep impurity distributions such as wells or collectors by ion implantation in the manufacture of semiconductor devices such as CMO3 and bipolar transistors. Another object of the present invention is to provide a method for preventing secondary defects such as dislocations that are likely to be formed after annealing from affecting the characteristics of a device.

(課題を解決するための手段) 上記の目的を達成するため、本発明はシリコン半導体基
板に対して、伝導型を決定する不純物によってPあるい
はN型層が形成された装置において、前記シリコン半導
体基板の表面より見て、前記の不純物層より深い位置に
、伝導に寄与しないゲッタリング層が形成されているこ
とを特徴とする半導体装置を発明の要旨とするものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a device in which a P or N type layer is formed on a silicon semiconductor substrate using an impurity that determines the conductivity type. The gist of the invention is a semiconductor device characterized in that a gettering layer that does not contribute to conduction is formed at a position deeper than the impurity layer when viewed from the surface of the semiconductor device.

さらに本発明は、シリコン半導体基板へのイオン注入に
おいて、伝導型を決定する不純物を半導体基板表面から
埋め込まれるような深い位置に導入してPあるいはN型
層を形成する場合において、少なくとも前記不純物の投
影飛程より深い位置に、伝導に寄与しない元素、あるい
は逆の伝導型層を形成する元素を半導体基板表面からイ
オン注入し、熱処理することを特徴とする半導体装置の
製造方法を発明の要旨とするものである。
Furthermore, in the case of ion implantation into a silicon semiconductor substrate, when an impurity that determines the conductivity type is introduced into a deep position buried from the surface of the semiconductor substrate to form a P or N type layer, at least The gist of the invention is a method for manufacturing a semiconductor device, which is characterized in that an element that does not contribute to conduction or an element that forms a layer of the opposite conductivity type is ion-implanted from the surface of a semiconductor substrate at a position deeper than the projected range and then heat-treated. It is something to do.

(作用) 本発明は、伝導型を決定する不純物をイオン注入後、さ
らにアルゴン等の元素を伝導型を決定する不純物より深
い位置にイオン注入し、熱処理することを最も主要な特
徴とする。そのため、本発明は伝導型を決定する不純物
の注入量に依存せずに、デバイス特性に影響を及ぼす欠
陥の発生を抑制することができる。すなわち、深い位置
に注入されるアルゴン等の元素の形成する損傷領域が、
アニールにより欠陥をゲッタリングし、デバイス活性領
域を無欠陥化できるという作用がある。
(Function) The main feature of the present invention is that after ion implantation of an impurity that determines the conductivity type, an element such as argon is further ion-implanted to a position deeper than the impurity that determines the conductivity type, and heat treatment is performed. Therefore, the present invention can suppress the occurrence of defects that affect device characteristics without depending on the amount of impurity implanted that determines the conductivity type. In other words, the damaged region formed by elements such as argon implanted deep into the
Annealing has the effect of gettering defects and making the device active region defect-free.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうることは言うまでも
ない。
(Example) Next, an example of the present invention will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

第1図に、従来法に従い、例えば、リンイオン(P゛)
をI MeVでI XIO”c+n−”注入し、100
0°C30分間アニールしたときの不純物分布と欠陥分
布とを示す。このときには、注入層全体にわたって欠陥
が導入されてしまう。
In Figure 1, according to the conventional method, for example, phosphorus ion (P゛)
was injected with I XIO"c+n-" at I MeV and
The impurity distribution and defect distribution when annealed at 0° C. for 30 minutes are shown. At this time, defects are introduced throughout the injection layer.

第2図に、本発明に従って、P“イオンをI MeVで
I XIO”cm−”注入後、さらに、アルゴンイオン
を5 MeVでI X10”cm−”注入し、1000
℃30分間アニールしたときの不純物分布と欠陥分布と
を示す。
FIG. 2 shows that, in accordance with the present invention, after implanting P" ions at I MeV and I XIO" cm, argon ions were further implanted at I X 10" cm at 5 MeV.
The impurity distribution and defect distribution when annealed at ℃ for 30 minutes are shown.

このときには、P°イオン注入層全体にわたって無欠陥
化され、この層に形成されるデバイスの接合リークを低
減できる。
At this time, the entire P° ion-implanted layer is made defect-free, and junction leakage of devices formed in this layer can be reduced.

曲線1はP4イオン I MeV+  I Xl0I4
cIl−’の場合、曲線2はAr”イオン 5 MeV
、  l X 10” cm−”の場合を示す。
Curve 1 is P4 ion I MeV+ I Xl0I4
For cIl-', curve 2 is Ar'' ion 5 MeV
, l x 10"cm-" is shown.

P′″イオンのみをI MeVでl XIO”c+*−
”注入した試料と、P°イオン(I MeV、  l 
X10”c+w−”)の他にアルゴン(Ar”)イオン
を4.5MeVで5 XIO”cm−’注入した試料と
を、1000℃30分間アニール後にライトエッチ(転
位などの欠陥によりピットができる)し、エッチピット
の深さ方向分布を調べた結果を下の表に示す。Ar”注
入によりデバイス領域が無欠陥化されていることがわか
る。
Only P''' ions are converted to I MeV at l XIO"c++-
``The injected sample and P° ions (I MeV, l
In addition to X10"c+w-"), a sample in which argon (Ar") ions were implanted at 4.5 MeV for 5 The table below shows the results of investigating the depth distribution of etch pits. It can be seen that the device region is made defect-free by the Ar'' implantation.

表 次に、本発明をCMO3のNウェル形成に適用した例を
第3図に沿って以下に示す。
Table Next, an example in which the present invention is applied to the formation of an N well of CMO3 is shown below along with FIG.

(a)  シリコン基板lに、酸化膜2を形成後、イオ
ン注入用マスクとしてポリイミド3を7n堆積する。さ
らに、チャージアップ防止のため、非晶質シリコン4を
500人堆積する。(第3図a) (b)  Nウェル形成領域を開口する。(第3図b)
(C)P”イオンをエネルギーIMeV(投影飛程。
(a) After forming an oxide film 2 on a silicon substrate 1, 7n of polyimide 3 is deposited as a mask for ion implantation. Furthermore, 500 layers of amorphous silicon 4 are deposited to prevent charge-up. (Fig. 3a) (b) Open the N-well formation region. (Figure 3b)
(C) P'' ion with energy IMeV (projected range).

約In)でドース量I XIO”cm−”注入し、Nウ
ェル5を形成する。(第3図C) (d)Ar(アルゴン)イオンを5MeV  (投影飛
程的3.5n)でI Xl015c+w−”注入し、欠
陥のゲッタリング層6を形成する。この時のゲッタリン
グ層は、投影飛程の前後約IIrm程度の領域に形成さ
れる。この領域の広がりは、ドース量の増大とともに増
大する。(第3図d)(e)  注入用マスクを除去後
、1000”C130分間のアニールを行う、これによ
り、リン(P)が活性化され、二次欠陥は、Ar注入N
6にゲッタリングされて二次欠陥を含まないNウェル5
が形成される。(第3図e) 本発明は、同様な方法で、N型の深い伝導層の形成、例
えば、NPNバイポーラトランジスタのコレクタ層の形
成にも適用できる。また、リン(P)の代わりにホウ素
(B)を用いることにより、CMO3のPウェル形成や
PNPバイポーラトランジスタのコレクタ層など、P型
の深い伝導層形成にも適用できる。
The N-well 5 is formed by implanting the N-well 5 with a dose of IXIO"cm-" (approximately In). (Fig. 3C) (d) Ar (argon) ions are implanted at 5 MeV (projected range 3.5n) to form a defective gettering layer 6. At this time, the gettering layer is , is formed in a region approximately IIrm before and after the projected range.The spread of this region increases as the dose increases.(Fig. 3d) (e) After removing the implantation mask, 1000"C for 130 minutes This activates phosphorus (P), and the secondary defects are replaced by Ar implanted N
N-well 5 that is gettered to 6 and does not contain secondary defects
is formed. (FIG. 3e) The present invention can also be applied in a similar manner to the formation of N-type deep conduction layers, for example the formation of the collector layer of NPN bipolar transistors. Further, by using boron (B) instead of phosphorus (P), it can be applied to the formation of a P-type deep conductive layer such as the formation of a P well of CMO3 or the collector layer of a PNP bipolar transistor.

また、プロセス構成もここで説明したプロセスに限られ
るものではない。また、^rイオンの代わりに、フッ素
、シリコン、ゲルマニューム等の伝導に寄与しない元素
を注入してもよい。
Further, the process configuration is not limited to the process described here. Further, instead of the ^r ions, an element that does not contribute to conduction, such as fluorine, silicon, or germanium, may be implanted.

また、表面側にB゛イオン高エネルギー注入した場合に
は、さらに深い位置にAr”等のイオンの代わりにP′
″イオンを注入してもよい。
In addition, when B' ions are implanted with high energy into the surface side, P' ions are substituted for Ar' etc. ions at a deeper position.
``Ions may be implanted.

(発明の効果) 本発明は軟土のように、シリコン半導体基板へのイオン
注入において、伝導型を決定する不純物を半導体基板表
面から埋め込まれるような深い位置に導入してPあるい
はN型層を形成する場合において、少なくとも前記不純
物の投影飛程より深い位置に、伝導に寄与しない元素、
あるいは逆の伝導型層を形成する元素を半導体基板表面
からイオン注入し、熱処理することによって、本発明を
CMO3のPlまたは、Nウェル形成、或いはバイポー
ラトランジスタのコレクタ形成に適用すれば、接合リー
クを低減でき高性能なデバイスを実現することができる
(Effects of the Invention) The present invention is similar to soft soil in ion implantation into a silicon semiconductor substrate, by introducing impurities that determine the conductivity type into a deep position buried from the surface of the semiconductor substrate to form a P or N type layer. In the case of formation, at least an element that does not contribute to conduction is added at a position deeper than the projected range of the impurity.
Alternatively, if the present invention is applied to forming a Pl or N well of CMO3 or a collector of a bipolar transistor by ion-implanting an element forming a layer of the opposite conductivity type from the surface of the semiconductor substrate and heat-treating it, junction leakage can be reduced. It is possible to realize a high-performance device with reduced energy consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の不純物分布と欠陥分布、第2図は本発
明の不純物分布と欠陥分布、第3図は本発明による製造
方法を示す。 l・・・シリコン基板 2・・・酸化膜 3・・・ポリイミド 4・・・非晶質シリコン 5・・・Nウェル 6・・・ゲッタリング層 第1図 深3  [JJml 第2図 喋”S  (j−+mJ 第3図 5 3・−・ 不°リイミド 4− 卵晶箪シjコン 5−−・ N’7コニル 6−−・ ケ□ンタリンクン曹
FIG. 1 shows the impurity distribution and defect distribution of the conventional method, FIG. 2 shows the impurity distribution and defect distribution of the present invention, and FIG. 3 shows the manufacturing method according to the present invention. l...Silicon substrate 2...Oxide film 3...Polyimide 4...Amorphous silicon 5...N well 6...Gettering layer Figure 1 Depth 3 [JJml Diagram 2] S (j-+mJ Fig. 3 5 3・-・ Imide 4- Oucrystalline Sicon 5--・ N'7 Conyl 6--・ Kentarinkun Soda

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン半導体基板に対して、伝導型を決定する
不純物によってPあるいはN型層が形成された装置にお
いて、前記シリコン半導体基板の表面より見て、前記の
不純物層より深い位置に、伝導に寄与しないゲッタリン
グ層が形成されていることを特徴とする半導体装置。
(1) In a device in which a P or N type layer is formed on a silicon semiconductor substrate using an impurity that determines the conduction type, a conduction layer is formed at a position deeper than the impurity layer when viewed from the surface of the silicon semiconductor substrate. A semiconductor device characterized in that a gettering layer that does not contribute is formed.
(2)シリコン半導体基板へのイオン注入において、伝
導型を決定する不純物を半導体基板表面から埋め込まれ
るような深い位置に導入してPあるいはN型層を形成す
る場合において、少なくとも前記不純物の投影飛程より
深い位置に、伝導に寄与しない元素、あるいは逆の伝導
型層を形成する元素を半導体基板表面からイオン注入し
、熱処理することを特徴とする半導体装置の製造方法。
(2) In ion implantation into a silicon semiconductor substrate, when a P or N type layer is formed by introducing an impurity that determines the conductivity type into a deep position buried from the surface of the semiconductor substrate, at least the projection of the impurity is 1. A method of manufacturing a semiconductor device, comprising ion-implanting an element that does not contribute to conduction or an element that forms a layer of the opposite conductivity type from the surface of a semiconductor substrate at a deeper position than the surface of the semiconductor substrate, followed by heat treatment.
JP34089189A 1989-12-28 1989-12-28 Semiconductor device and manufacture thereof Pending JPH03201535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34089189A JPH03201535A (en) 1989-12-28 1989-12-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34089189A JPH03201535A (en) 1989-12-28 1989-12-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03201535A true JPH03201535A (en) 1991-09-03

Family

ID=18341261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34089189A Pending JPH03201535A (en) 1989-12-28 1989-12-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03201535A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717437A3 (en) * 1994-12-12 1997-04-02 Advanced Micro Devices Inc Method of forming buried oxide layers
JPH1012850A (en) * 1995-12-30 1998-01-16 Hyundai Electron Ind Co Ltd Soi substrate and its manufacture
WO1998047171A1 (en) * 1997-04-11 1998-10-22 Advanced Micro Devices, Inc. Method of controlling dopant concentrations by implanting gettering atoms
JP2006319173A (en) 2005-05-13 2006-11-24 Sharp Corp Semiconductor device and its manufacturing method
JP2017028007A (en) * 2015-07-17 2017-02-02 信越半導体株式会社 Gettering capability evaluation method for silicon wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717437A3 (en) * 1994-12-12 1997-04-02 Advanced Micro Devices Inc Method of forming buried oxide layers
JPH1012850A (en) * 1995-12-30 1998-01-16 Hyundai Electron Ind Co Ltd Soi substrate and its manufacture
WO1998047171A1 (en) * 1997-04-11 1998-10-22 Advanced Micro Devices, Inc. Method of controlling dopant concentrations by implanting gettering atoms
US5976956A (en) * 1997-04-11 1999-11-02 Advanced Micro Devices, Inc. Method of controlling dopant concentrations using transient-enhanced diffusion prior to gate formation in a device
JP2006319173A (en) 2005-05-13 2006-11-24 Sharp Corp Semiconductor device and its manufacturing method
JP2017028007A (en) * 2015-07-17 2017-02-02 信越半導体株式会社 Gettering capability evaluation method for silicon wafer

Similar Documents

Publication Publication Date Title
JPS5821419B2 (en) Lattice defect removal method
JPS63174355A (en) Semiconductor device
JPH08203842A (en) Manufacture of semiconductor device
JP3070420B2 (en) Method for manufacturing semiconductor device
JPS6066814A (en) Method of producing semiconductor device
KR0144020B1 (en) Method of junction forming
JPH03201535A (en) Semiconductor device and manufacture thereof
US6136672A (en) Process for device fabrication using a high-energy boron implant
JPH04130731A (en) Manufacture of semiconductor integrated circuit device
JPS5856417A (en) Low-temperature activating method for boron ion implanted layer in silicon
JPH043920A (en) Manufacture of semiconductor device
US6136673A (en) Process utilizing selective TED effect when forming devices with shallow junctions
JPH0677247A (en) Formation of semiconductor device
JP2700320B2 (en) Method for manufacturing semiconductor device
JPH0411736A (en) Semiconductor device and manufacture thereof
JPH06151348A (en) Manufacture of semiconductor device
JP2527545B2 (en) Method for manufacturing semiconductor device
JPH06163574A (en) Manufacture of semiconductor device
JPH0494545A (en) Bipolar transistor
JPH1041240A (en) Semiconductor device and its manufacture
JPH04196525A (en) Manufacture of semiconductor device
JPH1174275A (en) Semiconductor device and its manufacture
JP2744022B2 (en) Method for manufacturing semiconductor device
JP2022173926A (en) Semiconductor epitaxial wafer and method for manufacturing the same
KR100214065B1 (en) Method for forming mosfet junction