JPS57155732A - Dry etching - Google Patents
Dry etchingInfo
- Publication number
- JPS57155732A JPS57155732A JP4129181A JP4129181A JPS57155732A JP S57155732 A JPS57155732 A JP S57155732A JP 4129181 A JP4129181 A JP 4129181A JP 4129181 A JP4129181 A JP 4129181A JP S57155732 A JPS57155732 A JP S57155732A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oxygen
- mixing
- benzene
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001312 dry etching Methods 0.000 title 1
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 abstract 8
- 239000007789 gas Substances 0.000 abstract 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 2
- 238000005530 etching Methods 0.000 abstract 2
- 239000001301 oxygen Substances 0.000 abstract 2
- 229910052760 oxygen Inorganic materials 0.000 abstract 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract 1
- 229910052786 argon Inorganic materials 0.000 abstract 1
- 238000010790 dilution Methods 0.000 abstract 1
- 239000012895 dilution Substances 0.000 abstract 1
- 229910001882 dioxygen Inorganic materials 0.000 abstract 1
- 239000001307 helium Substances 0.000 abstract 1
- 229910052734 helium Inorganic materials 0.000 abstract 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000001020 plasma etching Methods 0.000 abstract 1
- 239000012808 vapor phase Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
PURPOSE:To safely operate and to freely select selective ratio as well by a method wherein gas for plasma etching is formed by mixing vapor phase hexaphloro benzene with freon gas or oxygen gas. CONSTITUTION:Hexafluorobenzene C6F6 easily permits to generate CF3<+>, CF2<++> which etch a silicon oxide film. However, in the case of single gas only, the amount of the generation of the CF3<+>, CF2<++> becomes excessive. Therefore, gas mixing the hexafluoro benzene (C6F6) with freon gas or oxygen is flowed into a chamber to control the amount of the generation. The mixing ratio of the hexafluoro benzene to freon gas or oxygen can be selected at any value in accordance with etching condition such as selective ratio. And as to etching for the silicon oxide film, the vicinity of the mixing ratio of about 1:1 is perferable and dilution is previously made by inactive gas such as argon, helium or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4129181A JPS57155732A (en) | 1981-03-20 | 1981-03-20 | Dry etching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4129181A JPS57155732A (en) | 1981-03-20 | 1981-03-20 | Dry etching |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57155732A true JPS57155732A (en) | 1982-09-25 |
JPH0160938B2 JPH0160938B2 (en) | 1989-12-26 |
Family
ID=12604338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4129181A Granted JPS57155732A (en) | 1981-03-20 | 1981-03-20 | Dry etching |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57155732A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189553A (en) * | 1996-10-30 | 1998-07-21 | Agency Of Ind Science & Technol | Dryetching method |
US5990017A (en) * | 1991-06-27 | 1999-11-23 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6036877A (en) * | 1991-06-27 | 2000-03-14 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6054013A (en) * | 1996-02-02 | 2000-04-25 | Applied Materials, Inc. | Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density |
US6063233A (en) * | 1991-06-27 | 2000-05-16 | Applied Materials, Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
WO2000030168A1 (en) * | 1998-11-16 | 2000-05-25 | Applied Materials, Inc. | Process for etching oxide using hexafluorobutadiene or related hydroflourocarbons and manifesting a wide process window |
US6074512A (en) * | 1991-06-27 | 2000-06-13 | Applied Materials, Inc. | Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners |
US6077384A (en) * | 1994-08-11 | 2000-06-20 | Applied Materials, Inc. | Plasma reactor having an inductive antenna coupling power through a parallel plate electrode |
US6083412A (en) * | 1993-10-15 | 2000-07-04 | Applied Materials, Inc. | Plasma etch apparatus with heated scavenging surfaces |
US6132551A (en) * | 1997-09-20 | 2000-10-17 | Applied Materials, Inc. | Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil |
US6165311A (en) * | 1991-06-27 | 2000-12-26 | Applied Materials, Inc. | Inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6174451B1 (en) | 1998-03-27 | 2001-01-16 | Applied Materials, Inc. | Oxide etch process using hexafluorobutadiene and related unsaturated hydrofluorocarbons |
US6183655B1 (en) | 1997-09-19 | 2001-02-06 | Applied Materials, Inc. | Tunable process for selectively etching oxide using fluoropropylene and a hydrofluorocarbon |
US6217785B1 (en) * | 1992-12-01 | 2001-04-17 | Applied Materials, Inc. | Scavenging fluorine in a planar inductively coupled plasma reactor |
US6238588B1 (en) | 1991-06-27 | 2001-05-29 | Applied Materials, Inc. | High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process |
US6361644B1 (en) | 1995-08-30 | 2002-03-26 | Applied Materials, Inc. | Parallel-plate electrode reactor having an inductive antenna coupling power through a parallel plate electrode |
WO2001068939A3 (en) * | 2000-03-10 | 2002-05-30 | Applied Materials Inc | Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas |
US6401652B1 (en) | 2000-05-04 | 2002-06-11 | Applied Materials, Inc. | Plasma reactor inductive coil antenna with flat surface facing the plasma |
US6432318B1 (en) * | 2000-02-17 | 2002-08-13 | Applied Materials, Inc. | Dielectric etch process reducing striations and maintaining critical dimensions |
US6444084B1 (en) | 1996-02-02 | 2002-09-03 | Applied Materials, Inc. | Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna |
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US6514376B1 (en) | 1991-06-27 | 2003-02-04 | Applied Materials Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6589437B1 (en) | 1999-03-05 | 2003-07-08 | Applied Materials, Inc. | Active species control with time-modulated plasma |
US6849193B2 (en) | 1999-03-25 | 2005-02-01 | Hoiman Hung | Highly selective process for etching oxide over nitride using hexafluorobutadiene |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018016375A1 (en) | 2016-07-20 | 2018-01-25 | 昭和電工株式会社 | Gas supply apparatus and gas supply method |
-
1981
- 1981-03-20 JP JP4129181A patent/JPS57155732A/en active Granted
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US5990017A (en) * | 1991-06-27 | 1999-11-23 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6036877A (en) * | 1991-06-27 | 2000-03-14 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6514376B1 (en) | 1991-06-27 | 2003-02-04 | Applied Materials Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6063233A (en) * | 1991-06-27 | 2000-05-16 | Applied Materials, Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6074512A (en) * | 1991-06-27 | 2000-06-13 | Applied Materials, Inc. | Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners |
US6454898B1 (en) | 1991-06-27 | 2002-09-24 | Applied Materials, Inc. | Inductively coupled RF Plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners |
US6444085B1 (en) | 1991-06-27 | 2002-09-03 | Applied Materials Inc. | Inductively coupled RF plasma reactor having an antenna adjacent a window electrode |
US6440866B1 (en) | 1991-06-27 | 2002-08-27 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6165311A (en) * | 1991-06-27 | 2000-12-26 | Applied Materials, Inc. | Inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6238588B1 (en) | 1991-06-27 | 2001-05-29 | Applied Materials, Inc. | High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process |
US6623596B1 (en) | 1992-12-01 | 2003-09-23 | Applied Materials, Inc | Plasma reactor having an inductive antenna coupling power through a parallel plate electrode |
US6217785B1 (en) * | 1992-12-01 | 2001-04-17 | Applied Materials, Inc. | Scavenging fluorine in a planar inductively coupled plasma reactor |
US6083412A (en) * | 1993-10-15 | 2000-07-04 | Applied Materials, Inc. | Plasma etch apparatus with heated scavenging surfaces |
US6077384A (en) * | 1994-08-11 | 2000-06-20 | Applied Materials, Inc. | Plasma reactor having an inductive antenna coupling power through a parallel plate electrode |
US6361644B1 (en) | 1995-08-30 | 2002-03-26 | Applied Materials, Inc. | Parallel-plate electrode reactor having an inductive antenna coupling power through a parallel plate electrode |
US6444084B1 (en) | 1996-02-02 | 2002-09-03 | Applied Materials, Inc. | Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna |
US6524432B1 (en) | 1996-02-02 | 2003-02-25 | Applied Materials Inc. | Parallel-plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density |
US6054013A (en) * | 1996-02-02 | 2000-04-25 | Applied Materials, Inc. | Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density |
US6218312B1 (en) | 1996-05-13 | 2001-04-17 | Applied Materials Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6024826A (en) * | 1996-05-13 | 2000-02-15 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6365063B2 (en) | 1996-05-13 | 2002-04-02 | Applied Materials, Inc. | Plasma reactor having a dual mode RF power application |
JPH10189553A (en) * | 1996-10-30 | 1998-07-21 | Agency Of Ind Science & Technol | Dryetching method |
US6183655B1 (en) | 1997-09-19 | 2001-02-06 | Applied Materials, Inc. | Tunable process for selectively etching oxide using fluoropropylene and a hydrofluorocarbon |
US6132551A (en) * | 1997-09-20 | 2000-10-17 | Applied Materials, Inc. | Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil |
US6174451B1 (en) | 1998-03-27 | 2001-01-16 | Applied Materials, Inc. | Oxide etch process using hexafluorobutadiene and related unsaturated hydrofluorocarbons |
US6387287B1 (en) | 1998-03-27 | 2002-05-14 | Applied Materials, Inc. | Process for etching oxide using a hexafluorobutadiene and manifesting a wide process window |
WO2000030168A1 (en) * | 1998-11-16 | 2000-05-25 | Applied Materials, Inc. | Process for etching oxide using hexafluorobutadiene or related hydroflourocarbons and manifesting a wide process window |
US6589437B1 (en) | 1999-03-05 | 2003-07-08 | Applied Materials, Inc. | Active species control with time-modulated plasma |
US6849193B2 (en) | 1999-03-25 | 2005-02-01 | Hoiman Hung | Highly selective process for etching oxide over nitride using hexafluorobutadiene |
US6432318B1 (en) * | 2000-02-17 | 2002-08-13 | Applied Materials, Inc. | Dielectric etch process reducing striations and maintaining critical dimensions |
US6800213B2 (en) | 2000-02-17 | 2004-10-05 | Ji Ding | Precision dielectric etch using hexafluorobutadiene |
WO2001068939A3 (en) * | 2000-03-10 | 2002-05-30 | Applied Materials Inc | Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas |
US6613689B2 (en) | 2000-03-10 | 2003-09-02 | Applied Materials, Inc | Magnetically enhanced plasma oxide etch using hexafluorobutadiene |
US6451703B1 (en) | 2000-03-10 | 2002-09-17 | Applied Materials, Inc. | Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas |
US6401652B1 (en) | 2000-05-04 | 2002-06-11 | Applied Materials, Inc. | Plasma reactor inductive coil antenna with flat surface facing the plasma |
Also Published As
Publication number | Publication date |
---|---|
JPH0160938B2 (en) | 1989-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS57155732A (en) | Dry etching | |
IE811531L (en) | Manufacturing a semiconductor device using a gas mixture | |
US5567271A (en) | Oxygen reactive ion etch (RIE) plasma method for removing oxidized organic residues from semiconductor substrates | |
JPS5240978A (en) | Process for production of semiconductor device | |
JPS54161275A (en) | Etching method by gas containing hydrogen fluoride | |
JPS57130431A (en) | Manufacture of semiconductor device | |
JPS57108267A (en) | Etching method | |
JPS56169776A (en) | Selective dry etching method | |
JPS5515290A (en) | Manufacturing method of semiconductor device | |
JPS5547381A (en) | Plasma etching method | |
JPS55164077A (en) | Method for etching by gas plasma | |
JPS55138834A (en) | Dry etching method | |
JPS5568636A (en) | Anodic oxidation method of compound semiconductor by plasma | |
JPS6436023A (en) | Dry etching | |
JPS52127761A (en) | Gas plasma etching unit | |
JPS52139372A (en) | Selective etching method of thin films | |
JPS5561027A (en) | Gas plasma etching | |
JPS6417430A (en) | Etching method | |
JPS54146579A (en) | Plasma etching device | |
JPS54101273A (en) | Manufacture for semiconductor device | |
JPS5376758A (en) | Plasma etching method | |
JPS52134377A (en) | Etching solution for multidimensional semiconductors | |
JPS5598827A (en) | Manufacture of electrode of semiconductor device | |
JPS5311581A (en) | Etching method | |
KR830001738A (en) | Device manufacturing method by plasma etching |