JPH0160938B2 - - Google Patents

Info

Publication number
JPH0160938B2
JPH0160938B2 JP4129181A JP4129181A JPH0160938B2 JP H0160938 B2 JPH0160938 B2 JP H0160938B2 JP 4129181 A JP4129181 A JP 4129181A JP 4129181 A JP4129181 A JP 4129181A JP H0160938 B2 JPH0160938 B2 JP H0160938B2
Authority
JP
Japan
Prior art keywords
etching
gas
hexafluorobenzene
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4129181A
Other languages
Japanese (ja)
Other versions
JPS57155732A (en
Inventor
Ryohei Kawabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4129181A priority Critical patent/JPS57155732A/en
Publication of JPS57155732A publication Critical patent/JPS57155732A/en
Publication of JPH0160938B2 publication Critical patent/JPH0160938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、単結晶又は多結晶シリコン上に形成
されたシリコン酸化膜をドライエツチングする方
法に関するもので、特にシリコン基板上のシリコ
ン酸化膜をガスプラズマでエツチングするための
エツチングガスの選択に関するものである。 近年半導体装置の微細化が進むにつれて、半導
体装置の製造中におけるエツチング工程は、従来
の化学溶液を利用したウエツトエツチングからプ
ラズマ状態のガスやイオンビームを利用したドラ
イエツチングに変りつつある。後者のドライエツ
チング方法によれば廃液処理などの公害問題を招
く惧れが少なく、また微細パターンの加工が可能
になり、加えて均一なエツチング処理を施こすこ
とができるという利点があり、特に超LSIの製造
には不可欠の技術となつている。 シリコン基板に形成されたシリコン酸化膜や窒
素化膜をドライエツチングするために、従来から
開発されているドライエツチング方法のためのエ
ツチングガスとして次のような2種類のガスが用
いられている。 () 例えばCF4、C2F6のようなフロンガスに水
素を混合させたガス。 () C2F6、C3F8等の単体ガス。 前者の()に示した混合ガスを利用する方法
は、水素を含むガスの組成を変えることによつて
エツチングの際の選択比(SiO2エツチング速
度/Siエツチング速度)を比較的広い範囲に亘つ
て変えることができるという利点がある反面、混
合ガス中で水素が反応してHFを発生し、そのた
めに製造装置を腐蝕させて耐久性を著しく低下さ
せるという欠点があり、また水素ガスを扱うため
に危険性が高く慎重な取り扱い管理及びが要求さ
れるという欠点があつた。また後者の()によ
る単体ガスを利用する方法は、水素が含まれない
ため上記前者のような危険性はないが、一般に選
択比が低くまたエツチングガスが一定であるため
選択比を自由に変えることができない、という欠
点があつた。 この発明は上記従来の()及び()のエツ
チングガスを利用したドライエツチングにおける
欠点を除去し、安全に操作することができ且つ選
択比を自由に選ぶことができ、特に高い選択比を
比較的容易に得ることができる反応性イオンエツ
チング方法を提供するものである。この発明は気
相のヘキサフロロベンゼンにCF4を混合させたも
のをプラズマエツチング用のガスとするものであ
る。次に実施例を挙げて本発明を詳細に説明す
る。 第1図は反応性イオンエツチングのための反応
装置を模型的に示す図で、真空チヤンバー1の内
部には平行平板型の電極21,22が間隙を隔てて
相対向する関係に配置され、両電極21,22の間
には高周波電源回路3が接続されて、例えば
13.56MHzの高周波を発生させる。エツチングさ
れるべき半導体基板4は上記電極21,22間に配
置される。チヤンバー1内には次に述べるエツチ
ングのための混合ガスが導入され、電源が投入さ
れた状態で電極間に発生したプラズマを半導体基
板表面に投射する。 ここでまずこの種のSiO2の反応性イオンエツ
チングの機構の概要を説明する。一般に上記反応
装置のチヤンバー1内にCF4を流入してプラズマ
を発生させると、活性なフツ素F*の他にCF3 +
CF2 ++等の炭素原子を伴つた反応性のイオンを発
生する。このようにチヤンバー内に発生したイオ
ンの内、活性なフツ素F*はシリコン基板をエツ
チングし、CF3 +はシリコン酸化膜を選択的にエ
ツチングすると考えられている。 従来からシリコンをエツチングする目的のため
には活性なフツ素F*を多く発生させるために、
(CF4+O2)等の混合ガスを用い、次のような反
応によつてF*を発生させる CF4+O2→CO2+4F* 一方シリコン酸化膜をエツチングするために
は、CF3 +を発生させ易くするために(CF4+H2
の混合ガスやC3F8が用いられ、次の反応式のよ
うにF*の発生を抑えてCF3 +を発生させる。 CF4+H→CF3 ++HF C3F8→2CF3 ++CF2 ++ 処で上記のようなプラズマによつて発生した
CF3 +、CF2 ++はシリコン酸化膜をエツチングする
が、過剰に発生すると重合反応が起こり、テフロ
ン系のポリマーが形成される。生成されたポリマ
ーのためにエツチング反応が停止するばかりでな
く、チヤンバー内壁を汚染させて装置の保守点検
に非常に多くの手間を要するという欠点がある。 次に本発明に適用するヘキサフロロベンゼン
C6F6について説明する。このヘキサフロロベン
ゼンC6F6
The present invention relates to a method for dry etching a silicon oxide film formed on single crystal or polycrystalline silicon, and in particular to selection of an etching gas for etching a silicon oxide film on a silicon substrate using gas plasma. be. As the miniaturization of semiconductor devices has progressed in recent years, the etching process during the manufacture of semiconductor devices has been changing from conventional wet etching using chemical solutions to dry etching using plasma gas or ion beams. The latter dry etching method has the advantage of being less likely to cause pollution problems such as waste liquid treatment, making it possible to process fine patterns, and being able to perform uniform etching. It has become an essential technology for LSI manufacturing. In order to dry-etch a silicon oxide film or a nitride film formed on a silicon substrate, the following two types of gases are used as etching gases for dry etching methods that have been developed in the past. () For example, a gas in which hydrogen is mixed with a fluorocarbon gas such as CF 4 or C 2 F 6 . () Simple gases such as C 2 F 6 and C 3 F 8 . The former method using a mixed gas shown in () changes the etching selectivity (SiO 2 etching rate/Si etching rate) over a relatively wide range by changing the composition of the hydrogen-containing gas. On the other hand, there is the disadvantage that hydrogen reacts in the mixed gas and generates HF, which corrodes the manufacturing equipment and significantly reduces its durability. However, it has the disadvantage that it is highly dangerous and requires careful handling and management. The latter method () using a simple gas does not contain hydrogen and is therefore not as dangerous as the former method, but the selectivity is generally low and the etching gas is constant, so the selectivity can be changed freely. The drawback was that I couldn't do it. This invention eliminates the drawbacks of the conventional dry etching using etching gases () and (), allows safe operation, and allows the selection ratio to be freely selected. The present invention provides a reactive ion etching method that can be easily obtained. In this invention, a mixture of gaseous hexafluorobenzene and CF 4 is used as a gas for plasma etching. Next, the present invention will be explained in detail with reference to Examples. FIG. 1 schematically shows a reaction apparatus for reactive ion etching. Inside a vacuum chamber 1, parallel plate electrodes 2 1 and 2 2 are arranged facing each other with a gap in between. , a high frequency power supply circuit 3 is connected between the electrodes 2 1 and 2 2 , for example.
Generates a high frequency of 13.56MHz. The semiconductor substrate 4 to be etched is placed between the electrodes 2 1 and 2 2 . A mixed gas for etching, which will be described below, is introduced into the chamber 1, and with the power turned on, plasma generated between the electrodes is projected onto the surface of the semiconductor substrate. First, an overview of the mechanism of this type of reactive ion etching of SiO 2 will be explained. Generally, when CF 4 is introduced into the chamber 1 of the above reactor to generate plasma, CF 3 + and
Generates reactive ions with carbon atoms such as CF 2 ++ . Among the ions generated in the chamber in this way, active fluorine F * is thought to etch the silicon substrate, and CF 3 + selectively etch the silicon oxide film. Conventionally, for the purpose of etching silicon, in order to generate a large amount of active fluorine F * ,
Using a mixed gas such as (CF 4 + O 2 ), F * is generated through the following reaction: CF 4 + O 2 → CO 2 + 4F * On the other hand, in order to etch a silicon oxide film, CF 3 + is To make it easier to generate (CF 4 + H 2 )
A mixed gas of C 3 F 8 and C 3 F 8 are used to suppress the generation of F * and generate CF 3 + as shown in the following reaction formula. CF 4 +H→CF 3 + +HF C 3 F 8 →2CF 3 + +CF 2 ++ generated by the above plasma.
CF 3 + and CF 2 ++ etch the silicon oxide film, but if they are generated in excess, a polymerization reaction occurs and a Teflon-based polymer is formed. The disadvantage is that the produced polymer not only stops the etching reaction, but also contaminates the inner walls of the chamber, making maintenance and inspection of the apparatus very time-consuming. Next, hexafluorobenzene applied to the present invention
Explain C 6 F 6 . This hexafluorobenzene C 6 F 6 is

【式】の構造をもち、沸点が 80℃以下の液体として入手される。このヘキサフ
ロロベンゼンは炭素原子の割合が多いことからシ
リコン酸化膜をエツチングするCF3 +、CF2 ++を比
較的容易に発生させ得る。しかしヘキサフロロベ
ンゼン単体のガスのみでプラズマを発生させた場
合にはCF3 +、CF2 ++の発生量著しく過剰になつて
上述のようにポリマーが形成されるための反応が
進行せず、実用化にはならなかつた。そこでヘキ
サフロロベンゼンから発生したCF3 +、CF2 ++のイ
オンを効果的に飛翔させて重合反応の発生を阻止
させるため、本発明はCF3 +、CF2 ++の発生量を制
御するエツチングガス組成を選択する。即ちこの
発明はヘキサフロロベンゼン(C6F6)にCF4を混
合したガスをチヤンバー内に流入させる。ヘキサ
フロロベンゼンとCF4との混合比は選択比等のエ
ツチング条件に応じて任意の値に選ぶことができ
る。第2図はCF4をヘキサフロロベンゼンに混合
させたガスを流入した場合のガス混合割合(横
軸)(C6F6/CF4+C6F6)とエツチング速度(縦
軸)との関係を示し、図中曲線Aはシリコン酸化
膜の、曲線Bは多結晶シリコンにおけるエツチン
グガス混合比とエツチング速度の関係を示してい
る。第3図の曲線Cは第2図の関係から更に選択
比(SiO2/多結晶Si)の関係を求めて図示した
ものである。尚同図において上記プラズマエツチ
ングにおけるエツチングガスは、ヘキサフロロベ
ンゼンとCF4の合計容積が8.4c.c./minの流速で供
給され、この8.4c.c./minの中で夫々のガスが占
める割合を変化させたものである。またチヤンバ
ー1内の圧力は23mTorrに調整され、200Wの高
周波出力が印加されている。チヤンバー1内は上
記ヘキサフロロベンゼンとCF4の混合ガスだけで
はなく、更にアルゴン、ヘリウム等の不活性ガス
が6c.c./minの割合でエツチングガスを希釈する
ために同時に流入されている。上記不活性ガスは
特に必要とするものではないが前述のようにエツ
チングガスを希釈することにより、高周波出力の
整合性が良好になることが確かめられた。 第2図、第3図から明らかなようにヘキサフロ
ロベンゼンとCF4の混合によるプラズマエツチン
グでは、シリコン酸化膜のエツチング速度がシリ
コンのエツチング速度に比べて著しく大きく、従
つてその選択比も大きくとれる。選択比はガスの
組成を変えることによつて3〜15程度の値にまで
広い範囲に亘つて調整することができる。 シリコン酸化膜のエツチングとしてはヘキサフ
ロロベンゼンとCF4をほぼ1:1の混合割合の近
傍が好ましい。 なお、本エツチング条件では、多結晶シリコン
と単結晶シリコンのエツチング速度は、ほぼ同一
であり、第4図に示す様に、SiO2と単結晶シリ
コンの間でも選択エツチングが可能となる。 第2図及び第3図中、破線で示した曲線A′,
B′及びC′はチヤンバー内に流入されるガス圧をよ
り高い70mTorrに設定し、ガスの流入速度を
74.4c.c./min(CF4+C6F6が14.7c.c./min、Arが60
c.c./min)とした場合のエツチング速度及び選択
比を示す。チヤンバー内のガス圧を高くすること
により、ポリマーを生成してドライエツチングが
不可能になる点がより低い混合比の側に寄つてく
る。 またチヤンバー内に流入される上記エツチング
ガスは、予めアルゴンやヘリウム等の不活性ガス
によつて希釈してチヤンバー内に供給することが
でき、前記実施例では60c.c./min程度の不活性ガ
スによつてエツチングガスが希釈されている。希
釈したエツチングガスを用いてプラズマを発生さ
せることにより、高周波発生回路における整合が
著しく良好になることが確められた。 以上本発明によれば、ヘキサフロロベンゼンに
CF4を混合したガスをプラズマエツチングのため
のガスとすることにより、化学的に安定で、安
全・無公害な薬品を用いることができ、またドラ
イエツチング時に高い選択比を容易に得ることが
でき、更にガスの混合比を変えることによつて選
択比を広い範囲に亘つて変化させることができ、
所望のエツチング工程に適切なエツチングを施こ
まことができる。特にシリコン半導体基板上に形
成された層間絶縁膜としてのシリコン酸化膜を非
常に微細にエツチングすることができ、極めて微
細なコンタクトホール等をも確実に作成すること
ができる。
It has the structure of [Formula] and is available as a liquid with a boiling point of 80°C or less. Since this hexafluorobenzene has a high proportion of carbon atoms, it can relatively easily generate CF 3 + and CF 2 ++ that etch the silicon oxide film. However, when plasma is generated using only hexafluorobenzene gas, the amount of CF 3 + and CF 2 ++ generated becomes extremely excessive, and the reaction to form the polymer as described above does not proceed. It was not put into practical use. Therefore, in order to effectively fly the CF 3 + and CF 2 ++ ions generated from hexafluorobenzene and prevent the polymerization reaction from occurring, the present invention controls the amount of CF 3 + and CF 2 ++ generated. Select etching gas composition. That is, in this invention, a gas containing CF 4 mixed with hexafluorobenzene (C 6 F 6 ) flows into the chamber. The mixing ratio of hexafluorobenzene and CF 4 can be selected to any value depending on etching conditions such as selectivity. Figure 2 shows the relationship between the gas mixture ratio (horizontal axis) (C 6 F 6 /CF 4 +C 6 F 6 ) and etching rate (vertical axis) when a gas containing CF 4 mixed with hexafluorobenzene is introduced. In the figure, curve A shows the relationship between etching gas mixture ratio and etching rate for silicon oxide film, and curve B shows the relationship between etching gas mixture ratio and etching rate for polycrystalline silicon. Curve C in FIG. 3 is a diagram obtained by further determining the relationship of selectivity (SiO 2 /polycrystalline Si) from the relationship in FIG. 2. In the same figure, the etching gas in the plasma etching described above was supplied at a flow rate of 8.4 cc/min with a total volume of hexafluorobenzene and CF 4 , and the proportion occupied by each gas within this 8.4 cc/min was varied. It is something. The pressure inside chamber 1 was adjusted to 23mTorr, and a high frequency output of 200W was applied. In addition to the above-mentioned mixed gas of hexafluorobenzene and CF 4 , an inert gas such as argon or helium is simultaneously flowed into the chamber 1 at a rate of 6 c.c./min to dilute the etching gas. Although the inert gas is not particularly required, it has been confirmed that diluting the etching gas as described above improves the consistency of the high frequency output. As is clear from FIGS. 2 and 3, in plasma etching using a mixture of hexafluorobenzene and CF 4 , the etching rate of silicon oxide film is significantly higher than that of silicon, and therefore the etching selectivity is also large. . The selectivity ratio can be adjusted over a wide range of values from about 3 to about 15 by changing the gas composition. For etching a silicon oxide film, it is preferable to mix hexafluorobenzene and CF 4 at a mixing ratio of approximately 1:1. Note that under these etching conditions, the etching speeds of polycrystalline silicon and single-crystal silicon are almost the same, and as shown in FIG. 4, selective etching is also possible between SiO 2 and single-crystal silicon. In Figures 2 and 3, the curves A', indicated by broken lines,
B' and C' set the gas pressure flowing into the chamber to a higher value of 70 mTorr, and the gas inflow velocity
74.4cc/min (CF 4 + C 6 F 6 is 14.7cc/min, Ar is 60
The etching rate and selectivity are shown in the figure (cc/min). By increasing the gas pressure in the chamber, the point at which polymer is formed and dry etching becomes impossible is shifted toward lower mixing ratios. Further, the etching gas introduced into the chamber can be diluted with an inert gas such as argon or helium beforehand and supplied into the chamber. The etching gas is diluted by the gas. It has been confirmed that generating plasma using diluted etching gas significantly improves the matching in the high frequency generation circuit. According to the present invention, hexafluorobenzene
By using a gas mixed with CF 4 as the gas for plasma etching, chemically stable, safe and non-polluting chemicals can be used, and a high selectivity can be easily obtained during dry etching. Furthermore, by changing the gas mixture ratio, the selectivity can be varied over a wide range,
Appropriate etching can be performed in a desired etching process. In particular, a silicon oxide film as an interlayer insulating film formed on a silicon semiconductor substrate can be etched very finely, and even very fine contact holes etc. can be reliably created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応性イオンエツチング装置を示す概
略構成図、第2図及び第3図、第4図は本発明に
よる反応性イオンエツチング方法を説明するため
のガス混合割合とエツチング速度及び選択比の関
係を示す図である。 A,A′:シリコン酸化膜のエツチング速度、
B,B′:ポリシリコンのエツチング速度、C,
C′:選択比。
FIG. 1 is a schematic configuration diagram showing a reactive ion etching apparatus, and FIGS. 2, 3, and 4 show gas mixing ratios, etching rates, and selection ratios for explaining the reactive ion etching method according to the present invention. It is a figure showing a relationship. A, A': Etching rate of silicon oxide film,
B, B': Etching rate of polysilicon, C,
C′: Selectivity ratio.

Claims (1)

【特許請求の範囲】 1 単結晶又は多結晶シリコン上に形成されたシ
リコン酸化膜をドライエツチングする方法におい
て、気相のヘキサフロロベンゼン(C6F6)とCF4
を所望の割合で混合してガスプラズマを形成し、
シリコン酸化膜をシリコンに対して選択的にエツ
チングすることを特徴とする反応性イオンエツチ
ング方法。 2 前記混合ガスは更にヘリウム又はアルゴンの
不活性ガスで稀釈されてなることを特徴とする特
許請求の範囲第1項記載の反応性イオンエツチン
グ方法。 3 前記ヘキサフロロベンゼンとCF4との混合比
はモル比でほぼ1:1に混合されてなることを特
徴とする特許請求の範囲第1項記載の反応性イオ
ンエツチング方法。
[Claims] 1. A method for dry etching a silicon oxide film formed on single crystal or polycrystalline silicon, in which gaseous hexafluorobenzene (C 6 F 6 ) and CF 4
are mixed in a desired proportion to form a gas plasma,
A reactive ion etching method characterized by selectively etching a silicon oxide film with respect to silicon. 2. The reactive ion etching method according to claim 1, wherein the mixed gas is further diluted with an inert gas such as helium or argon. 3. The reactive ion etching method according to claim 1, wherein the hexafluorobenzene and CF 4 are mixed at a molar ratio of approximately 1:1.
JP4129181A 1981-03-20 1981-03-20 Dry etching Granted JPS57155732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129181A JPS57155732A (en) 1981-03-20 1981-03-20 Dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129181A JPS57155732A (en) 1981-03-20 1981-03-20 Dry etching

Publications (2)

Publication Number Publication Date
JPS57155732A JPS57155732A (en) 1982-09-25
JPH0160938B2 true JPH0160938B2 (en) 1989-12-26

Family

ID=12604338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129181A Granted JPS57155732A (en) 1981-03-20 1981-03-20 Dry etching

Country Status (1)

Country Link
JP (1) JPS57155732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016375A1 (en) 2016-07-20 2018-01-25 昭和電工株式会社 Gas supply apparatus and gas supply method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024826A (en) * 1996-05-13 2000-02-15 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6074512A (en) 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6036877A (en) * 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5477975A (en) * 1993-10-15 1995-12-26 Applied Materials Inc Plasma etch apparatus with heated scavenging surfaces
US6238588B1 (en) 1991-06-27 2001-05-29 Applied Materials, Inc. High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6165311A (en) 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6514376B1 (en) 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
KR100281345B1 (en) * 1992-12-01 2001-03-02 조셉 제이. 스위니 Oxide Etching Process in Electromagnetically Coupled Planner Plasma Device
TW279240B (en) 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6036878A (en) 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
JP4215294B2 (en) * 1996-10-30 2009-01-28 独立行政法人産業技術総合研究所 Dry etching method
US6183655B1 (en) 1997-09-19 2001-02-06 Applied Materials, Inc. Tunable process for selectively etching oxide using fluoropropylene and a hydrofluorocarbon
US6132551A (en) * 1997-09-20 2000-10-17 Applied Materials, Inc. Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil
US6174451B1 (en) 1998-03-27 2001-01-16 Applied Materials, Inc. Oxide etch process using hexafluorobutadiene and related unsaturated hydrofluorocarbons
US6387287B1 (en) * 1998-03-27 2002-05-14 Applied Materials, Inc. Process for etching oxide using a hexafluorobutadiene and manifesting a wide process window
US6589437B1 (en) 1999-03-05 2003-07-08 Applied Materials, Inc. Active species control with time-modulated plasma
US6849193B2 (en) 1999-03-25 2005-02-01 Hoiman Hung Highly selective process for etching oxide over nitride using hexafluorobutadiene
US6432318B1 (en) * 2000-02-17 2002-08-13 Applied Materials, Inc. Dielectric etch process reducing striations and maintaining critical dimensions
US6451703B1 (en) 2000-03-10 2002-09-17 Applied Materials, Inc. Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016375A1 (en) 2016-07-20 2018-01-25 昭和電工株式会社 Gas supply apparatus and gas supply method
US11427907B2 (en) 2016-07-20 2022-08-30 Showa Denko K.K. Gas supply apparatus and gas supply method

Also Published As

Publication number Publication date
JPS57155732A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
JPH0160938B2 (en)
CA1122922A (en) Reactive ion etching
EP0482519B1 (en) Method of etching oxide materials
US4807016A (en) Dry etch of phosphosilicate glass with selectivity to undoped oxide
JPH0744175B2 (en) Etching method
US4264409A (en) Contamination-free selective reactive ion etching or polycrystalline silicon against silicon dioxide
GB2069936A (en) Two-step plasma etching process
JPH0777214B2 (en) Ashing method for organic matter
JP2008071801A (en) Etching liquid, etching method and method for manufacturing electronic component
EP0004285B1 (en) A method of plasma etching silica at a faster rate than silicon in an article comprising both
JPS59100539A (en) Method for producing semiconductor device
JP2002313776A (en) Dry etching method and dry etching device
JPS6158975B2 (en)
JPS6210311B2 (en)
JP3611729B2 (en) Etching gas
JPS60246636A (en) Manufacture of semiconductor device
JPS5855568A (en) Reactive ion etching method
JPS6151036B2 (en)
JP3112495B2 (en) Silicon etching method
JPS6255692B2 (en)
JP3611723B2 (en) Etching gas
JP2598524B2 (en) Dry etching method
JP2001217230A (en) Anisotropic dry etching method
Becker et al. A Method of Obtaining High Oxide to Nitride Selectivity in an MERIE Reactor
JPH0253513B2 (en)